Skip to main content

Blind Signal Separation of Similar Pitches and Instruments in a Noisy Polyphonic Domain

  • Conference paper
Foundations of Intelligent Systems (ISMIS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4203))

Included in the following conference series:

Abstract

In our continuing work on ”Blind Signal Separation” this paper focuses on extending our previous work [1] by creating a data set that can successfully perform blind separation of polyphonic signals containing similar instruments playing similar notes in a noisy environment. Upon isolating and subtracting the dominant signal from a base signal containing varying types and amounts of noise, even though we purposefully excluded any identical matches in the dataset, the signal separation system successfully built a resulting foreign set of synthesized sounds that the classifier correctly recognized. Herein, this paper presents a system that classifies and separates two harmonic signals with added noise. This novel methodology incorporates Knowledge Discovery, MPEG7-based segmentation and Inverse Fourier Transforms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lewis, R., Zhang, X., Ras, Z.: A Knowledge Discovery Model of Identifying Musical Pitches and Instrumentations in Polyphonic Sounds. Special Issue, International Journal of Engineering Applications of Artificial Intelligence (will appear, 2007)

    Google Scholar 

  2. Herault, J., Jutten, C.: Space or time adaptive signal processing by neural network models. In: Denker, J.S. (ed.) American Institute of Physics. Neural Networks for Computing, New York, vol. 151, pp. 206–211 (1986)

    Google Scholar 

  3. Bingham, E.: Advances In Independent Component Analysis With Applications To Data Mining. Helsinki University of Technology: PhD Dissertation, Helsinki University of Technology, pp. 7–11 (2003)

    Google Scholar 

  4. Amari, S., et al.: Multichannel blind deconvolution and equalization using the natural gradient. In: Proc. IEEE Workshop, Signal Processing Advances in Wireless Comm., pp. 101–104 (1997)

    Google Scholar 

  5. Smaragdis, P., et al.: Blind separation of convolved mixtures in the frequency domain. In: Proc. IEEE Workshop, IEEE Procedures Neurocomputing, vol. 22, pp. 21–34 (1998)

    Google Scholar 

  6. Lambert, R.H., Bell, A.J.: Blind separation of multiple speakers in a multipath environment. In: IEEE Proc. ICASSP, April 1997, pp. 423–426 (1997)

    Google Scholar 

  7. Kostek, B., et al.: Estimation of Musical Sound Separation Algorithm Effectiveness Employing Neural Networks. Journal of Intelligent Information Systems 24(2/3), 133–135 (2005)

    Google Scholar 

  8. Fujinaga, I., MacMillan, K.: Realtime recognition of orchestral instruments. In: Proceedings of the International Computer Music Conference - Best Presentation Award, pp. 141–143. SpringerHoughton Mifflin Company (2000)

    Google Scholar 

  9. Eronen, A., Klapuri, A.: Musical Instrument Recognition Using Cepstral Coefficients and Temporal Features. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 753–756. ICASSP SpringerHoughton Mifflin Company (2000)

    Google Scholar 

  10. Zhang, T.: Instrument classification in polyphonic music based on timbre analysis. In: SPIE’s Conference on Internet Multimedia Management Systems, II part of ITCom 2001, Denver, vol. 4519, pp. 136–147 (August 2001)

    Google Scholar 

  11. Slezak, D., Synak, P., Wieczorkowska, A., Wroblewski, J.: KDD-based approach to musical instrument sound recognition. In: Hacid, M.-S., Raś, Z.W., Zighed, A.D.A., Kodratoff, Y. (eds.) ISMIS 2002. LNCS (LNAI), vol. 2366, pp. 28–36. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  12. Eronen, A.: Musical instrument recognition using ICA-based transform of features and discriminatively trained HMMs. In: Proceedings of Processing and its Applications, ISSPA 2003. Proceedings of the Seventh International Symposium on Signal Processing, Paris, France, July 1-4, pp. 133–136 (2003)

    Google Scholar 

  13. Agostini, M., Longar, M., Pollastri, E.: Musical Instrument Timbres Classification with Spectral Features. EURASIP Journal on Applied Signal Processing (1), 5–14 (2003)

    Google Scholar 

  14. Kostek, B.: Musical Instrument Classification and Duet Analysis Employing Music Information Retrieval Techniques. Proc. of the IEEE 92(4), 712–729 (2004)

    Article  Google Scholar 

  15. Zweig, O.: Speech Recognition with Dynamic Bayesian Networks, Ph.D. dissertation, Univ. of California, Berkeley, CA (1998)

    Google Scholar 

  16. Livescu, K., Glass, J., Bilmes, J.: Hidden Feature Models for Speech Recognition Using Dynamic Bayesian Network. In: Proc. Eurospeech, Geneva, Switzerland, pp. 2529–2532 (September 2003)

    Google Scholar 

  17. Quinlan, J.: C4.5: Programs for Machine Learning. Morgan Kaufman, San Mateo (1993)

    Google Scholar 

  18. Wieczorkowska, A.: Classification of musical instrument sounds using decision trees. In: 8th International Symposium on Sound Engineering and Mastering, ISSEM 1999, pp. 225–230 (1999)

    Google Scholar 

  19. le Cessie, S., van Houwelingen, J.: Ridge Estimators in Logistic Regression. Applied Statistics 41(1), 191–201 (1992)

    Article  MATH  Google Scholar 

  20. Atkeson, C., Moore, A., Schaal, S.: Locally Weighted Learning for Control. Artificial Intelligence Review 11(1-5), 11–73 (1997)

    Article  Google Scholar 

  21. Wieczorkowska, A., et al.: Application of Temporal Descriptors to Musical Instrument Sound. Journal of Intelligent Information Systems, Integrating Artificial Intelligence and Database Technologies 21(1) (July 2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lewis, R.A., Zhang, X., Raś, Z.W. (2006). Blind Signal Separation of Similar Pitches and Instruments in a Noisy Polyphonic Domain. In: Esposito, F., Raś, Z.W., Malerba, D., Semeraro, G. (eds) Foundations of Intelligent Systems. ISMIS 2006. Lecture Notes in Computer Science(), vol 4203. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11875604_26

Download citation

  • DOI: https://doi.org/10.1007/11875604_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-45764-0

  • Online ISBN: 978-3-540-45766-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics