Skip to main content

A Simple Method to Simultaneously Track the Numbers of Expressed Channel Proteins in a Neuron

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4216))

Abstract

Neurons express particular combinations of ion channels that confer specific membrane properties. Although many ion channels have been characterized the functional implications of particular combinations and the regulatory mechanisms controlling their expression are often difficult to assess in vivo and remain unclear. We introduce a method, Reverse Channel Identification (RCI), which enables the numbers and mixture of active ion channels to be determined. We devised a current-clamp stimulus that allows each channels characteristics to be determined. We test our method on simulated data from a computational model of squid giant axons and from fly photoreceptors to identify both the numbers of ion channels and their specific ratios. Our simulations suggest that RCI is a robust method that will allow identification of ion channel number and mixture in vivo.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Marder, E., Prinz, A.A.: Modeling stability in neuron and network function: the role of activity in homeostasis. Bioessays 24(12), 1145–1154 (2002)

    Article  Google Scholar 

  2. Zhang, W., Linden, D.J.: The other side of the engram: experience-driven changes in neuronal intrinsic excitability. Nat. Rev. Neurosci. 4(11), 885–900 (2003)

    Article  Google Scholar 

  3. Weckstrom, M., Hardie, R., Laughlin, S.: Voltage-activated potassium channels in blowfly photoreceptors and their role in light adaptation. J. Physiol. 440, 635–657 (1991)

    Google Scholar 

  4. Stemmler, M., Koch, C.: How voltage-dependent conductances can adapt to maximize the information encoded by neuronal firing rate. Nature Neurosci. 2(6), 521–527 (1999)

    Article  Google Scholar 

  5. McAnelly, M.L., Zakon, H.H.: Coregulation of voltage-dependent kinetics of na(+) and k(+) currents in electric organ. J. Neurosci. 20(9), 3408–3414 (2000)

    Google Scholar 

  6. Brickley, S.G., Revilla, V., Cull-Candy, S.G., Wisden, W., Farrant, M.: Adaptive regulation of neuronal excitability by a voltage-independent potassium conductance. Nature 409(6816), 88–92 (2001)

    Article  Google Scholar 

  7. Niven, J.E., Vahasoyrinki, M., Juusola, M.: Shaker K(+)-channels are predicted to reduce the metabolic cost of neural information in Drosophila photoreceptors. Proc. Biol. Sci. 270 (Suppl. 1), 58–61 (2003)

    Article  Google Scholar 

  8. Aizenman, C.D., Akerman, C.J., Jensen, K.R., Cline, H.T.: Visually driven regulation of intrinsic neuronal excitability improves stimulus detection in vivo. Neuron 39(5), 831–842 (2003)

    Article  Google Scholar 

  9. Niven, J.E.: Channelling evolution: canalization and the nervous system. PLoS Biol. 2(1), E19 (2004)

    Article  Google Scholar 

  10. Vahasoyrinki, M., Niven, J.E., Hardie, R.C., Weckstrom, M., Juusola, M.: Robustness of neural coding in Drosophila photoreceptors in the absence of slow delayed rectifier K+ channels. J. Neurosci. 26(10), 2652–2660 (2006)

    Article  Google Scholar 

  11. Attwell, D., Laughlin, S.B.: An energy budget for signalling the the grey matter of the brain. J. Cereb. Blood Flow and Metabolism 21, 1133–1145 (2001)

    Article  Google Scholar 

  12. Laughlin, S.B.: Energy as a constraint on the coding and processing of sensory information. Curr. Opin. Neurobiol. 11(4), 475–480 (2001)

    Article  Google Scholar 

  13. Niven, J.E., Vahasoyrinki, M., Kauranen, M., Hardie, R.C., Juusola, M., Weckstrom, M.: The contribution of Shaker K+ channels to the information capacity of Drosophila photoreceptors. Nature 421(6923), 630–634 (2003)

    Article  Google Scholar 

  14. Faisal, A., Laughlin, S., White, J.: How reliable is the connectivity in cortical neural networks? In: Wunsch, D. (ed.) Proceedings of the IEEE Intl. Joint. Conf. Neural Networks 2002. INNS, pp. 1–6 (2002)

    Google Scholar 

  15. Faisal, A.A., White, J.A., Laughlin, S.B.: Ion-channel noise places limits on the miniaturization of the brain’s wiring. Curr. Biol. 15(12), 1143–1149 (2005)

    Article  Google Scholar 

  16. Koch, C.: Biophysics of computation. In: Computational neuroscience, Oxford University Press, Oxford (1999)

    Google Scholar 

  17. Hodgkin, A., Huxley, A.: Quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)

    Google Scholar 

  18. Hille, B.: Ion channels of excitable membranes. 3rd edn. Sinauer Associates, Sunderland, MA, p. 814 (2001)

    Google Scholar 

  19. Jones, E.M., Gray-Keller, M., Fettiplace, R.: The role of ca2+-activated k+ channel spliced variants in the tonotopic organization of the turtle cochlea. J. Physiol. 518, 653–665 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Faisal, A.A., Niven, J.E. (2006). A Simple Method to Simultaneously Track the Numbers of Expressed Channel Proteins in a Neuron. In: R. Berthold, M., Glen, R.C., Fischer, I. (eds) Computational Life Sciences II. CompLife 2006. Lecture Notes in Computer Science(), vol 4216. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11875741_25

Download citation

  • DOI: https://doi.org/10.1007/11875741_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-45767-1

  • Online ISBN: 978-3-540-45768-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics