Skip to main content

Neural Network Detectors for Composite Hypothesis Tests

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4224))

Abstract

Neural networks (NNs) are proposed for approximating the Average Likelihood Ratio (ALR). The detection of gaussian targets with gaussian autocorrelation function and unknown one-lag correlation coefficient, ρ s , in Additive White Gaussian Noise (AWGN) is considered. After proving the low robustness of the likelihood ratio (LR) detector with respect to ρ s , the ALR detector assuming a uniform distribution of this parameter in [0,1] has been studied. Due to the complexity of the involved integral, two NN based solutions are proposed. Firstly, single Multi-Layer Perceptrons (MLPs) are trained with target patterns with ρ s varying in [0,1]. This scheme outperforms the LR detector designed for a fixed value of ρ s . MLP with 17 hidden neurons is proposed as a solution. Then, two MLPs trained with target patterns with ρ s varying in [0,0.5] and [0.5,1], respectively, are combined. This scheme outperforms the single MLP and allows to determine a solution of compromise between complexity and approximation error. A detector composed of MLPs with 17 and 8 hidden units each one is proposed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Van Trees, H.L.: Detection, estimation, and modulation theory, vol. 1. Wiley, Chichester (1968)

    MATH  Google Scholar 

  • Aref, M.R., Nayebi, M.M.: Likelihood-ratio detection. In: IEEE Int. Symp. on Information Theory, Trondheim, Norway, p. 260 (1994)

    Google Scholar 

  • Ruck, D.W., Rogers, S.K., Kabrisky, M., Oxley, M.E., Suter, B.W.: The multilayer perceptron as an aproximation to a Bayes optimal discriminant function. IEEE Transactions on Neural Networks 1(4), 296–298 (1990)

    Article  Google Scholar 

  • Wan, E.A.: Neural network classification: a bayesian interpretation. IEEE Transactions on Neural Networks 1(4), 303–305 (1990)

    Article  Google Scholar 

  • Richard, M.D., Lippmann, R.P.: Neural network classifiers estimate Bayessian a posteriori probabilities. Neural Computation 3, 461–483 (1991)

    Article  Google Scholar 

  • Jarabo-Amores, P., Rosa-Zurera, M., Gil-Pita, R., López-Ferreras, F.: Suficient Condition for an Adaptive System to Approximate the Neyman-Pearson Detector. In: Proc. IEEE Workshop on Statistical Signal Processing, Bordeaux, France (2005)

    Google Scholar 

  • Gandhi, P.P., Ramamurti, V.: Neural networks for signal detection in non-gaussian noise. IEEE Transactions on Signal Processing 45(11), 2846–2851 (1997)

    Article  Google Scholar 

  • Andina, D., Sanz-Gonzlez, J.L.: Comparison of a neural network detector vs. Neyman-Pearson optimal detector. In: Proc. ICASSP 1996, Atlanta, GA, pp. 3573–3576 (1996)

    Google Scholar 

  • Munro, D.J., Ersoy, O.K., Bell, M.R., Sadowsky, J.S.: Neural network learning of low-probability events. IEEE Transactions on Aerospace and Electronic Systems 32(3), 898–910 (1996)

    Article  Google Scholar 

  • Mata-Moya, D., Jarabo-Amores, P., Rosa-Zurera, M., López-Ferreras, F., Vicen- Bueno, R.: Approximating the Neyman-Pearson detector for Swerling I Targets with Low Complexity Neural Networks. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3697, pp. 917–922. Springer, Heidelberg (2005)

    Google Scholar 

  • Jarabo-Amores, P., Gil-Pita, R., Rosa-Zurera, M., López-Ferreras, F.: MLP and RBFN for detecting white gaussian signals in white gaussian interference. In: IWANN 2003. LNCS, vol. 2687, pp. 790–797. Springer, Heidelberg (2003)

    Google Scholar 

  • El-Jaroudi, A.A., Makhoul, J.: A new error criterion for posterior probability estimation with neural nets. In: Proc. of the Int. Conf. on Neural Networks IJCNN, U.S.A., June 1990, pp. 185–192 (1990)

    Google Scholar 

  • Nguyen, D., Widrow, B.: Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights. In: Proc. of the Int. Joint Conf. on Neural Networks, pp. 21–26 (1990)

    Google Scholar 

  • Sanz-Gonzalez, J.L., Andina, D.: Performance analysis of neural network detectors by importance sampling techniques. In: Neural Proc. Letters, vol. 9, pp. 257–269 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

de la Mata-Moya, D., Jarabo-Amores, P., Vicen-Bueno, R., Rosa-Zurera, M., López-Ferreras, F. (2006). Neural Network Detectors for Composite Hypothesis Tests. In: Corchado, E., Yin, H., Botti, V., Fyfe, C. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2006. IDEAL 2006. Lecture Notes in Computer Science, vol 4224. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11875581_36

Download citation

  • DOI: https://doi.org/10.1007/11875581_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-45485-4

  • Online ISBN: 978-3-540-45487-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics