An Efficient Algorithm
for Finding
Long Conserved Regions Between Genes

Tak-Man Ma'!, Yuh-Dauh Lyuu®*, and Yen-Wu Ti?

! Dept. of Computer and Information Science,
University of Pennsylvania, Philadelphia, USA
mata3@seas.upenn.edu
2 Dept. of Computer Science and Information Engineering,
National Taiwan University, Taipei, Taiwan
{lyuu, d91010}@csie.ntu.edu.tw

Abstract. We study the problem of approximate non-tandem repeat
(conserved regions) extraction among strings (genes). Basically, given a
string S and thresholds L and D over a finite alphabet, extracting ap-
proximate repeats is to find pairs (3, 3') of substrings of S under some
constraints such that 3 and 8’ have edit-distance at most D and their
respective lengths are at least L. Previous works mainly focus on the
case that D is small, so they are not appropriate for extracting approxi-
mate repeats with relatively large D. In contrast, this paper focuses on
extracting long approximate repeats with large D and it is more efficient
than previous works. We also show that our algorithm is optimal in time
when D is a constant.

In this paper, given an input string S and thresholds L and D, we would
like to extract all (D, L)-supermaximal approximate repeats (3, 3") of S.
One useful application of extracting all (D, L)-supermaximal approximate
repeats (3, 3') is to find all longest possible substrings 3 of S such that there
exist some other substring 3’ of S where 3 and 8 have edit-distance at most
D and their respective lengths are at least L. This algorithm can be easily
applied to the case where there are multiple input strings S1, So, ..., S, if
we first concatenate the input strings into one long subject string S with a
special symbol “f” for separation: S14S2f...#S,. The running time com-
plexity of our algorithm is O(DN?) where N =| Sy | 4+ | Sz | +--+ | Sn |

1 Introduction

1.1 Related Work

The repetitive structure of genomic DNA holds many secrets that await discov-
ery. Conserved regions between genes have important meanings in biology and
play an important role in the identification of novel functional units [4]. For
example, the gene sequences of a gene family may share conserved regions that

* Corresponding author.

M.R. Berthold, R. Glen, and I. Fischer (Eds.): CompLife 2006, LNBI 4216, pp. 42-51] 2006.
© Springer-Verlag Berlin Heidelberg 2006

An Efficient Algorithm for Finding Long Conserved Regions Between Genes 43

correspond to meaningful domains in their protein structures. A useful approach
for identifying meaningful conserved regions is to find non-tandem approximate
repeating patterns that occur more frequently than expected by chance. The
problem of exact repeat extraction seems settled since it already has an optimal
linear-time algorithm by suffix tree [4]. However, as mutations often render DNA
copies imperfect, it is much more important to study approximate repeats.

The first paper that dealt with model-based recognition of degenerate repeats
solved the problem of finding the highest-scored pair of (possibly overlapping)
substrings in a string in O(N?) time and space, where N is the length of input
string [3]. Kannan and Myers [5] and Benson [2] restrict the outputs to pairs
of non-overlapping substrings. Both algorithms run in O(N? log® N) time. The
space usage is O(N?log N) [5], which was later improved to O(N?) [2]. A related
question is to find all approximate repeats of a string which are within a fixed
edit-distance threshold, which is the main focus of this paper. A detailed survey
of previous work on finding approximate repeats can be found in [6].

A popular idea for finding maximal approximate repeats (as defined later in
Section 1.2) which are within a fixed edit-distance threshold is to first search
for small exact repeats as seed strings and then form maximal approximate re-
peats by extension. Kurtz et al. [6] have presented one such algorithm for finding
maximal approximate repeats of length L which runs in O(N + D32) by con-
structing a suffix tree where N is the length of the input string, z is the number
of seeds and D is the maximum edit-distance expected in the resulting repeats.
The expected number of seeds is E(z) = O(N?/ | X |lL/P+1). This is suitable
for finding maximal approximate repeats with small edit-distances. For long re-
peats and large edit-distances (that is, L = ¢; N and D = ¢y L where ¢1,¢9 < 1),
the expected running time of this algorithm is O(IN®). This algorithm, therefore,
is inefficient for extracting repeats for queries like “Find all maximal approxi-
mate repeats which are 10% different in edit-distance.” Moreover, this algorithm
would suffer from the poor locality behavior of the suffix tree [7], which results
in many cache misses and dominates the running time.

Adebiyi, Jiang, and Kaufmann [I] designed algorithms for finding approx-
imate non-tandem repeats by an idea similar to “seed expansion.” The ex-
pected and practical running times of their algorithm are O(DN*"log N) and
O(N*91og N), respectively, for DNA and protein sequences. However, it can
only find short repeats with length O(log V). The main use of their algorithm
is therefore for extracting short motifs only.

Instead of finding short approximate repeats of sequences as mentioned above,
our paper finds the long conserved regions with relatively large edit-distance
between multiple input sequences (genes). Moreover, our algorithm outputs only
“significant” approximate repeats for diminishing the size of output such that
the later analysis of the long conserved regions can be more efficient.

1.2 Definitions

Let S be a string of length | S |= N over an alphabet X. S[i] denotes the
i-th character of S, for ¢ € [1,N]. For ¢ < j, S[i,j] denotes the substring of

44 T.-M. Ma, Y.-D. Lyuu, and Y.-W. Ti

S starting with the é-th and ending with the j-th character. Substring S|, j]
can also be denoted by the pair of positions (7, j) sometimes for brevity and
sometimes because the contents of the substrings are irrelevant. The length of
the substring (¢,7) is £(4,j) = j — i + 1.

There are three kinds of edit operations: deletions, insertions, and mismatches
of single characters. The edit-distance of (i1,71) and (i2, j2), denoted by
d((i1,j1), (i2, j2)), is the minimum number of edit operations needed to transform
S[ig,jz} to S[il,jl].

A pair of positions (i1, j1), 91 < j1, covers a pair (ia, j2), i2 < j2, if and only
if, i1 < iy and jo < j1. A pair ((i1,j1), (i2,72)) of pairs of string positions covers
another pair ((is,Js), (i4,74)) with respect to the first position if and only if
(il,jl) covers (ig,jg) and f(il,jl) > f(ig,jg) +1. A pair ((il,jl), (iz,jz)) of pairs
of string positions completely covers another pair ((is, j3), (¢4, j4)) if and only if
(i1,71) covers (i3, j3) and (ia, j2) covers (ig, j4). The length of ((i1,71), (i2,52))
is defined to be f((il,jﬂ, (Z'27j2)) = min{j1 —t1+ 1,50 —ia+].}

A pair ((i1,71), (i2,72)) of substrings is a (D, L)-approximate repeat if and
only if (i1, j1) # (i2,J2), d((i1,j1), (i2,52)) < D and £((i1, j1), (i2,j2)) = L. A
(D, L)-approximate repeat is maximal if and only if it is not completely covered
by any other (D, L)-approximate repeats. A (D, L)-maximal approximate repeat
is supermaximal if and only if it is not covered by any other (D, L)-maximal
approximate repeats with respect to the first position.

Two distinct (D, L)-maximal approximate repeats ((i1, 1), (i2,72)) and ((is,
J3),(ia, ja)) are closely positioned if i1 = i3, ia = i4. Note that, although
((i1,71), (i2,42)) and ((i3, j3), (44, ja)) do not completely cover each other, (i1, j1)
highly overlaps with (i3, j3), and (is, j2) highly overlaps with (i4, j4). Figure [l
shows one such example. Worse, there are O(D) such closely positioned (D, L)-
maximal approximate repeats ((41, j1), (i2, j2)) given iy, iz € [1, N| [6]. In the case
that D is large, not all closely positioned (D, L)-maximal approximate repeats
are interesting. Instead, if we only output (D, L)-supermaximal approximate re-
peats, then, given i1,i3 € [1, N], only one (D, L)-maximal approximate repeat
((i1,71), (12, j2)) is output whose (i1, j1) is not covered by any other (is, j3) for
all (D, L)-maximal approximate repeats ((is, j3), (44, ja)). This approach can ef-
ficiently diminish the size of output for the later analysis of the long conserved
regions. Obviously, one useful application of extracting all (D, L)-supermaximal
approximate repeats (3, 3) of S is to find all longest possible substrings § of
S such that there exists some other substring 3’ of S where d(3,3’) < D and
«8,8) > L.

This paper presents an algorithm that extracts all (D, L)-supermaximal ap-
proximate repeats of S given an input string S and thresholds L and D. This
algorithm can be easily applied to the case where there are multiple input strings
51,59, ...,y by first concatenating the input strings into one long subject string
S with a special symbol “f” for separation: S14Sa8 - - - #.5,.

The rest of this paper is organized as follows. Section 2 gives an efficient
algorithm for a simplified problem. Section 3 gives an efficient algorithm for
extracting all (D, L)-supermaximal approximate repeats based on the solution

An Efficient Algorithm for Finding Long Conserved Regions Between Genes 45

Assume D = 3, S[z,z + 7]= GAATCGGT and S[y,y + 6] = CTAGGCT. There are
two (3,4)-maximal approximate repeats ((i1,71), (i2,72)) and ((i3,73), (i4,74)) where
i1=t3=x+1,i2 =14 :y+1,j1 :I+6,j2 :y—|—4,j3 =x+4 andj4:y—|—5.

The first repeat ((i1,71), (i2,72)):

(i1,71) = S[x + 1,2 + 6]=AATCGG
(i2,72) = Sy + 1,y + 4]=TAGG

Alignment for ((i1, 1), (i2,72)):

(i1,71) GAATCGGT
(ig,j2) CTA..GGC

The second repeat ((i3,73), (14,74)):

(i3,43) = S[z + 1,z + 4]=AATC
(i1,4a) = S[y + 1,y + 5]=TAGGC

Alignment for ((i3, J3), (t4,74)):

(ig,jg) G.AATCG
(i4,74) CTAGGCT

Note that, although ((i1, j1), (42, j2)) and ((i3, j3), (4, j4)) do not completely cover each
other, (i1,71) highly overlaps with (i3,js), and (i2,j2) highly overlaps with (i, j4).
Outputting both of these maximal approximate repeats may not be interesting.

Fig. 1. An example of two closely positioned (3,4)-maximal approximate repeats

to the simplified problem. Section 4 proves the correctness of the algorithm and
analyzes its time and space complexity. Moreover, Section 4 also shows that our
algorithm is optimal in time when D is a constant.

2 The Simplified Problem

Before attacking the problem of finding all (D, L)-supermaximal approximate
repeats, we first solve the problem of finding (D, L)-approximate repeats of the
input string S[1, N]. Formally, we find, for each i, j, at least a pair of indices r
and m such that d((¢,7), (j,m)) < D, where £(i,7) > L and £(j,m) > L — if
such r and m exist.

The idea is to find alignments with edit-distance k for every pair of S’s sub-
strings starting at ¢ and j, respectively, where 1 <i,5 < Nand 1 < k < D. More

46 T.-M. Ma, Y.-D. Lyuu, and Y.-W. Ti

precisely, our algorithm computes f1 (¢, j, D) and f2(i, j, D) as the index w+1 of
S[i,w] and the index h + 1 of S[j, h], respectively, where d((i,w), (j,h)) < D for
the maximum possible index w. The complete algorithm appears in Figure

2.1 Analysis of FIND-SIM-REPEAT

Step 1 initializes the boundary values. For S[i] # S[j], step 8 considers the
possible edit-operations to align substrings starting from index ¢ and j: insertion,
deletion, or substitution. It is obvious that d((i, f1(¢,4, D) — 1), (4, f2(i, 5, D) —
1)) < D for i > j. It is also obvious that steps 9-18 assign fi(i,7, D) as the
maximum value such that d((¢, f1 (3,7, D) — 1), (4, m)) < D for some m. If more
than one of f1(¢,7+ 1,k —1), f1(i + 1,5+ 1,k —1) and fi1(¢ + 1,5,k — 1) are
maximum, then FIND-SIM-REPEAT always chooses fi(z,y,k — 1) such that
fo(z,y,k — 1) is the maximum of fo(i,7 + 1,k — 1), fo(i + 1,7 + 1,k — 1) and
fa(i + 1,4,k — 1). Steps 21-26 prevent overlapping repeats to be output.

2.2 Time and Space Complexity

We analyze the time and space complexity. The running time is obviously O(DN?2).
Instead of using O(DN?) space as traditional dynamic programming does, we can
reduce it to O(DN). This is based on the observation that the only values needed
to compute f1(i,7,k) are f1(i,7+1,k—1), f1i+1,j+ 1, k—1), 1+ 1,5,k —1),
and f1(i + 1,7 + 1, k). Similarly, fa2(i, j, k) depends only on fa(i,j + 1,k — 1),
foli+ 1,54+ 1,k=1), fa(i+1,5,k—1),and fo(i + 1,5 + 1, k). Note that when we
compute the values f1(4,7,k), j <iand k =1,..., D, those previously computed
f1(7', 4, k) with i’ > i+ 1 are no longer needed. Only the “wavefront” is needed for
the computation. This reduces the space complexity to O(DN).

3 Extracting Supermaximal Approximate Repeats

The number of (D, L)-approximate repeats output by FIND-SIM-REPEAT can
be very large, so this fact makes difficult the later analysis of long conserved
regions. In order to extract only “significant” repeats, one idea is to output
only (D, L)-maximal approximate repeats as in [6]. However, as discussed in
Section 1.2, the number of (D, L)-maximal approximate repeats can still be
large, especially when D is large. Therefore, we would like to output (D, L)-
supermaximal approximate repeats only.

We present a two-phase procedure for extracting all (D, L)-supermaximal ap-
proximate repeats of the input string S. First, a modified version of FIND-SIM-
REPEAT outputs substrings (3 for all (D, L)-supermaximal approximate repeats
(8,"). Second, according to those 3 output by the first phase, we apply another
modified version of FIND-SIM-REPEAT to extract all (D, L)-supermaximal ap-
proximate repeats (3,03’) and output them. We call the resulting algorithm
FIND-SUPER-REPEAT.

An Efficient Algorithm for Finding Long Conserved Regions Between Genes 47

fi(N,j,k)=N,5=1,...,N,k=0,...,D;
f2(N, 7,)73371, .N,k=0,...,D
U, 5k)=N,j=1,...,Nk=0,...,D;
fo(4, g, k) = Nj—l,...,N,k: yoooy D
2:fori=N-1,...,1,5=i—1,...,1do

3: if S[i] = S[j] then
4: fii, g, k) = f1i+1,5+1,k),k=0,...,D;
f2(4,5,k) = i+ 1,7+ 1,k),k=0,...,D;
5 else
6: fl(lvjvo) :i;
f2(4,5,0) = j;
7 for k=1,...,D do
8: Compare the values of fi1(i,5 + 1,k —1), fi(¢+ 1,5+ 1,k —1) and f1(i +
1,5,k —1);
9: if f1(4,7 4+ 1,k — 1) is the maximum then
10: fl(lvjvk):fl(lvj—’—lvk_l)a
11: f2(i, 4, k) = fo(i, 5+ 1,k — 1);
12: else if fi(i+1,j+ 1,k — 1) is the maximum then
13: fi(i, 5,k) = f1i+ 1,7+ 1,k —1);
14: f2(i,4,k) = fo(i + 1,5 + 1,k — 1);
15: else
16: fl(lvjvk):fl(l—'_l?]?k_l)a
17: f2(i, 4, k) = fo(i + 1,5,k — 1);
18: end if
19: end for
20: end if
21: if f2(i,j, D) > i then
22: f2(27]7D) :i;
k=1;
23: while f2(7,7,k) < i do
24: k++;
25: end while
fl(ivij) = fl(ivjvk - 1) + (Z - fQ(ivjvk - 1))a
26: end if
27: if fi(i,j,D) — i > L and f2(i,j,D) — j > L then
28: OUtPUt ((1,f1(1,j,D)—1),(],f2(l,j,D)—1))
29: end if
30: end for

Fig.2. FIND-SIM-REPEAT

Lemma 1. The set of (D, L)-approzimate repeats of a string S output by FIND-
SIM-REPFEAT includes all (D, L)-supermazimal approzimate repeats of S.

Proof. Assume thereisa (D, L)-supermaximal approximate repeat ((¢, q), (j,m))
which is not output by FIND-SIM-REPEAT. Then, this situation immediately
results in a contradiction because, for the indices i and j, FIND-SIM-REPEAT
always outputs the (D, L)-approximate repeat ((i,w), (j,h)) such that d((i,w),
(4, h)) < D for the maximum possible index w. O

48 T.-M. Ma, Y.-D. Lyuu, and Y.-W. Ti

i H(.7.D)
s || E B . RN
b Fie. o ".l— o
8
J f(.7.D)
L] (x| [4]]
e 2 e
i

M: Mismatch X: Deletion I: Insertion

Fig.3. An example of a (2, L)-approximate repeat (3,3’) output by FIND-SIM-
REPEAT where D = 2, 8 = (i, f1(i, 5, D) — 1), 8/ = (j, f2(,j, D) — 1) and the lengths
of 3 and 3" are £(i, fi1(i,§,D) — 1) = fi(i,5,D) —i > L and £(j, f2(,§,D) — 1) =
f2(i,4, D) — j > L, respectively.

Let U be the set of (D, L)-approximate repeats of S output by FIND-SIM-
REPEAT. By Lemma [I], the first phase of FIND-SUPER-REPEAT finds (;
for all (D, L)-supermaximal approximate repeats (51, 37) of S in U. Moreover,
it only needs to focus on the substring (2 of each (D, L)-approximate repeat
(B2, 05) in U for finding all of those (1, so we can reduce the remaining work
for the first phase of FIND-SUPER-REPEAT to maximal substrings problem
defined below.

Finding Maximal Substrings. Given a string S and a set @) of substrings of
S where | S |= N and | Q |= M. We would like to find a subset W of @ such
that none of the strings in W are covered by any other strings in (). The time
and space complexity are O(M) and O(INV), respectively.

Let P[1...N] be an array where P[i] = —1 for ¢ = 1,..., N initially. The
complete algorithm FIND-MAX-SUBSTRING appears in Figure[d Recall that
substring S|z, y] is denoted by the pair of positions (z,y).

Lemma 2. A substring (x,y) of S is output by FIND-MAX-SUBSTRING if
and only if (x,y) is not covered by any other substrings of S in Q.

Proof. If (z,y) is not covered by any other substrings of S in @, then when (x, y)
is picked up from @ in step 2, the ”if condition” in step 3 must be satisfied. So,
P[z] = y before step 8 is executed. Moreover, P[z] is always larger than maxTo in
the z-th iteration of step 9. Otherwise, there must exist another substring (i, q)
where i < z, ¢ > y and P[z] = ¢ such that (i,q) covers (z,y). This situation
contradicts our assumption of (z,y). So, (z,y) is output.

An Efficient Algorithm for Finding Long Conserved Regions Between Genes 49

1: while Q # 0 do

2 Pick a substring (z,y) from @ arbitrarily;
3: if y > P[z] then

4 Pla] =y;

5 end if

6: end while

7: Let maxTo= —1;

8 fori=1,...,N do

9: if P[{] > maxTo then

10:

Output (7, Pli]);
maxTo= P[i];
11: end if
12: end for

Fig.4. FIND-MAX-SUBSTRING

On the other hand, assume (z,y) is covered by some other substrings (¢, q) of
Sin Q. If i = xz and g > y, then P[z] = g before step 8 is executed and (z, y) will
not be output. If ¢ < z, ¢ > y and P[z] = y before step 8 is executed, then the
value of maxTo is at least ¢ in the z-th iteration of step 9. Since maxTo > g > v,
the ”if condition” in step 9 will not be satisfied. (z,y) will not be output. (]

Similar to FIND-MAX-SUBSTRING, in order to output S of all (D, L)-
supermaximal approximate repeats (3, 3’), we need to modify steps 27-29 and
add some steps at the end of FIND-SIM-REPEAT. Figures [and [0l show this
approach. The first phase of FIND-SUPER-REPEAT is this modified version of
FIND-SIM-REPEAT. The functionality of REPEATI1 ... N] is similar to that of
P[1...N] in FIND-MAX-SUBSTRING and REPEAT[i] = —1fori =1,...,N
initially.

if f1(i,4, D) —i > L and fo(i,j, D) —j > L and f(i, . D) — 1 > REPEATYi] then
REPEATi|= f1(i,5,D) — 1;
end if

Fig. 5. Modification of steps 27-29 of FIND-SIM-REPEAT for outputting 3 for all
(D, L)-supermaximal approximate repeats (3, 3')

maxTo = —1;
fori=1,...,N do
if REPEAT[:] > maxTo then
Output (;,REPEAT[:]);
maxTo = REPEATY[:];
end if
end for

Fig.6. Additional steps at the end of FIND-SIM-REPEAT for outputting § for all
(D, L)-supermaximal approximate repeats (3, 3")

50 T.-M. Ma, Y.-D. Lyuu, and Y.-W. Ti

The second phase of FIND-SUPER-REPEAT is trivial. It simply follows
FIND-SIM-REPEAT and outputs only (D, L)-supermaximal approximate re-
peats (83, 8') according to those 8 output by the first phase.

4 Correctness and Analysis

4.1 Correctness

Theorem 1. A (D, L)-approzimate repeat of a string S is a (D, L)-supermazimal
approximate repeat if and only if it is output by FIND-SUPER-REPEAT.

Proof. Lemma [I and] imply that the first phase of FIND-SUPER-REPEAT
outputs § for all (D, L)-supermaximal approximate repeats (3,3’). Moreover,
because Lemma, [I shows that the output of FIND-SIM-REPEAT must include
all (D, L)-supermaximal approximate repeats of S, therefore, according to those
(8 output by the first phase, the second phase of FIND-SUPER-REPEAT is able
to extract all (D, L)-supermaximal approximate repeats (3, 3’). As a result, a
(D, L)-approximate repeat of S is a (D, L)-supermaximal approximate repeat if
and only if it is output by FIND-SUPER-REPEAT. (]

4.2 Time and Space Complexity

Recall that the time and space complexity of FIND-SIM-REPEAT are O(DN?)
and O(DN), respectively. The first phase of FIND-SUPER-REPEAT follows
FIND-SIM-REPEAT with modifications as shown in Figures[H and [l Obviously,
the steps of FIND-SUPER-REPEAT in Figure [}l do not increase the time com-
plexity of FIND-SIM-REPEAT. Also, the time complexity of the steps of FIND-
SUPER-REPEAT in Figure [l is O(N). On the other hand, the second phase
of FIND-SUPER-REPEAT, in fact, is just to run FIND-SIM-REPEAT once.
Therefore, the overall time complexity of FIND-SUPER-REPEAT is O(DN?).

Besides, the space complexity of FIND-SUPER-REPEAT is O(DN). It is
because FIND-SUPER-REPEAT only needs one more array REPEAT[1... N]
than FIND-SIM-REPEAT does and the space complexity of REPEAT[1...N]
is clearly O(N).

4.3 Optimality of FIND-SUPER-REPEAT

Finally, we would like to show FIND-SUPER-REPEAT is optimal in time com-
plexity when the input D is a constant. In addition, the space complexity of our
algorithm is linear in V.

From Theorem [T} it is obvious that the time and space complexity of FIND-
SUPER-REPEAT are O(N?) and O(N), respectively, when D is a constant.

Then, for each e € X*, we define the powers of e by e! = e, €2 = ee, €3 =

ee?,..., entl = ee™ for any positive integer n. Let X = {A,T,G}, strings
Sy = (AT)N/2 and Sy = (G1T*)N/2, where ¢y, cy are positive constants.

We concatenate S7, S2 into one string S = S152 to supply as the input of

An Efficient Algorithm for Finding Long Conserved Regions Between Genes 51

FIND-SUPER-REPEAT. Then, given D < ¢1, L = ¢g, the number of all (D, L)-
supermaximal approximate repeats of S is 2(N?2). It is because there are O(N)
of S’s substrings 3 = APT°2 which can be aligned with ©@(N) of S’s substrings
B’ = GPTe such that the combinations of all (3, 3') are (D, L)-supermaximal
approximate repeats. As the time for outputting all (D, L)-supermaximal ap-
proximate repeats in this tight example is 2(N?), FIND-SUPER-REPEAT is
optimal in time complexity when D is a constant.

References

1. E. F. Adebiyi, T. Jiang and M. Kaufmann (2001). “An Efficient Algorithm for
Finding Short Approximate Non-tandem Repeats.” Bioinformatics, 17(90001), pp.
S5-S12.

2. G. Benson (1994). “A Space Efficient Algorithm for Finding the Best Nonoverlap-
ping Alignment Score.” In M. Crochemore and D. Gusfield, eds., Proceedings of the
5th Annual Symposium on Combinatorial Pattern Matching (CPM94), volume 807
of LNCS, pp. 1-14. Berlin: Springer Verlag.

3. W. Fitch, T. Smith and J. Breslow (1986). “Detecting Internally Repeated Sequences
and Inferring the History of Duplication.” In J. P. Segrest and J. J. Albers, eds.,
Plasma Proteins. Part A: Preparation, Structure, and Molecular Biology, volume
128 of Methods in Enzymology, pp. 773-788. San Diego, CA: Academic Press.

4. D. Gusfield (1997). Algorithms on Strings, Trees and Sequences: Computer Science
and Computational Biology. New York: Cambridge University Press.

5. S. K. Kannan and E. W. Myers (1996). “An Algorithm for Locating Nonoverlapping
Regions of Maximum Alignment Score.” SIAM J. Computing, 25(3), pp. 648-662.

6. S. Kurtz, E. Ohlebusch, et al. (2000). “Computation and Visualization of Degen-
erate Repeats in Complete Genomes.” In Proceedings of the Eighth International
Conference on Intelligent Systems for Molecular Biology (ISMB2000), pp. 228-238.

7. S. Kurtz (1999). “Reducing the Space Requirement of Suffix Trees.” Software Prac-
tice and Ezperience, 29(13), pp. 1149-1171.

	Introduction
	Related Work
	Definitions

	The Simplified Problem
	Analysis of FIND-SIM-REPEAT
	Time and Space Complexity

	Extracting Supermaximal Approximate Repeats
	Correctness and Analysis
	Correctness
	Time and Space Complexity
	Optimality of FIND-SUPER-REPEAT

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

