Skip to main content

Practical Approximation of Optimal Multivariate Discretization

  • Conference paper
Book cover Foundations of Intelligent Systems (ISMIS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4203))

Included in the following conference series:

Abstract

Discretization of the value range of a numerical feature is a common task in data mining and machine learning. Optimal multivariate discretization is in general computationally intractable. We have proposed approximation algorithms with performance guarantees for training error minimization by axis-parallel hyperplanes. This work studies their efficiency and practicability. We give efficient implementations to both greedy set covering and linear programming approximation of optimal multivariate discretization. We also contrast the algorithms empirically to an efficient heuristic discretization method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bay, S.D.: Multivariate discretization of continuous variables for set mining. In: Proc. 6th ACM SIGKDD, pp. 315–319. ACM Press, New York (2000)

    Google Scholar 

  2. Călinescu, G., Dumitrescu, A., Wan, P.-J.: Separating points by axis-parallel lines. In: Proc. 16th Canadian Conference on Computational Geometry, pp. 7–10 (2004)

    Google Scholar 

  3. Chlebus, B.S., Nguyen, S.H.: On finding optimal discretizations for two attributes. In: Polkowski, L., Skowron, A. (eds.) RSCTC 1998. LNCS (LNAI), vol. 1424, pp. 537–544. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  4. Chmielewski, M.R., Grzymala-Busse, J.W.: Global discretization of continuous attributes as preprocessing for machine learning. Int. J. Approximate Reasoning 15, 319–331 (1996)

    Article  MATH  Google Scholar 

  5. Dougherty, J., Kohavi, R., Sahami, M.: Supervised and unsupervised discretization of continuous features. In: Proc. 12th ICML, pp. 194–202. Morgan Kaufmann, San Francisco (1995)

    Google Scholar 

  6. Elomaa, T., Kujala, J., Rousu, J.: Approximation algorithms for minimizing empirical error by axis-parallel hyperplanes. In: Gama, J., Camacho, R., Brazdil, P.B., Jorge, A.M., Torgo, L. (eds.) ECML 2005. LNCS (LNAI), vol. 3720, pp. 547–555. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Elomaa, T., Rousu, J.: On decision boundaries of Naïve Bayes in continuous domains. In: Lavrač, N., Gamberger, D., Todorovski, L., Blockeel, H. (eds.) PKDD 2003. LNCS (LNAI), vol. 2838, pp. 144–155. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  8. Elomaa, T., Rousu, J.: Efficient multisplitting revisited: Optima-preserving elimination of partition candidates. Data Mining and Knowl. Discovery 8, 97–126 (2004)

    Article  MathSciNet  Google Scholar 

  9. Fayyad, U.M., Irani, K.B.: On the handling of continuous-valued attributes in decision tree generation. Machine Learn. 8, 87–102 (1992)

    MATH  Google Scholar 

  10. Fayyad, U.M., Irani, K.B.: Multi-interval discretization of continuous-valued attributes for classification learning. In: Proc. 13th IJCAI, pp. 1022–1027. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  11. Friedman, N., Goldszmidt, M.: Discretizing continuous attributes while learning Bayesian networks. In: Proc. 13th ICML, pp. 157–165. Morgan Kaufmann, San Francisco (1996)

    Google Scholar 

  12. Miller, R.J., Yang, Y.: Association rules over interval data. In: Proc. 1997 ACM SIGMOD, pp. 452–461. ACM Press, New York (1997)

    Chapter  Google Scholar 

  13. Monti, S., Cooper, G.F.: A multivariate discretization method for learning Bayesian networks from mixed data. In: Proc. 14th UAI, pp. 404–413. Morgan Kaufmann, San Francisco (2002)

    Google Scholar 

  14. Muhlenbach, F., Rakotomalala, R.: Multivariate supervised discretization, a neighborhood graph approach. In: Proc. 2002 ICDM, pp. 314–321. IEEE CS Press, Los Alamitos (2002)

    Chapter  Google Scholar 

  15. Srikant, R., Agrawal, R.: Mining quantitative association rules in large relational tables. In: Proc. 1996 ACM SIGMOD, pp. 1–12. ACM Press, New York (1996)

    Chapter  Google Scholar 

  16. Vazirani, V.V.: Approximation Algorithms. Springer, Heidelberg (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Elomaa, T., Kujala, J., Rousu, J. (2006). Practical Approximation of Optimal Multivariate Discretization. In: Esposito, F., Raś, Z.W., Malerba, D., Semeraro, G. (eds) Foundations of Intelligent Systems. ISMIS 2006. Lecture Notes in Computer Science(), vol 4203. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11875604_68

Download citation

  • DOI: https://doi.org/10.1007/11875604_68

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-45764-0

  • Online ISBN: 978-3-540-45766-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics