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Abstract. In the database engineering realm, the merits of transformational ap-
proaches, that can produce in a systematic way correct, compilable and efficient 
database structures from abstract models, has long be recognized. Transforma-
tions that are proved to preserve the correctness of the source specifications have 
been proposed in virtually all the activities related to data structure engineering: 
schema normalization, logical design, schema integration, view derivation, 
schema equivalence, data conversion, reverse engineering, schema optimization, 
wrapper generation and others. This paper addresses both fundamental and practi-
cal aspects of database transformation techniques. The concept of transformation 
is developed, together with its properties of semantics-preservation (or reversibil-
ity). Major database engineering activities are redefined in terms of transformation 
techniques, and the impact on CASE technology is discussed. These principles are 
applied to database logical design and database reverse engineering. They are  
illustrated by the use of DB-MAIN, a programmable CASE environment that  
provides a large transformational toolkit. 

1   Introduction 

Data structure manipulation has long proved to be a fertile domain for transforma-
tional engineering process modelling. Several contributions have made this approach 
a fruitful baseline to solve the complex mapping problems that are at the core of many 
database engineering processes.  

We can mention the normalization theory, which laid the basis for data- and con-
straint-preserving schema transformations [13], but also the now standard 3-schema 
data modeling architecture [48] which clearly complied, more than 25 years ago, to 
what the SE comzmunity currently calls Model-Driven Engineering (MDE). Gener-
ally built on these principles, most database design methodologies rely on four ex-
pressions of the database structure, namely the conceptual schema, the logical 
schema, the physical schema and the DDL1 code (Fig. 17).  According to these ap-
proaches, a schema at one level derives from a more abstract schema at the upper 
                                                           
1  Data Description Language. That part of the DBMS language dedicated to the creation of data 

structures. 
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level through some kind of translation rules that preserve its information contents, 
which clearly are schema transformations. For instance, a logical relational schema 
can be produced from the conceptual schema by applying to non SQL-compliant 
conceptual structures rewriting rules that produce relational constructs such as tables, 
columns and keys. If the rules are carefully selected, the relational schema has the 
same information contents as its conceptual origin. 

An increasing number of bodies (e.g., the OMG) and of authors recognize the 
merits of transformational approaches, that can produce in a systematic way correct, 
compilable and efficient database structures from abstract models.  

Transformations that are proved to preserve the correctness of the source specifica-
tions have been proposed in virtually all the activities related to schema engineering: 
schema normalization [39], logical design [4, 19, 41], schema integration [4, 34], 
view derivation [35, 33], schema equivalence [11, 28, 29, 32], data conversion [36, 
12, 46], reverse engineering [6, 8, 18, 19], database interoperability [34, 45], schema 
optimization [19, 25], wrapper generation [45] and others.  

Warning 
In the database community, a general formalism in which database specifications 
can be built is called a model.  The specification of a definite database structure 
expressed in such a model is called a schema. Example: the conceptuel schema of 
the Customer database is expressed in the Entity-relationship model, while its logi-
cal schema, that is made up of table, column and key definitions, complies with the 
relational model. 

A First Illustration 

Before discussing in deeper detail the concept of transformation and its properties, let 
us have a look at a first practical application of the concept.  The schemas of Fig. 1 
show a popular example, namely the production of a relational schema (top right), 
from a small conceptual schema (top left) that describes a set of books for which a 
collection of copies are available. The graphical conventions will be described later, 
but the essence of the schemas can be grasped without further explanation. 

The main stream of the process is covered by the two top schemas. The translation 
rules that have been applied can be identified easily:  

1. each entity type is represented by a table, 

2. each single-valued attribute is represented by a column, 

3. each all-attribute identifier is represented by a primary or alternate key, 

4. each one-to-many relationship type is represented by a foreign key, 

5. each multivalued attribute is represented by a table, comprising the source at-
tribute that is declared a primary key, and by an additional table made up of a 
foreign key to the table that represents the entity type of the attribute and an-
other foreign key to the new attribute table; both foreign keys form the primary 
key of their table. 

Of course, other, more or less sophisticated, sets of rules exist, but this one is 
adequate for demonstration purpose. 
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We can read this derivation process from another, transformational, point of view. 
We do not produce another schema, but we progressively modify the source concep-
tual schema, until it complies with the structural patterns allowed by the relational 
model. 

This interpretation, which will prove much more powerful and flexible than the 
translation rules approach, is illustrated in the alternate circuit (top → down → right 
→ up) of Fig. 1. 
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Fig. 1. Two ways to describe the derivation of a relational schema from a conceptual schema 

The first modified schema (bottom left) derives from the source conceptual schema 
(top left) as follows: the multivalued attribute Author has been replaced with the 
entity type AUTHOR comprising the identifying attribute AuthorName, and the many-
to-many relationship type write. 
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Then (bottom right), the new many-to-many relationship type write is replaced 
with entity type WRITE together with two one-to-many relationship types bw and aw. 
The schema does not include multivalued attributes or complex relationship types 
anymore. 

Finally, each one-to-many relationship type is replaced with a foreign key. Hence 
the final version, at the top right side. 

The Structure of This Paper 

This short illustration raises several questions and problems, to some of which this 
paper will try to answer, at least partially. The paper is organized in two parts, that 
allow two levels of reading. 

The first part, that includes Sections 2 to 8, develops practical aspects of the 
transformational paradigm. Section 2 positions the role of transformation in the data-
base realm. In Section 3, we show that dealing with multiple databases leads us to 
introduce a generic pivot model, the GER, that is intended to represent a large variety 
of operational models. Its graphical representation is sketched and a formal semantics 
is suggested. In this section, we also show how specific operational models can be 
defined in the GER. The concept of schema transformation is precisely defined in 
Section 4, in which the property of semantics-preservation is defined and analyzed. In 
Section 5, we describe some useful elementary and complex GER transformations, 
that are then used in Section 6 to revisit the Database Design process, showing that it 
is intrinsically a (complex) schema transformation. Similarly, Section 7 studies the 
Reverse Engineering process as an application of the transformational paradigm. 
Section 8 discusses the role of transformations in CASE tools, and illustrates this 
point with the toolkit and the assistants of DB-MAIN.  

The second part, comprising Sections 9 to 12, develops formal aspects of trans-
formations that were only sketched and suggested in Part 1.  Section 9 describes the 
ERM, an extended N1NF2 relational model the semantics of which is borrowed from 
the relational theory. Section 10 maps the GER onto the ERM so that the former can 
be given a precise formal semantics. Section 11 described a small set of ERM trans-
formations that can be proved to be semantics-preserving. Finally, Section 12 exploits 
the GER-ERM mapping to prove the semantics-preservation property of selected 
practical GER transformations. 

Section 13 concludes the paper. 

Part 1   Transformations for Database Engineering 

2   Transformational Engineering 

Producing efficient software by applying systematic transformations to abstract speci-
fications has been one of the most mythical goals of software engineering since the 
                                                           
2  Non 1st Normal Form. Qualifies a relational structure that uses non simple domains. Elements 

of a non simple domain can be tuples and/or sets. In particular, a relation or the powerset of a 
relation can be a valid domain. A N1NF relational model is a relational model in which non 
simple domains are allowed. 
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late seventies. For instance, [3] and [14] consider that the process of developing a 
program [can be] formalized as a set of correctness-preserving transformations [...] 
aimed to compilable and efficient program production.  In this context, according to 
[37], a transformation is a relation between two program schemes P and P' (a pro-
gram scheme is the [parameterized] representation of a class of related programs; a 
program of this class is obtained by instantiating the scheme parameters). It is said to 
be correct if a certain semantic relation holds between P and P'.  The revival of this 
dream has now got the name of Model-Driven Architecture [38], or, more generally, 
Model-Driven Engineering (MDA/MDE). 

It is not surprising that this view has been adopted and developed by the database 
community since the seventies. Indeed, the data domain has relied on strong  
theories that can cope with most of the essential aspects of database engineering, 
from clean data structuring (including normalization) to operational data structures 
generation.   

In particular, producing a target schema from a source schema can be modeled 
either by a set of translation rules, or by a chain of restructuring operators or 
transformations. The latter has proved particularly attractive, notably in complex, 
incremental, processes. 

The question of how many operators are needed to cover the current needs in data-
base engineering is still open, though it has been posed for long: in the 80's, authors 
suggested that four [15] [29] to six [11] were enough, but experience has shown that 
there is no clear answer, except that surely more transformations are needed, as we 
will show in the following. 

One of the peculiarities of transformational approaches in the database realm is that 
they must, in all generality, cope with three aspects of the application system, namely 
the data structures, the data, and the programs. Let us consider a scenario in which a 
database must be migrated from a technology to another one. Clearly, this database 
must be transformed, whatever the meaning of this term, into another database. This 
means that three components of the application must be modified. 

1. The database schema, that must comply with the data model of the target tech-
nology, and, possibly, include additional requirements that have emerged since 
the last schema modification. 

2. The data themselves, that must be restructured according to the new schema, 
possibly through some kind of ETL process. 

3. The application programs, that must interface with the new schema and comply 
with the new API. This generally involves rewriting some sections of the source 
code. 

Each of these modifications follows its own rules, but we should not be surprised 
by the idea that the first one should strongly influence the others. This view currently 
is emerging under the name co-transformation [30].  Indeed, it has been proved that it 
is possible to automatically derive data transformations (ETL) directives, as a SQL 
script for instance, from schema transformations [27]. Program transformation is 
much more complex. Automating this conversion has been studied in [26] and [9], 
and has been proved to be feasible.  
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One of the arguments of this paper is that one can study all transformations, includ-
ing inter-model transformations, in the framework of a single model3. This raises the 
question of the nature of this generic model. Two approaches have been proposed, 
that distinguish themselves by the granularity of the model [24].  

One approach, that can be called minimalistic, or bottom-up, relies on a very sim-
ple and abstract formalism, from which one can define more elaborated and richer 
models. Such a model generally represents the schema constructs specific to a definite 
model by abstract nodes and edges, together with assembly constraints.  AutoMED 
[7] is a typical representative of this approach.  

Another approach, symmetrically called maximalistic or top-down, is based on a 
large spectrum model, that includes, though in an abstract form, the main constructs 
of the set of operational models that are used in the engineering processes. The GER 
model follows this principle. It has been described in [21] and [24], and will be the 
basis of this paper.  

3   Modeling Data Structures 

3.1   Dealing with Multiple Models 

Some database engineering processes transform schemas from one model to itself, 
involvin one model only. Such is the case of relational normalisation, and of XML 
manipulation. These processes make use of intra-model transformations. Being dedi-
cated to this model, their form generally is quite specific (e.g., respectively relational 
algebra and XSLT) and cannot be reused for other models.  

Other processes, on the contrary, produce a result that is expressed into a model 
that is different from that the source schema. The most obvious example is the so-
called database logical design, the goal of which is to transform an abstract 
conceptual schema into an operational (say, relational) logical schema as will be 
discussed in Section 6.2. In such cases one makes use of inter-model 
transformations. Many comprehensive processes, such as database design, reverse 
engineering and integration involve several abstraction levels and several 
technologies (and therefore models).  

To master this complexity, several approaches rely on some kind of pivot model. 
The idea is quite simple, and has been adopted as an elegant way to solve the combi-
natorial explosion in situations in which mappings must be developed from any of M 
formalisms to any of N formalisms. Theoretically, one would need N x M distinct 
mappings. Thanks to the introduction of a intermediate or pivot formalism P, one 
needs to define M + N formalisms only. Language translation and plateform-
independent components are two of the most common examples. 

In the database engineering realm, dealing with a dozen models is not uncommon 
in large organizations. Developing, migrating, integrating, reverse engineering 
databases or publishing corporate data on the web all are processes that require inter-
model schema transformation and, accordingly, data conversion. Considering  
N operational models, and admitting that the mappings among any pair of models  
are potentially useful in some processes, we need to define N2 mappings, while  
                                                           
3 As illustrated in Fig. 1. 
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the introduction of a pivot model allows us to reduce the number of mappings to  
2 x N + 1. Fig. 2 identifies the mappings that will, sooner or later, be useful in an 
organization in which the data are stored in CODASYL and relational databases, that 
describes its information needs through Entity-relationship schemas, and that 
produces XML documents. Sixteen inter-model mappings are necessary, while the 
pivot model reduces the number of mapping to nine only. Moreover, all the mappings 
but one serve the mere function of formalism conversion (Σm>m', with m ≠ m'), and 
therefore are fairly simple, while the power needed to express complex data structure 
transformation is the responsibility of one mapping only, namely Σp>p. Introducing 
any new operational model M implies the development of two additional mappings 
Σm>p and Σp>m.  

An interesting consequence of approaches based on a pivot model is that inter-
model transformations reduce to intra-model ones.  

Pivot Model

Σp>p

Relat. Model

CODASYL Model XML Model

Σrel>p

Σp>rel

Σp>cod

Σcod>p

Σer>p

Σp>er

Σp>xml

Σxml>p

ER Model

 

Fig. 2. Introducing a pivot model among N models reduces the number of inter/intra-model 
mappings 

The example of relational logical design, that is, producing a relational schema 
from a conceptual schema, is illustrated in Fig. 3, which is just a subset of Fig. 2. It 
reads as follows: 

1. the source conceptual schema is transformed into the pivot model (Σer>p),  

2. the resulting schema is transformed through a set of rules (Σp>p) such as those 
that are largely described in the literature (see [4] for example4); 

3. finally, the transformed schema obtained is expressed into the target relational 
model (Σp>rel). 

The next section describes in an informal way the main constructs of a pivot model 
on which we will base our discussion, namely the GER model.  

Remark. The interpretation of Fig. 2, 3 and some of those that follow, needs to be 
precised a bit further. All schemas that can be expressed in model M are represented 
by the M-labelled ellipse. The mapping Σm>m' states that any schema expressed in the 
source model M is transformed through Σm>m' into a schema that complies with the 
target model M'.  

                                                           
4 Not the most recent reference actually, but still one of the best. 
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Pivot Model

Σp>p

Relat. ModelΣp>relΣer>pER Model

 

Fig. 3. Modeling relational logical design with a pivot model 

Remark. The interpretation of Fig. 2, 3 and some of those that follow, needs to be 
precised a bit further. All schemas that can be expressed in model M are represented 
by the M-labelled ellipse. The mapping Σm>m' states that any schema expressed in the 
source model M is transformed through Σm>m' into a schema that complies with the 
target model M'.  

3.2   The Generic Entity-Relationship Model (GER) 

The GER model, GER for short, is an extended Entity-relationship model that inclu-
des, among others, the concepts of schema, entity type, domain, attribute, relationship 
type, keys, as well as various constraints. In this model, a schema is a description of 
data structures. It is made up of specification constructs which can be, for conve-
nience, classified into the usual three abstraction levels, namely conceptual, logical 
and physical. We will enumerate some of the main constructs that can appear at each 
level (Fig. 4). 

•  A conceptual schema comprises entity types (with/without attributes; 
with/without identifiers), super/subtype hierarchies (single/multiple; total and 
disjoint properties), relationship types (binary/N-ary; cyclic/acyclic; with/without 
attributes; with/without identifiers), roles of relationship type (with min-max 
cardinalities5; with/without explicit name; single/multi-entity-type), attributes (of 
entity or relationship types; multi/single-valued; atomic/compound; with 
cardinality6), identifiers (of entity type, relationship type, multivalued attribute; 
comprising attributes and/or roles), constraints (inclusion, exclusion, coexistence, 
at-least-one, etc.) 

•  A logical schema comprises record types, fields, arrays, single-/multi-valued 
foreign keys, redundant constructs, etc. 

•  A physical schema comprises files, record types, fields, access keys (a generic 
term for index, calc key, etc), physical data types, bag/list/array multivalued 
attributes, and other implementation details. 

3.3   Formal Semantics of the GER 

In this paper, we develop transformational operators and discuss their properties. 
Many approaches rely on some intuitive rewriting rules expressed graphically. 
Though this is quite appropriate to allow readers to grasp the idea of the operators, a  

                                                           
5  The role cardinality constraint, denoted by i-j, specifies the range of the number of relation-

ships in which an entity can appear in a definite role. Value N of j denotes infinity. 
6  Same as role cardinality applied to the number of attribute values per parent instance. 
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Fig. 4. A typical hybrid schema made up of conceptual constructs (e.g., entity types PERSON, 
CUSTOMER, EMPLOYEE and ACCOUNT, relationship type of, identifiers Customer ID of 
CUSTOMER), logical constructs (e.g., record type ORDER, with various kinds of fields inclu-
ding an array, foreign keys ORIGIN and DETAIL.REFERENCE) and physical objects (e.g., 
table PRODUCT with primary key PRO_CODE and indexes PRO_CODE and CATEGORY, 
table space PRODUCT.DAT). Note that the identifier of ACCOUNT, stating that the accounts 
of a customer have distinct account numbers (Account NBR), makes it a dependent or weak 
entity type. 

more formal treatment is necessary. In particular, we must base the definition and 
the evaluation of the properties of each operator on a rigorous basis, that is, a 
formal semantics of the GER. This is important for at least two reasons. First, 
formal semantics allows us to reason about transformations, and in particular to 
state its main properties such as the preservation of the information capacity of the 
source schemas. Secondly, implementing a set of transformations, for instance in a 
CASE tool, must rely on a completely defined semantics of both the model and the 
operators. 

In Part 2, Sections 9 and 10, we will give the GER a precise semantics by stating 
mapping rules between the constructs of the GER and constructs of a variant of the 
N1NF relational formalism, called Extended Relational Model (ERM). Each GER 
construct will be given an ERM interpretation, and, conversely, each construct of the 
ERM will be given a GER interpretation. Basically, these mappings are the inter-
model transformations Σger>erm and Σerm>ger depicted in Fig. 5. The ERM is 
described in Section 9 while mapping Σger>erm and its inverse are presented in 
Section 10. The reader will find a complete formalization of the GER in [16]. 

[44] follows another approach. The author associates with HERM, a variant of the 
ER model, a specific notation with a precise ad hoc semantics, that includes an 
algebra and a calculus. 
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Extended Rel.
Model

Σerm>ger

Σger>erm

GER Model

 

Fig. 5. Expressing the semantics of the GER model by a bidirectional mapping with the 
Extended Relational Model (ERM) 

Note. The interpretation of the inverse mapping Σerm>ger is a bit more complex than 
suggested. Indeed, Σger>erm is not surjective, so that some ERM schemas have no 
GER counterpart. To be quite precise, we should define the subset ERM* of ERM 
that makes Σger>erm surjective. However, we will ignore this for simplicity sake. 
This is no problem since ERM* is closed under the set of ERM transformations 
Σerm>erm that we will use7. Proving this is fairly easy but would lead us beyond the 
scope of this paper. In the rest of this paper, we will admit that the composition 
Σerm>ger ° Σger>erm is the identity mapping without loss of generality. 

3.4   Specifying Operational Models in the GER 

Popular operational formalisms, that is, those which are in practical use among deve-
lopers, can be expressed as specializations of the GER. In general, deriving model M 
from model M0 (here the GER) consists in, 

1. selecting the constructs of M0 that are pertinent in M; 
2. specifying the structural constraints on this subset so that only schemas valid in 

M can be built; 
3. renaming these constructs in order to make them compliant with the taxonomy 

of M; this step will be ignored in this paper. 

This process materializes the mapping ΣM>M0. We will briefly discuss this map-
ping for two models, namely Entity-relationship model and the SQL2 relational 
model (Fig. 6). Similar mapping can be (and have been) developed for CODASYL 
and IMS models, for standard files structures, and for XML DTDs and Schemas. 

GER Model Relat. ModelΣrel>gerΣer>gerER Model

 

Fig. 6. Two mappings described in Sections 3.5 and 3.6 

3.5   GER Expression of the Entity-Relationship Model 

Let us first observe that there is no such thing as a standard ER model. At least a 
dozen formalisms have been proposed, some of them being widely used in popular 

                                                           
7  Σerm>erm is the set of ERM-to-ERM transformations. Applying operators from the subset of 

Σerm>erm that underlies Σger>ger (as discussed in Section 12) to any ERM* schema pro-
duces an ERM* schema. 
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text books and in CASE tools. However, despite divergent details, they all share 
essential constructs such as entity type, relationship types with roles, some kind of 
role cardinality/multiplicity, attributes and unique keys. Due to the nature of the GER, 
restricting it to a definite Entity-relationship model is fairly straighforward, so that we 
do not propose to develop the Σer>ger mapping.  

The increasing popularity of the UML class model8 (aka class diagrams) incites 
some authors and practitioners to use them to specify database conceptual and logical 
schemas. This was not the primary objective of the UML formalism, so that it exhibits 
severe flaws and weaknesses in database modelling. However, mapping Σuml>ger can 
be developed in the same way as for other models.  

3.6   GER Expression of the Standard Relational Model (SQL2) 

A relational schema mainly includes tables, domains, columns, primary keys, unique 
constraints, not null constraints and foreign keys.  The relational model can therefore 
be defined as in Fig. 7.  

relational constructs GER constructs assembly rules 

database schema schema  

table entity type an entity type includes at least one 
attribute 

domain simple domain  

nullable column single-valued and atomic 
attribute with cardinality [0-1] 

 

not null column single-valued and atomic 
attribute with cardinality [1-1] 

 

primary key primary identifier a primary identifier comprises 
attributes with cardinality [1-1] 

unique constraint secondary identifier  

foreign key reference group the composition of the reference 
group must be the same as that of 
the target identifier 

SQL names GER names the GER names must follow the 
SQL syntax 

Fig. 7. Defining the standard relational (SQL2) model as a subset of the GER model (mapping 
Σrel>ger) 

A GER schema made up of constructs from the second column only, and that satis-
fies the assembly rules stated in the third column, can be called a relational GER 
schema. As a consequence, a relational schema cannot comprise is-a relations, rela-
tionship types, multivalued attributes nor compound attributes. 

                                                           
8  The term UML model has a specific interpretation in UML, where it denotes what we call a 

schema in this paper.  
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4   Schema Transformation 

Let us denote by M the unique model in which the source and target schemas are ex-
pressed, by S the schema on which the transformation is to be applied and by S' the 
schema resulting from this application. Let us also consider sch(M), a function that 
returns the set of all the valid schemas that can be expressed in model M, and inst(S), a 
function that returns the set of all the instances that comply with schema S. 

4.1   Specification of a Transformation 

A transformation Σ consists of two mappings T and t (Fig. 8): 

1. T is the structural mapping from sch(M) onto itself, that replaces source construct 
C in schema S with construct C'.  C' is the target of C through T, and is noted C' = 
T(C). In fact, C and C' are classes of constructs that can be defined by structural 
predicates. T is therefore defined by the weakest precondition P that any cons-
truct C must satisfy in order to be transformed by T, and the strongest postcondi-
tion Q that T(C) satisfies.  T specifies the rewriting rule of Σ. 

2. t is the instance mapping from inst(S) onto inst(S'), that states how to produce the 
T(C) instance that corresponds to any instance of C.  If c is an instance of C, then 
c' = t(c) is the corresponding instance of T(C).  t can be specified through any al-
gebraic, logical or procedural expression. 

According to the context, Σ will be noted either <T,t> or <P,Q,t>. 
The nature of the most suited formalism in which P, Q and t could be expressed9 

will not be discussed here. In the following, we will use abstract schema fragments 
following the graphical convention of the underlying model. 

C' = T(C)

c' = t(c)c

C T

t

inst_ofinst_of

 

Fig. 8. The two mappings of schema transformation S ≡ <T,t>. The inst_of arrow from x to X 
indicates that x is an instance of X. 

4.2   Generic, Parametric and Instantiated Transformations 

Let us consider relation R, the attributes of which are partitioned into non empty  
subsets I, J and K. Considering Σ, a (lossy) variant of relational decomposition trans-
formation, predicates P and Q as well as instance transformation t can be written as 
follows: 

                                                           
9 Description logic [2] could be a good candidate for P and Q. 
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P   R(U); {I,J,K} partition of U;  
T Q   R1(IJ); 

  R2(IK); 

t   let r be the current instance of R; let r1, r2 be instances of R1, R2; 
  r1 = r[IJ]; r2 = r[IK]; 

Σ is generic, since it gives an abstract pattern that must be applied to an actual 
relation before being carried out. Let us apply Σ to relation CUST(C#, CNAME, 
CADD, CACC) of a supposedly current schema. We observe that there are several 
ways to instantiate Σ according to the values we assign to variables I, J and K, leading 
to as many instantiated transformations. For this reason, we call Σ a parametric 
transformation. For instance, with assignments I := {CNAME} and J := {C#, CADD}, 
we get the following fully instantiated transformation. 

P   CUST(C#, CNAME, CADD, CACC); I = {CNAME}; J = {C#, CADD} ;  
T Q   C1(CNAME, C#, CADD); 

  C2(CNAME, CACC); 

t   let c be the current instance of CUST; let c1, c2 be instances of C1, C2; 
  c1 = c[CNAME, C#, CADD]; c2 = c[CNAME, CACC]; 

A generic transformation can be partially instantiated if some, but not all, variables 
of P have been instantiated. 

Each transformation Σ is associated with an inverse transformation Σ' which can 
undo the result of the former under certain conditions that will be detailed in the next 
section. 

4.3   Semantics Preservation Properties of Transformations 

One of the most important properties of a transformation is the extent to which the 
target schema can replace the source schema without loosing information. This prop-
erty is called semantics preservation or reversibility.  

Some transformations appear to augment the semantics of the source schema (e.g., 
adding an attribute), some remove semantics (e.g., removing an entity type), while 
others leave the semantics unchanged (e.g., replacing a relationship type with an 
equivalent entity type). The latter are called reversible or semantics-preserving.  If a 
transformation is reversible, then the source and the target schemas have the same 
descriptive power, and describe the same universe of discourse, although with a dif-
ferent presentation. 

Similarly, in the pure software engineering domain, [3] introduces the concept of 
correctness-preserving transformation aimed at compilable and efficient program 
production. 
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We must consider two different classes of transformations, namely reversible and 
symmetrically reversible. 

1. A transformation Σ1 = <T1,t1> = <P1,Q1,t1> is reversible, iff there exists a trans-
formation Σ2 = <T2,t2> = <P2,Q2,t2>  such that, for any construct C, and any ins-
tance c of C: P1(C)  ⇒   ([T2(T1(C))=C] and [t2(t1(c))=c]). Σ2 is the inverse of Σ1, 
but the converse is not true. For instance, an arbitrary instance c' of T(C) may not 
satisfy the property c'=t1(t2(c')). 

2. If Σ2 is reversible as well, then Σ1 and Σ2 are called symmetrically reversible.  
In this case, Σ2 = <Q1,P1,t2>.  Σ1 and Σ2 are called SR-transformations for  
short.  

Example 

The so-called decomposition theorem of the 1NF relational theory [13] is an example 
of reversible transformation that can be described as follows10. 

P1   R(U); {I,J,K} partition of U; I →→ J|K; 
T1 

Q1   R1(IJ); R2(IK); 

t1   let r be the current instance of R; let r1, r2 be instances of R1, R2; 
  r1 = r[IJ]; r2 = r[IK]; 

However, there is no reason for any arbitrary couple of instances r1 of R1 and r2 of 
R2 to enjoy the inverse property r = (r1*r2)[IJ]. We must refine this transformation in 
order to make it symmetrically reversible. This transformation and its inverse are 
summarized here below. 

P1   R(U); {I,J,K} partition of U; I →→ J|K; 
T1 

Q1   R1(IJ); R2(IK); R1[I] = R2[I]; 

t1   let r be the current instance of R; let r1, r2 be instances of R1, R2; 
  r1 = r[IJ]; r2 = r[IK]; 

t2   let r1, r2 be current instances of R1, R2; let r be an instance of R;  
  r = r1*r2[IJK]; 

4.4   Generating and Studying GER Transformations 

The complexity of high-level models, and that of the GER in particular, makes the 
study of their transformations particularly complex. To begin with, experience shows 
that several dozens of operators can be useful, if not necessary, to describe the most 
important engineering processes. Then, identifying and proving the reversibility de-
gree of each of them can be a huge and complex task, notably since there is no agreed 
upon algebra or calculus to express Entity-relationship queries.  

                                                           
10  Denotes a multivalued dependency, [ ] the projection operator and * the join operator. 
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The key lies in the ERM formalism that expresses the semantics of the GER. In-
deed, the relational model, of which the ERM inherits, includes a strong and simple 
body of properties and inference rules that can be used to built a relational transfor-
mational theory. We can reasonably expect the set of transformations defined for the 
ERM to be far smaller and simpler than that of the GER.  

If this idea proves to be correct, then we will be provided with a nice way to gener-
ate, explain, and reason on, GER transformations. Fig. 9 illustrates this approach.  

Extended Rel.
Model

Σerm>erm

Σerm>ger

Σger>erm

GER Model

Σger>ger

 

Fig. 9. Generating and specifying GER transformations through their expression in the 
Extended Relational Model 

According to this view, each GER transformation can be modelled as the com-
pound mapping: 

Σger>ger  =  Σerm>ger ° Σerm>erm ° Σger>erm 

Since Σerm>ger and Σger>erm are symmetrically reversible, a transformation in 
Σger>ger is semantics-preserving iff there exists a (possibly compound) transforma-
tion in Σerm>erm that is symmetrically reversible. Section 11 describes the main 
transformations of Σerm>erm. Then, Section 12 interprets three popular GER trans-
formations as compound ERM transformations. 

5   Typology of Practical Transformations 

This section describes several families of GER transformations with which complex 
engineering processes will be built. 

5.1   Mutation Transformations 

A mutation is an SR-transformation that changes the nature of an object. Considering 
the three main natures of object, namely entity type, relationship type and attribute, 
six families of mutation transformations can be defined.  Fig. 10 shows the structural 
mapping (T) of some representative operators (couples of operators Σ1 to Σ3) applied 
to typical schema fragments. The transformations Σ4 are not primitive since they can 
be defined by combining other mutations. However, they have been added due to their 
usefulness.  
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Fig. 10. Six representative mutation transformations Σ1 to Σ3. Transformations Σ1 generalized 
to N-ary rel-types as will be shown in Fig. 26. Though not primitive, compound transforma-
tions Σ4 are shown as well. Cardinality constraints [i-j] are arbitrary values. 

5.2   Other Elementary Transformations 

The mutation transformations can solve many database engineering problems, but 
other operators are needed to model special situations. 

Expressing supertype/subtype hierarchies in DMS that do not support them 
explicitly is a recurrent problem. The technique of Fig. 11 is one of the most 
commonly used [4] [23]. It consists in representing each source entity type by an 
independent entity type, then to link each subtype to its supertype through a one-to-
one relationship type. The latter can, if needed, be further transformed into foreign 
keys by application of Σ2-direct. 
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Fig. 11. Transforming an is-a hierarchy into one-to-one relationship types and conversely. The 
exclusion constraint (excl:s.C,r.B) states that an A entity cannot be simultaneously linked to a B 
entity and a C entity.  It derives from the disjoint property (D) of the subtypes. 

Transformations Σ3 and Σ4 showed how to process standard multivalued attributes. 
When the collection of values is no longer a set but a bag, a list or an array, operators 
to transform them into standard multi-valued attributes are most useful. Transforma-
tions Σ6 in Fig. 12 are dedicated to arrays. Similar operators have been defined for the 
other types of containers. 

 P = source schema  Q = target schema 

Σ6 

A
A1
A2[0-5] array
A3

 

T6 
⇒
⇐
T6' 

A
A1
A2[5-5]

Index
Value[0-1]

A3
id(A2): 

Index
 

Fig. 12. Converting an array A2 into a set-multivalued attribute and conversely. The values are 
distinct wrt component Index (id(A2):Index). The latter indicates the position of the cell that 
contains the value (Value). The domain of Index is the range [1..5]. 

Attributes defined on the same domain and the name of which suggests a spatial or 
temporal dimension (e.g., departments, countries, years or pure numbers) are called 
homogeneous serial attributes. In many situations, they can be interpreted as the rep-
resentation of an indexed multivalued attributes (Fig. 13). The identification of these 
attributes must be confirmed by the analyst. 
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Fig. 13. Transforming homogeneous serial attributes {A2X, A2Y, A2Z} into a multivalued 
compound attribute A2 and conversely. The values (Value) are indexed with the distinctive 
suffix of the source attribute names, interpreted as a dimension (sub-attribute Dimension). 

5.3   Compound Transformations 

A compound transformation is made up of a chain of more elementary operators in 
which each transformation applies on the result of the previous one.  The 
transformation Σ8 in Fig. 14, illustrated by a concrete example, transforms a complex 
relationship type R into a sort of bridge entity type comprising as many foreign keys 
as there are roles in R.  It is defined by the composition of Σ1-direct (generalized to 
N-ary rel-types) and Σ2-direct.  This operator is of frequent use in relational database 
design. 
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Fig. 14. Transformation of a complex relationship type into relational structures 

The transformation Σ9 is more complex (Fig. 15). It is composed of a chain of four 
elementary operators. The first one transforms the serial attributes Expense-2000, 
..., Expense-2004 into multivalued attribute Expense comprising subattributes 
Year (the dimension) and Amount (transformation Σ7-direct). The second one 
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extracts this attribute into entity type EXPENSE, with attributes Year and Amount 
(transformation Σ4-direct). Then, the same operator is applied to attribute Year, 
yielding entity type YEAR, with attribute Year. Finally, entity type EXPENSE is 
transformed into relationship type expense (Σ1-inverse). 
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Fig. 15. Extracting a temporal dimension from homogeneous serial attributes 

5.4   Predicate-Driven Transformations 

A predicate-driven transformation Σp applies an operator Σ to all the schema objects 
that meet a definite predicate p. 

predicate-driven transformation interpretation 

RT_into_ET(ROLE_per_RT(3 N)) 
 

transform each rel-type R into an entity type 
(RT_into_ET), if the number of roles of R 
(ROLE_per_RT) is in the range [3 N]; in short, 
convert all N-ary rel-types into entity types. 

RT_into_REF(ROLE_per_RT(2 2) and 
                      ONE_ROLE_per_RT(1 2)) 

transform each rel-type R into reference attributes 
(RT_into_REF), if the number of roles of R is 2 and 
if R has from 1 to 2 "one" role(s), i.e., R has at least 
one role with max cardinality 1; in short, convert all 
one-to-many rel- types into foreign keys. 

INSTANTIATE(MAX_CARD_of_ATT(2 4))
 

transform each attribute A into a sequence of single-
value instances, if the max cardinality of A is 
between 2 and 4; in short, convert multivalued 
attributes with no more than 4 values into serial 
attributes. 

Fig. 16. Three examples of predicate-driven transformations. Rel-type is a short-hand for 
Relationship type.  
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It will be specified by Σ(p). p is a structural predicate that states the properties 
through which a class of patterns can be identified. In general, the inverse of Σp can-
not be derived from the expression of Σ and p.  Indeed, there is no means to derive the 
predicate p' that identifies the constructs resulting from the application of Σp, and only 
them. 

We give in Fig. 16 some useful transformations that are expressed in the specific 
language of the DB-MAIN tool (Section 8), which follows the Σ(p) notation. Most 
predicates are parametric. For instance, the predicate ROLE_per_RT(n m), where n 
and m are integers such that n ≤ m, states that the number of roles of the relationship 
type falls in the range [n..m]. The symbol "N" stands for infinity. 

5.5   Model-Driven Transformations 

A model-driven transformation is a goal-oriented compound transformation made up 
of predicate-driven operators. It is designed to transform any schema expressed in 
model M into an equivalent schema in model M'.  

As illustrated in the discussion of the relational model expressed as a specialization 
of the GER (Fig. 7), identifying the components of a model also leads to identifying 
the constructs of the GER that do not belong to it.  Except when M is a subset of M', 
an arbitrary schema S ∈ sch(M) may include constructs that violate M'. Each class of 
constructs that can appear in a schema can be specified by a structural predicate. Let 
PM denote the set of predicates that defines model M and PM' that of model M'. In the 
same way, each potentially invalid construct can also be specified by a structural 
predicate. Let PM/M' denote the set of predicates that identify the constructs of M that 
are not valid in M'. In the DB-MAIN language used in Fig. 16, ROLE_per_RT(3 N) is 
a predicate that identifies N-ary relationship types that are known to be invalid in 
DBTG CODASYL schemas, while MAX_CARD_of_ATT(2 N) defines the family of 
multivalued attributes, that is invalid in the SQL2 database model. Finally, we ob-
serve that a set such as PM can be rewritten as a single predicate formed by anding its 
components. 

Let us now consider predicate p ∈ PM/M', and let us choose a transformation Σ = 
<P,Q,t> such that, 

(p ⇒ P) ∧ (PM' ⇒ Q) 

Clearly, the predicate-driven transformation Σ(p) solves the problem of the invalid 
constructs defined by p. Proceeding in the same way for each component of PM/M' 
provides us with a series of operators that can transform any schema in model M into 
schemas in model M'. We call such a series a transformation plan, which is the 
practical form of any model-driven transformation.  In real situations, a plan can be 
more complex than a mere sequence of operations, and may comprise loops to 
process recursive constructs for instance. Transformation plans implement what some 
authors call strategies, that is, deterministic or heuristic reasoning on how to apply 
transformations to reach a definite goal. [1] propose strategies to convert VDM data 
types in relational structures while [40] applies semi-procedural strategies to high-
level engineering processes. 
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In addition, transformations such as those specified above may themselves be 
compound, so that the set of required transformations can be quite large.  In such 
cases, it can be better to choose a transformation that produces constructs that are 
not fully compliant with M', but that can be followed by other operators which 
complete the job. For instance, transforming a multivalued attribute into relational 
structures can be obtained by an ad hoc elementary transformation.  However, it can 
be thought more convenient to first transform the attribute into an entity type + a 
one-to-many relationship type (Σ4-direct), which can then be transformed into a 
foreign key (Σ2-direct). This approach produces transformation plans which are 
more detailed and therefore less readable, but that rely on a smaller and more stable 
set of elementary operators. 

The transformation toolset of DB-MAIN includes about thirty operators that have 
proved sufficient to process schemas in a dozen operational models. If the 
transformations used to build the plan have the SR-property, then the model-driven 
transformation that the plan implements is symmetrically reversible.  When applied 
to any source schema, it produces a target schema semantically equivalent to the 
former.  

6   Modeling Standard Database Engineering Processes as 
Transformations 

Complete database engineering processes, such as database development, database 
reverse engineering, data warehouse design or database migration comprise several 
steps, most of which can be viewed as chains of transformations, or, more 
specifically, transformation plans. This section illustrates the issue by modeling one 
of the major processes, namely database logical design, through the transformational 
paradigm. 

6.1   Database Design 

The process of designing and implementing a database that is to meet definite users 
requirements has been described extensively in the literature [4] and has been avail-
able for several decades in CASE tools. It comprises four main sub-processes, namely 
(Fig. 17): 

1. Conceptual design, the goal of which is to translate users requirements into a 
conceptual schema, which is a technology-independent abstract specification11.  

2. Logical design, which produces a logical schema that losslessly translates the 
constructs of the conceptual schema according to a specific technology family12. 

3. Physical design, which augments the logical schema with performance-oriented 
constructs and parameters, such as indexes, buffer management policies or lock 
management parameters. 

                                                           
11 Or Platform-Independent Model (PIM according to the MDA/MDE vocabulary. 
12  The logical and physical schemas can be called Platform-Specific Model (PSM in the 

MDA/MDE vocabulary). 
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4. Coding, that translates the physical schema (and some other artefacts) into the 
DDL code of the DBMS. 

Calling the whole process DB-Design, and the four sub-processes respectively 
ConcD, LogD, PhysD and Coding, we can describe them with the transformational 
notation: 

 DDL code = DB-design(Users requirements) 

 DB-design = Coding ° PhysD ° LogD ° ConcD 

These processes are model-driven transformations that can be described by 
transformation plans. The level of formality of these processes depends on the 
methodology, on the existence of CASE support and of non functional requirements 
such as performance and robustness, that generally require human expertise. For 
instance, conceptual design is a highly informal process based on human 
interpretation of complex information sources, while logical design can be an 
automated process completely described by a transformation plan. Anyway, these 
processes can be decomposed into sub-processes that, in turn, can be modelled by 
transformations and described by transformation plans, and so forth, until the latter 
reduce to elementary operators such as those described in Sections 5.1 and 5.2. 
Below, we examine the Logical design process in further detail. 

Conceptual design

Logical design

Physical design

Coding

Logical schema

Physical schema

Users requirements Conceptual schema

DDL code
 

Fig. 17. The main processes of database design  

6.2   Database Logical Design 

We consider the most popular conceptual source model, namely the Entity-
relationship model, and the most popular logical target model, the SQL2 relational 
model, to which Oracle, SQL Server, DB2, PostgreSQL, Firebird and many others are 
compliant. The GER expression of the SQL2 model has been developed in Fig. 7. By 
complementing this table, we identify the Entity-relationship constructs that do not 
belong to the SQL2 model, the four most important of which being transformed as 
follows. 
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Transforming is-a relations 
Transformation Σ5-direct eliminates this structure without semantics loss by introduc-
ing one-to-one (functional) rel-types. The latter can then be processed by the mutation 
transformation Σ2-direct that generates foreign keys. 

Transforming relationship types 
Two cases must be considered. The easy case is that of functional rel-types, that can 
be replaced by foreign keys through transformation Σ2-direct.  

The complex patterns comprise non-functional rel-types, that is, those which are 
many-to-many, or N-ary, or which have attributes. They are first transformed into 
entity types with operator Σ1-direct. Then, the resulting functional rel-types are 
transformed into foreign keys (Σ2-direct). Note that the whole process is a compound 
transformation that has been described as Σ8-direct. 

Transforming multivalued attributes 
A multivalued attribute that directly depends on its parent entity type (level 1) is 
transformed into an entity type, through the compound mutation operator Σ4-direct. If  
 

transform
is-a relations (Σ5d)

transform complex
rel-types (Σ1d)

transform level-1 multi-
valued attributes (Σ4d)

disaggregate level-1
compound attributes (Σ10d)

still non simple attributes ?
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Process names

 

Fig. 18. A simple transformation plan for logical relational database design  
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Fig. 19. A representative conceptual schema  

the attribute is compound, it is suggested to incorporate its components in the new  
entity type, and not the attribute itself. This generates a one-to-many rel-type, that is 
further transformed into a foreign key. 

Transforming single-valued compound attributes 
The simplest way to transform a level 1 compound attribute is to replace it with its 
components, a technique called disaggregation (transformation Σ10-direct, not 
illustrated). Another technique consists in processing the attribute as if it was 
multivalued as described here above (Σ4-direct). In this case, it is transformed into an 
entity type and a functional rel-type, itself transformed into a foreign key. 

Note on the transformation of a rel-type into a foreign key 
This transformation requires the other entity type to have an identifier made up of 
attributes. Otherwise, we have to give it a technical identifier (transformation Σ11-
direct, not illustrated). 
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Grouping similar transformations and reorganizing the operations logically provides us 
with a simple but fairly powerful transformation plan that transforms most conceptual 
Entity-relationship schemas into pure relational schemas (Fig. 18). Since we have used 
SR-transformations only, the whole process is semantics-preserving13. Actual plans are 
more complex, but follow the same approach. Let us mention some extensions: 
eliminating optional identifiers, other techniques to implement is-a relations (e.g., by 
descending or ascending inheritance), instantiating multivalued attributes, concatenating 
multivalued attributes, concatenating compound attributes, etc.  

6.3   Case Study  

The conceptual schema of Fig. 19 includes, in a small footprint, several interesting 
constructs, such as complex rel-types, a cyclic rel-type, is-a relations, multivalued 
attributes, compound attributes, an entity type without identifier, an optional identi-
fier, a mandatory many role (written.AUTHOR [1-N]) and a hybrid identifier.  

The application of the transformation plan of Fig. 18, extended to the elimination 
of optional identifiers14, produces the relational schema of Fig. 20. 

7   Modeling Database Reverse Engineering Process as 
Transformations 

Many database engineering processes, such as maintenance, evolution, migration, 
integration or federation require the availability of a complete and up to date 
documentation, that is, for a database, its logical and conceptual schemas. Needless to 
say that these essential documents most often are missing, specially for legacy 
databases that can be more than 20 years old.  

Database reverse engineering is the process through which one attempts to recover 
or to rebuild these schemas when they are missing, obsolete or incomplete. We will 
show that several important aspects of this process can be modelled by 
transformtions. Intensive research in the last decade have shown that reverse 
engineering generally is much more complex than initially thought.  

We can put forward three major sources of difficulties, namely (1) the absence of 
systematic design (empirical coding still is the most popular way to design a 
database), (2) the weaknesses of the legacy (and, paradoxically modern as well) 
DBMS, that force the developer to resort to various tricks to code the data structures 
and the integrity constraints and (3) only the DDL code provides a reliable description 
of the database physical constructs. 

                                                           
13  This assertion is not quite correct if we only use the transformations presented in this paper. 

In particular, some constraints can be lost, or incompletely translated. Such is the case for 
cardinality constraints [i-j] where 1 < j < N. A more comprehensive plan, making use of more 
precise transformations, can preserve these constraints until the coding phase, e.g., in the 
form of SQL triggers. 

14 Several DBMS do not manage correctly candidate keys comprising a nullable column. 
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Fig. 20. The relational schema obtained by the application of the transformation plan of Fig. 18 
on the conceptual schema of Fig. 19 

7.1   Database Reverse Engineering 

In complex projects, for instance when the database includes several hundreds or 
thousands of tables15, the core of the process will be organized as described in Fig. 21. 
It comprises four main sub-processes, namely: 

1. Parsing, that rebuilds the raw physical schema by merely parsing the DDL code 
(codeddl). Only the constructs that have been explicitly declared in the code can 
be recovered. 

2. Refinement, which enriches the raw physical schema with the undeclared 
constructs and constraints that have been elicited through the analysis of program 
code (codeprg), as well as other sources that we will ignore here. Sometimes 
more than 50% of the specifications can be retrieved in this way. 

                                                           
15  An SAP database can comprise 30,000 tables and more than 200,000 columns. 
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3. Cleaning, which removes the technical constructs, such as the indexes, and which 
produces the logical schema. 

4. Conceptualization, which derives a plausible conceptual schema from the logical 
schema. 

Cleaning

Parsing

Refinement

Logical schema

Physical schema

Conceptual schema

codeddl codeprg

Conceptualization

Raw physical schema

 

Fig. 21. The four main processes of database reverse engineeering 

Calling the whole process DB-REng, and the four sub-processes Parse, Refine, 
Clean and Concept respectively, we can write: 

 Conceptual schema = DB-REng(codeddl, codeprg) 

 DB-design = Concept ° Clean ° Refine ° Parse 

An interesting, and not really surprising, aspect of database reverse engineering is that 
all the processes we have mentioned appear to be the reverse of database design proc-
esses. Indeed, we have the following relations: 

 Refine o Parse = Coding-1 

 Clean = PhysD-1 

 Concept = LogD-1 

This observation has a deep influence on the specifications and the strategies of the 
reverse processes. For instance, since the Conceptualization process is the inverse of 
Logical design, it should be possible to derive a transformation plan for the former 
just by reversing the plan of Logical design. Though this approach has proved 
successful, the problem is a bit more complex due to the undisciplined way legacy 
databases were designed. When the logical schema was built, it had to meet not only 
functional requirements (that is, to express all the semantics of the conceptual 
schema), but also non-functional requirements such as time-space optimization,  
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security or privacy. The satisfaction of the latter requirements can deeply affect the 
readability of the logical schema to such an extent that it has become quite difficult to 
understand. 

In the next section, we will very shortly describe the Conceptualization process as 
a transformation process, and elaborate a representative transformation plan. 

7.2   Logical Schema Conceptualization 

Reversing a transformation plan is a new concept that would deserve some further 
discussion [22]. Due to space limit, we will give a simplified definition that is valid 
for linear plans only, that is, plans which do not include if-then-else or loop con-
structs: 

 Considering a transformation Σ implemented by transformation plan T, T' is an 
inverse of T if it implements the inverse of Σ.   

 If T is a linear transformation plan, T' can be built as follows: each operator of T 
is replaced with its inverse, then the resulting sequence is reversed.  

Deriving a linear plan from the plan proposed for Logical design in Fig. 18 is not 
too difficult, provided we target simpler schemas, that meet such realistic  
 

transform
is-a relations (Σ5d)

transform complex
rel-types (Σ1d)

transform level-1 multi-
valued attributes (Σ4d)

disaggregate level-1
compound attributes (Σ10d)

transform functional
rel-types (Σ2d)

add technical Id
where needed (Σ11d)

Remove technical Id
(Σ11i)

Transform FK into functional
rel-types (Σ2i)

Aggregate heterogeneous
serial attributes (Σ10i)

transform attribute entity types 
into multi-valued attributes (Σ4i)

transform relationship entity 
types into rel-types (Σ1i)

transform one-to-one rel-types 
into is-a relations (Σ5i)

transform functional
rel-types (Σ2d)

Transform FK into functional
rel-types (Σ2i)

 

Fig. 22. Building a linear transformation plan for the Conceptualization process 
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restrictions as the following: a multivalued attribute can be compound, but no 
compound attributes can have components that are themselves compound or 
multivalued. Fig. 22 depicts the linearized plan for Logical design (left), and a 
tentative transformation plan for Logical schema Conceptualization obtained by 
inverting the former (right). 

The resulting plan introduces new processes and terms that deserve some 
explanation. Removing a technical Id is valid provided it does not represent any 
application domain concept. A series of heterogeneous serial attributes is a pattern in 
which a sequence of attributes, generally of different types, have names that present 
strong similarities, and that suggest that these attributes form an implicit aggregate 
(Example: Address-City, Address-Street, Address-Number). An attribute entity type 
AE is an entity type the goal of which obviously is just to add an elementary 
information to another entity type. It comprises one or a few attributes that are all part 
of the identifier of AE, and is linked to another entity type only, through a mandatory 
role. A relationship entity type is an entity type the role of which obviously is just to 
link two or more entity types. Transforming one-to-one rel-types into is-a relations 
must be carried out with caution, since it must be semantically pertinent. A one-to-one 
rel-type between MANAGER and CAR does not mean that CAR is a subtype of 
MANAGER!  

Finally, let us observe that the second step of the resulting transformation plan 
(right) is useless and can be discarded, though it does no harm16.  

7.3   Case Study 

The application of this transformation plan to the logical relational schema of Fig. 20 
is left as an exercice to the reader, preferably with the help of the Transformation 
assistant of the DB-MAIN CASE tool. Some observations:  

1. identifying serial attributes forming attributes Location and Address is a manual 
process, 

2. deleting the technical id of AUTHOR is a manual process, 
3. the conceptual names of most one-to-many rel-types cannot be recovered (default 

names are suggested but they generally are not suitable), and must be assigned 
manually. 

8   Transformations in CASE Tools 

Following the discussion of this paper, it is not surprising that the transformational 
paradigm is particularly suited to build CASE tools. All CASE tools rely, often im-
plicitly, on some kind of schema transformations. Due to the popularity of the MDE 
approaches, we can expect future CASE tools to include programmable transforma-
tion toolsets. In the past, some examples of transformation-based tools have been 
described, e.g., in [42]. We can also mention Silverrun, a CASE tool that explicitly 
makes use of transformations. 

 

                                                           
16 A desirable property of these plans is their idempotence. It is not guaranteed in general. 
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Fig. 23. The elementary transformation assistant of DB-MAIN 

We will describe briefly the transformation facilities of DB-MAIN17, a CASE tool 
dedicated to the support of the main database engineering processes, including non 
standard ones, such as database reverse engineering, interoperability, active and tem-
poral database design, wrapper generation and XML engineering. DB-MAIN is based 
on the GER model and offers a toolset of about 30 elementary transformations.  

DB-MAIN includes a collection of programmable assistants that are intended to 
help the analysts in complex and tedious tasks. Two of them are of particular interest, 
namely the Transformation assistant and the Advanced transformation assistant. Both 
allow the analyst to apply predicate-driven transformations on the current schema and 
to build transformation plans through a scripting facility. 

Fig. 23 shows a typical screen of the first assistant. Its left part proposes a list of 
labelled patterns (a user-friendly interface to built-in structural predicates), accompa-
nied by a set of possible actions that are performed on all the instances of the pattern 
in the current schema. The right part allows the analyst to build linear transformation 
plans that can be saved and reused later. 

The second assistant is more powerful, and therefore more complex. It is based on 
predicate-driven transformations following the syntax Σ(p) described in Section 5.4, 
and illustrated in Fig. 16. It allows non-linear transformation plans to be developed. 

Part 2   Formal Aspects of Database Transformations 

These sections which follow provide the bases for building a formal system in which 
GER transformations can be rigorously defined and such properties as semantics 
preservation can be studied.  
                                                           
17 The free Education edition of DB-MAIN is available at the following address: http://www. 

info.fundp.ac.be/libd, select "DB-MAIN CASE". 
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9   The Extended Relational Model (ERM) 

ERM is a variant of the N1NF relational model. It includes the concepts of domain, 
relation (schema and instance), attribute and constraints. 

9.1   Domain 

A domain is a named set of elements. It is declared by its name and the specification 
of the set of elements. A domain is dynamic if its set can change over time. Some 
predefined basic domains are provided, such as number, string or date. The model 
includes a special dynamic basic domain, called entities, whose structure is immate-
rial, but the goal of which could be to denote application domain entities. A user-
defined domain is defined by an element set which is a subset of that of another  
domain. A relation is a valid domain. Any domain defined as a subset of the domain 
entities is an entity domain, and so forth transitively. 

Example of user-defined domains 

birth_Date: date; 
name: string; 
PERSON: entities; 
EMPLOYEE: PERSON; 
CONTACT: address; 

9.2   Relation and Attribute 

According to the relational theory, a relation is a subset of the cartesian product of 
domains. An element of a relation is a tuple. A relation is described by its schema, 
that specifies the format and the constraints that its instances must satisfy. The current 
instance of a relation is the current set of tuples.  

The schema of a relation comprises its name, a set of attributes and a set of con-
straints. An attribute has a name and is defined on a domain. It represents a participation 
of a domain in the relation. A domain can appear more than once, defining as many 
distinct attributes. An attribute defined on an entity domain is an entity attribute. 

In general, the value of an attribute of a tuple is a subset of its domain. To specify 
the size of this subset, a cardinality property [i-j] is associated with each attribute A. It 
states the minimum and maximum numbers of domain values that are assigned to A in 
any tuple. If  j = 1, A is single-valued otherwise it is multivalued. If i = 0, A is optional 
otherwise it is mandatory. The default cardinality property is [1-1]. 

Examples 

address ( Street:  name, 
  City:  name ); 

employee ( PId:       number, 
  Name:     name, 
  1st-name[0-1]: name, 
  Phone[1-5]:    phone, 
  Contact:  address); 
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Interpretation: an employee has one (default [1-1], that is, from 1 to 1) personal ID, 
one name, from 0 to 1 first name, from 1 to 5 phone numbers, and one contact, which 
is made up of one street and one city. 

If the concept of address is not considered important (for instance, it is not referred 
to elsewhere), the domain address could be specified in line as follows: 

employee (…, Contact: (Street: name, City: Name)); 

In some situations, the specification of the domain will be ignored for simplicity. 
Consequently, the following notation will be allowed. 

employee (PId, Name, 1st-name[0-1], Phone[1-5], Contact: address); 

In particular, specially in formal declarations, if an attribute is given the name of its 
domain, we will use the following shorthand, where A is both the name of a domain 
and an attribute defined on it: 

R(A,B,C)   ≡   R(A:A, B:B, C:C) 

9.3   Non-set Attributes 

By default, the value of an attribute is a set of domain values. Due to the generality of 
the GER, that is intended, among others, to describe logical and physical schemas, we 
need more poweful data structures, such as set, bag, list and array attributes: 

R (A, B[0-5]set:number, C);   also defined as:   R (A, B[0-5]:number, C) 
R (A, B[0-5]bag:number, C); 
R (A, B[0-5]list:number, C); 
R (A, B[0-5]array:number, C); 

When the values in a list or in an array have to be unique, we write: 

R (A, B[0-5]u-list:number, C); 
R (A, B[0-5]u-array:number, C); 

9.4   Constraints 

ERM includes the uniqueness and inclusion constraints, as well as various depend-
encies, such as functional (FD) and multivalued (MV), of the standard relational 
model18. Candidate key {A,B,C} of R will be declared by the clause id(R): A,B,C. 
When possible, and where no ambiguity may arise, this specification can be replaced 
by continuously underlining the components of the key. Inclusion constraints between 
algebraic expressions are allowed. 

 
                                                           
18  These constraints have been defined on 1NF models, and their generalization to  

N1NF models is far from trivial. Due to the limited scope of this paper, and without  
loss of generality, we will ignore the complexity of the constraint patterns of N1NF 
models.  
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Examples 

1.  R (A, B, C, D); id(R): A,B; also defined as: R (A, B, C, D)19 
2.  S(E, G, H); S[G,H] ⊆ R[A,B]; 
3.  T(A, B, C); T[A] = A; 

Example 1 declares a candidate key in both alternative syntaxes. Example 2 declares a 
foreign key through an inclusion constraint. Expression R[G,H] denotes the projection 
of the current instance of R on attributes (A,B). Example 3 expresses a domain con-
straint. Every element of domain A must appear as the value of attribute A of at least 
one tuple of the current instance of T. 

In a N1NF structure, a local key can hold in a multivalued compound attribute. In 
the following example, we declare that, for each product tuple, the candidate key 
{Year} holds in each instance of Sales (no two sales the same year): 

product ( ProNbr:  number, 
  Description: name, 
  Sales[0-N]: (Year: date, Volume: number)); 

The notation is extended as follows: 

id(product.Sales): Year; 

or by underlining the components: 

product (ProNbr, Description, Sales[0-N]: (Year, Volume)); 

ERM includes a special form of cardinality constraint, through which we can state 
how many tuples of the current instance of a relation must/can share a common do-
main value.  

Considering the relation schema R(A,B,C) and an instance r of R,  

card(R.A): [I-J], 
is interpreted as20 

∀a∈A, I  ≤  ⏐r(A=a)⏐ ≤ J 

Examples 

1.  R (A, B, C); card(R.A): [0-5]; 
2.  R (A, B, C); card(R.(B,C)): [1-3]; 

Example 1 declares that any value of domain A may not appear in more than 5 tuples 
of (any instance of) R. Example 2 shows a generalization of the constraint. It declares 
that any couple of values of domains B and C must appear in 1 to 3 tuples of (any 
instance of) R. 

Note that candidate keys as well as the domain constraint T[A] = A are special cases 
of cardinality constraint. Note also that cardinality properties and cardinality 
constraints serve different purposes, and that none can replace the other one. 

                                                           
19  The graphical convention is as follows: the key of R(A,B,C) is {A,B} while R(A,B,C) has two 

keys {A} and {B}. 
20  Expression r(A=a) denotes the set of tuples of r where A=a.  
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9.5   An ERM Schema Example 

We are now able to propose a more comprehensive example of ERM schema. 

•   domains 

CUSTOMER: entities; 
VEHICLE: entities; 
CAR, BOAT: VEHICLE; 
Name: string; 

•   relations 

cust (CUSTOMER, CId: number, Name: name, Phone[0-3]: string), 
owns (owner: CUSTOMER, CAR); 

•   constraints 

VEHICLE = CAR ∪ BOAT; 
id(cust): CId; 
card(owns.owner): [0-5]; 
owns(CAR) = CAR; 

10   Formal Semantics of the GER 

The mapping Σger>erm (Section 3.3) is fairly straighforward for most GER 
constructs. The inverse mapping is easy to derive as well. The main rules are 
presented in Fig. 24, and need little explanation, except for the representation of an 
entity type, since it seems to differ from the usual way one translates a conceptual 
schema into relational structures, as illustrated in Fig. 1 for example. First, let us 
recall that the goal of this section is not to produce relational databases, as 
discussed in Section. 6.2, but rather to give an operational model rigorous 
semantics. 

An entity type E is merely represented by an entity domain, with name E, 
independently of any other feature, such as attributes, it may be concerned with.  

When entity type E participates in relationship type (rel-type for short) R, with role 
r, its representation also appears as the domain of ERM attribute r of the relation R 
that expresses this rel-type (see rel-types of and export in Fig. 24). 

Now, how to express the GER attributes of E? Through a special relation that 
aggregates each entity with its GER attribute values. The relation is given the 
conventional name desc-E, for description of E. This relation comprises an entity 
attribute, with name E, and defined on entity domain E. This attribute is a key of the 
relation. Then, for each GER attribute, it comprises an ERM attribute, with the same 
name and the same domain. Later on, we will see that, in some circumstances, this 
relation can include other entity domains. 

In this way, we can easily describe, beyond plain GER structures, an entity type 
without attributes, or without identifiers, or with complex constraint patterns. 
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GER constructs ERM constructs 

PERSON
  

PERSON: entities; 

   

PERSON

EMPLOYEE CUSTOMER
 

PERSON: entities; 

EMPLOYEE: PERSON; 

CUSTOMER: PERSON; 

D

PERSON

EMPLOYEE CUSTOMER
 

PERSON: entities; 

EMPLOYEE: PERSON; 

CUSTOMER: PERSON; 

EMPLOYEE ∩ CUSTOMER = ∅ 

T

PERSON

EMPLOYEE CUSTOMER
 

PERSON: entities; 

EMPLOYEE: PERSON; 

CUSTOMER: PERSON; 

EMPLOYEE ∪ CUSTOMER = PERSON 

ORDER

Ord-ID
Date-Received
Origin

id: Ord-ID
 

ORDER: entities; 
desc-ORDER( ORDER,  
  Ord-ID: number,  
  Date-received: date,  
  Origin: string); 

id(desc-ORDER): Ord-ID; 

1-1
0-N

owner of

CUSTOMER ACCOUNT

 

of(owner: CUSTOMER, ACCOUNT); 

of[ACCOUNT] = ACCOUNT; 

0-N

1-N0-20

export

Vol

PRODUCT

COUNTRY

COMPANY export(COMPANY, PRODUCT, COUNTRY, Vol); 

export[PRODUCT] = PRODUCT; 

card(export.COMPANY): [0-20]; 

ORDER
Ord-ID
Date-Received
Origin
ref: Origin

CUSTOMER
Customer-ID

id: Customer-ID

desc-ORDER(ORDER, …, Origin: string); 

desc-CUSTOMER(CUSTOMER, Customer-ID); 

id(desc-CUSTOMER): Customer-ID; 

desc-ORDER[Origin] 
 ⊆ desc-CUSTOMER[Customer-ID]; 

Fig. 24. Main GER-to-ERM transformations (left to right) and their inverse (right to left) 
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Note on the Representation of Functional Relationship Types 

A rel-type is functional if it is binary, has no attributes and if at least one of its roles 
has cardinality [i-1]. Let us consider the functional rel-type of, between ACCOUNT and 
CUSTOMER, in Fig. 4, and recalled in Fig. 24. These three constructs translate in 
ERM as follows (note that the identifier of ACCOUNT has not been translated yet): 

 

CUSTOMER, ACCOUNT: entities; 
desc-CUSTOMER(CUSTOMER, …); 
desc-ACCOUNT(ACCOUNT, Account-Nbr, Amount); 
of(CUSTOMER, ACCOUNT); 
desc-CUSTOMER[CUSTOMER] = CUSTOMER; 
desc-ACCOUNT[ACCOUNT] = ACCOUNT; 
of[ACCOUNT] = ACCOUNT; 

 
This schema happens to meet the preconditions of the semantics-preserving project-
join transformation that will be studied in Section 11.1. Its application yields the fol-
lowing equivalent, but simpler, schema, in which the relations desc-ACCOUNT and of 
have been joined: 

 

CUSTOMER, ACCOUNT: entities; 
desc-CUSTOMER(CUSTOMER, …); 
desc-ACCOUNT'(ACCOUNT, Account-Nbr, Amount, Customer: CUSTOMER); 
desc-CUSTOMER'[CUSTOMER] = CUSTOMER; 
desc-ACCOUNT'[ACCOUNT] = ACCOUNT; 
 

This form is quite interesting.  Indeed, it allows us to specify, in a particularly simple 
and elegant way, complex constraints, such as hybrid identifiers, that is, identifiers 
that combine attributes and/or remote roles. Such an identifier is associated with en-
tity type ACCOUNT in Fig. 4, the legend of which tells us that the accounts of a cus-
tomer have distinct Account numbers, which makes [ACCOUNT] a dependent or 
weak entity type. Specifying this identifier is straightforward: 

 
id(desc-ACCOUNT)': Customer, Account-Nbr 

11   The ERM Transformations 

In this section, we describe five important families of semantics-preserving paramet-
ric transformations that can be applied to ERM schemas. Basically, they are relational 
transformation and could be applied to any N1NF schema as well.   

For each family, after a description of the principles, we specify the structural 
mapping T, through conditions P and Q (expressed in an intuitive way, through  
abstract structural patterns), if available, the description of useful variants, the signa-
ture of direct and inverse transformation, a discussion of their properties and an  
example. The t part will be ignored here. See [20] for a more detailed description of 
these transformations. 

In the following descriptions, U is the set of attributes of relation R, while I, J and 
K denote subsets of U.  
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11.1   Project-Join Transformations 

Principle 
A relation R in which a multivalued dependency (e.g., a FD) holds can be decom-
posed into smaller fragments according to this dependency [13]. 

 
Structural mapping 

 

P R(U); {I,J,K} is a partition of U; I →→ J|K; 
Q R1(I J); R2(I K); R1[I]=R2[I]; 

 
Variants 
The project-join transformation can be particularized to relations in which I, J and/or 
K are made up of one attribute only, in which K is optional, in which K is multivalued, 
in which J is empty, and in which J and K are multivalued. 
 

Signatures 

direct : (R1,R2) ←⎯ PJ(R,I,J) 
reverse : R ←⎯ PJ-1(R1,R2,I) 

 

Discussion 
This transformation is the variant of the relational decomposition theorem mentioned 
in Section 4.3. It is therefore symmetrically reversible. 

 

Example 

Source schema works(who:EMP,in:PROJ,for:DEPART) 
 works:who ⎯→ for 

Transformation (works-in,works-for) ←⎯  PJ(works,{who},{in}) 

Target schema works-in(who:EMP,in:PROJ) 
 works-for(who:EMP,for:DEPART) 
 works-in[who] = works-for[who] 

11.2   Denotation Transformation 

Principle 
The result of a query E defined by, say, an algebraic expression, and the schema of 
which comprises attributes AE, is explicitly represented in schema S with a denota-
tional domain X. Bijective relation D acts as a dictionary for the elements of X. This 
operator is mainly technical and is used as a basis for the next transformation. It is 
trivially symmetrically reversible. 

 

Structural mapping 
 

P schema S; algebraic expression E with schema SE(A1,…,An) 

Q schema S; domain X; D(X,A1,…,An); D[A1,…,An] = E[A1,…,An]; X appears 

in D only 
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Signatures 

direct : (X,D,{A1,…,An}) ←⎯  den(S, ) 

reverse : () ←⎯ den-1(X,D) 

11.3   Extension Transformations 

Principle 

The projection of a relation R on a subset {I1,…,In} of its attributes is explicitly 

represented by surrogate domain X.  Bijective relation D acts as a dictionary for the 
elements of X.  This domain replaces I in R, leading to relation T. 

 
Structural mapping 

 
P R(U); {I,J} is a partition of U 

Q domain X; D(X,I); T(X,J); D[X] = T[X]; X appears in D and T only 

 
Variants 
When I = U,  J is empty, so that the transformation degenerates into: 

 
P R(U); 

Q domain X; D(X,U); X appears in D only 
 

If I comprises at least 2 attributes, it can be partitioned into subsets {I1,..,Im}. 

Considering the FD D:X ⎯→ I, we can apply the project-join transformation to D 
according to this partition. Expressing the lost FD D:I ⎯→ X on the join of the 
fragments, we get the two extension-decomposition transformations (according to 
whether J is not empty or empty): 

 

P R(U);  {I1,..,Im,J} is a partition of U; m > 1 

Q Di(X,Ii);  T(X,J);  Di[X] = T[X];  i∈[1..m] 

(*Di,i∈[1..m]): I1,..,Im ⎯→ X;  

X appears in Di and T only; i∈[1..m] 

 
P R(U);  {I1,..,Im} is a partition of U; m > 1 

Q Di(X,Ii);  Di[X] = Dj[X];  i,j∈[1..m] 

(*Di,i∈[1..m]): I1,..,Im ⎯→ X;   

X appears in Di only; i∈[1..m] 
 
Signatures 

Extension 

direct : (X,D,T) ←⎯  ext(R,I) 
reverse : R ←⎯ ext-1(X,D,T) 
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Extension decomposition 

direct : (X,{D1,D2,..,Dm},T) ←⎯  ext-dec(R,{I1,I2,..,Im}) 

reverse : R ←⎯ ext-dec-1(X,{D1,D2,..,Dm},T) 
 

For transformations where J is empty, parameter T is void. 
 

Discussion 
This family of operators is particularly powerful, since it allows us to generate most 
entity-generating and entity-removing transformations [17]. Based on the den and PJ-1 
transformations, it is symmetrically reversible. The role of the parameter I can be inter-
preted as follows: the subset I of attributes of R seems to represent an outstanding 
concept which would deserve being described by a new surrogate domain X. 

 

Example of the extension transformation 

Source schema program(TEACHER,SUBJECT,DATE) 
 

Transformation (LECTURE,defined-as,program) ←⎯ 
 ext(program,{TEACHER,SUBJECT}) 
 

Target schema domain LECTURE 
 program(LECTURE,DATE) 
 defined-as(LECTURE,TEACHER,SUBJECT) 
 defined-as[LECTURE] = program[LECTURE] 

11.4   Composition Transformations 

Principle 
A relation S is replaced by its composition T with another relation R. 

 

Structural mapping 
 

P R(I K);  S(K L);  S[K] ⊆ R[K];  I,K,L not empty; 

Q R(I K);  T(I L);  T[I] ⊆ R[I];  R*T: K →→ L|I 
 

Variants 
The transformation simplifies when R is bijective: 

 

P R(I K);  S(K L);  S[K] ⊆ R[K];  I,K,L not empty; 

Q R(I K);  T(I L);  T[I] ⊆ R[I]; 
 

The latter form generalizes to N-ary relations: 
 

P R(I K J);  S(K L);  S[K] ⊆ R[K];  I,J,K,L not empty; 

Q R(I K J);  T(I L);  T[I] ⊆ R[I] 
 

Signatures (simple form) 

direct : T ←⎯  comp(R,S,K) 
reverse : S ←⎯ comp-1(R,T,I) 
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Signatures (N-ary form) 

direct : T ←⎯  comp(R,S,K,I) 
reverse : S ←⎯ comp-1(R,T,I,K) 

 

Discussion 
These operators derive from transformations PJ and PJ-1. Therefore they are symmet-
rically reversible. In the bijective variants, the transformation is symmetrical and can 
be seen as substituting in S a key I of R for the key K. 

 

Example 

Source schema manages(MANAGER,DEPART) 
 works-in(EMPLOYEE,DEPART) 
 works-in[DEPART] ⊆ manages[DEPART] 
 

Transformation works-for ←⎯   
 comp(manages,works-in,{DEPART}) 
 

Target schema manages(MANAGER,DEPART) 
 works-for(EMPLOYEE,MANAGER) 
 works-for[MANAGER] ⊆ manages[MANAGER] 

11.5   Nest-Unnest Transformations 

Principle 
A N1NF relation R that comprises a multivalued attribute B is replaced by S, its 
equivalent 1NF version [43] [31]. 

 
Structural mapping 

 

P R(I,B[1-N]); 

Q S(I,B); 

 
Variants 
The cardinality of attribute B prohibits empty sets (otherwise values of I are lost), 
which can be too strong a precondition. Hence the following variant, in which the 
tuples of R with an empty B set can be rebuilt from the elements of the evaluation of  
that do not appear in S: 
 

P R(I,B[0-N]); R[I] = E; where E is any algebraic expression over the database 
schema 

Q S(I,B); S[I] ⊆ E; 

 

If B is a compound but single-valued attribute, this operator degenerates into a dis-
aggregation transformation as follows, where K is a set of attributes: 

 

P R(I,B(K)); 

Q S(I,K); 
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Signatures 

direct : S ←⎯  unnest(R,B) 
reverse : R ←⎯ unnest-1(S,B) 

 
Discussion 
Unnest, together with its inverse nest, are the main algebraic operators specific to 
N1NF relational models. This version of unnest is symmetrically reversible. Indeed, 
R meets the following criterion of reversibility (see [10] for instance): considering the 
relation R(A,B[0-N],C), the application of the unnest relational operator on B is (sym-
metrically) reversible iff: 

• no tuple of R has an empty B value (as if the cardinality property of B actually 
was [1-N]), 

• B is functionally (possibly non minimally) dependent on the set of all the other 
attributes of R.  

 

Examples 

Source schema contacts(EMPLOYEE,PHONE[1-N]) 

Transformation contact ←⎯ unnest(contacts,PHONE) 

Target schema contact(EMPLOYEE,PHONE) 
 

Source schema descr(EMPLOYEE,CHILD[0-N]) 
 descr[EMPLOYEE] = EMPLOYEE 

Transformation children ←⎯ unnest(descr,CHILD) 

Target schema children(EMPLOYEE,CHILD) 
 

Note in this example the instance "descr[EMPLOYEE] = EMPLOYEE" of the pattern 
"R[I] = E".    

12   Analyzing and Generating GER Transformations 

12.1   Analyzing GER Transformations 

The issue is to prove that a known, but possibly ill-defined, practical transformation is 
correct and complete as far as semantics preservation is concerned. In this context, we 
will revisit the three transformations that we have informally used in the introductory 
example of Fig. 1, and that also are the most popular, notably in database logical design.  
Due to space limit, only the main patterns will be discussed. For any variant of the 
source schema, such as those that are suggested below, the reader is invited to examine 
the ERM expression and to infer the actual resulting schema. For example, in the trans-
formation of attribute A2 into an entity type, no hypothesis is made on the participation 
of A2 in an identifier of A. If this is the case, the ERM expression clearly shows how to 
deal with this pattern, based on the dependency theory21. This is left as an exercise. 

                                                           
21  More precisely the rules that govern the propagation of FD in the projection, the join and the 

selection. 
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12.2   Transforming an Attribute into an Entity Type 

In Fig. 1, this transformation was applied to attribute Author of BOOK, leading to 
entity type AUTHOR. Its abstract GER pattern is as follows. 

 
P  Q 

A
A1
A2[0-N]
A3  

 

⇔ 1-N0-N rA
A

A1
A3

EA2
A2
id: A2  

Fig. 25. Transforming an attribute into an entity type 

Variants. The reader is invited to examine the following extensions: A2 is single-
valued; A2 is an identifying attribute for A; A2 is a component of an identifier of A; A 
is a compound attribute; the cardinality property is [0-5] or [1-5]; A2 is a set of attrib-
utes of A. 

 
Signatures 

direct : (EA2,rA) ←⎯  att-to-et(A,A2) 
reverse : A2 ←⎯ att-to-et-1(EA2) 

 
Analysis 

We express the source schema (left) in ERM, then we extract and flatten the multival-
ued attribute:  

 

A: entities; 
desc-A(A,A1,A2[0-N],A3); 
desc-A[A]=A; 

⇔

(desc-A',R) ←⎯ PJ(desc-A,{A},{A2}) 

A: entities; 
desc-A'(A,A1,A3); 
R(A,A2[1-N]); 
desc-A'[A]=A; 

⇔

R' ←⎯ unnest(R,A2) 

A: entities; 
desc-A'(A,A1,A3); 
R'(A,A2); 
desc-A'[A]=A; 
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Now, we define a new entity domain EA2 based on attribute A2 of R': 
 ⇔

(EA2,{desc-EA2},rA) ←⎯ ext(R',{A2}) 

A,EA2: entities; 
desc-A'(A,A1,A3); 
desc-EA2(EA2,A2); 
rA(A,EA2); 
desc-A'[A]=A; 
desc-EA2[EA2]=rA[EA2]=EA2; 

 
Interpreting this schema in the GER gives the expected target schema (right). We 

conclude that att-to-et is an SR-transformation. 

12.3   Transforming a Relationship Type into an Entity Type 

In the illustration of Fig. 1, we transformed relationship type write into entity type 
WRITE. Here is a generalization of this operator for N-ary relationship types, that can 
also have attributes (Fig. 26). 

 
P  Q 

0-N

0-N

0-N
R

R1
R2

CBA

 

 
 

⇔

1-1

0-N

rC

1-1

0-N

rB

1-1

0-N

rA R

R1
R2
id: rA.A

rB.B
rC.C

CBA

 

Fig. 26. Transforming a relationship type into an entity type 

Variants. The roles of R have cardinality constraints other than [0-N]; R is binary; 
one (or more) of the roles of R has cardinality [0-1]; R has one (or more) explicit 
identifier22.  

 
Signatures 

direct : (R,{(A,rA),(B,rB),(C,rC)}) ←⎯  rt-to-et(R) 
reverse : R ←⎯ rt-to-et-1(R) 

                                                           
22  The default (not necessarily minimal) identifier of a relationship type is made up of the set of 

its roles. 
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Analysis 
We express the source schema (left) in ERM, then we represent the set of roles by the 
new entity domain R:  

 

A,B,C: entities; 
R(A,B,C,R1,R2); 
desc-A[A]=A; 

⇔

(R,{rA,rB,rC},desc-R) ←⎯ ext-dec(R,{{A},{B},{C}}) 

A,B,C,R: entities; 
rA(R,A); rB(R,B); rC(R,C); 
desc-R(R,R1,R2); 
rA*rB*rC: A,B,C ⎯→ R; 
rA[R]=rB[R]=rC[R]=desc-R[R]=R; 

 
Interpreting this schema in the GER gives the expected target schema (right). We 
conclude that rt-to-et is an SR-transformation. 

12.4   Transforming a Binary Relationship Type into an Attribute 

In Fig. 1, we transformed all the one-to-many relationship types into attributes, then 
we declared them foreign keys.   

 
P  Q 

0-N1-1 R

A
A1
A2
id: A1

B
B1
B2

 

 
⇔

A
A1
A2
id: A1

B
B1
B2
A1
ref: A1  

Fig. 27. Transforming a relationship type into an attribute (foreign key) 

Variants. R is optional for B ([1-1] replaced by [0-1]); R is many-to-many ([1-1] 
replaced with [0-N]); the identifier of A is made up of more than one attribute; R is 
functional from A to B ([0-N] replaced by [0-1]); R is bijective; R is mandatory for A 
([0-N] replaced by [1-N]); R.A appears in an identifier of B. 

 
Signatures 

direct : {A1} ←⎯  rt-to-att(R.B) 
reverse : R ←⎯ rt-to-att-1(B,{A1},A) 

 
Analysis 
We express the source schema (left) in ERM, then we apply the composition trans-
formation:  
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A,B: entities; 
desc-A(A,A1,A2); desc-B(B,B1,B2); R(A,B); 
R[B]=B; desc-A[A]=A; desc-B[B]=B; 

⇔

R' ←⎯ comp(desc-of-A,R,{A},{A1}) 

A,B: entities; 
desc-A(A,A1,A2); desc-B(B,B1,B2); R'(A1,B); 
desc-B[B]=R'[B]=B; desc-A[A]=A; 
R'[A1] ⊆ desc-A[A1]; 

⇔

desc-B' ←⎯ PJ-1(desc-B,R',B) 

A,B: entities; 
desc-A(A,A1,A2); desc-B'(B,B1,B2,A1); 
desc-A[A]=A; desc-B'[B]=B; 
desc-B'[A1] ⊆ desc-A[A1]; 

 
Interpreting the latter schema in the GER gives the expected target schema (right). 

We conclude that rt-to-att is an SR-transformation. 

12.5   Generating GER Transformations 

This process consists in exploiting the parametric nature of most ERM transforma-
tions to discover new practical GER transformations. This problem is open, but we 
can illustrate it through a more in-depth examination of the extension-decomposition 
transformation.  

Let us consider the transformation depicted in the Fig. 26. Its analysis is based on 
the ERM ext-dec transformation of the ERM relation R(A,B,C,R1,R2) that models the 
relationship type R.  

 
P  Q 

0-N

0-N

0-N
R

R1
R2

CBA

 

 
⇔

1-1

0-N

rA 1-1

0-N

rB

1-N

0-N

R

R1
R2AB

id: rA.A
rB.B

CBA

 

Fig. 28. An unusual transformation deriving from the ext-dec transformation 
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The GER rt-to-et transformation we have developed was obtained by choosing, in 
the ERM ext-dec transformation, the parameter I to be {A,B,C}.  In fact, I is any non 
empty subset of the attributes of relation R. For instance, I can be any of the following 
subsets, that will generate 31 different equivalent target schemas: 

{A}, {A,B}, {A,B,C}, {R1}, {R1,R2}, {A,R1}, {A,R1,R2}, {A,B,R1}, {A,B,R1,R2}, 
{A,B,C,R1}, {A,B,C,R1,R2}, and all the similar patterns obtained by permutation 
within {A,B,C} and {R1,R2}.   

The reader is invited to prove the correctness of the transformation of Fig. 28 follow-
ing the reasoning of Section 12.3. 

13   Conclusions and Perspectives 

Database engineering intrinsically has been model-driven for more than three dec-
ades. Designing, normalizing, merging, optimizing data structures can be performed 
at an abstraction level that is, to a large extent, platform independent.  

The transformational approach enriches this framework considerably, since it 
opens the way to more structured and more reliable engineering processes. This paper 
shows that such an approach brings several essential benefits. 

 Being formal, it can be used to study rigorously basic properties such as semantics 
preservation, that states how the operators preserve the information contents of the 
schemas; 

 To be fruitful, and to avoid combinatorial explosion, a pivot model, with which we 
associate a relational semantics, has proved necessary;   

 From the pedagogical view point, this approach provides a disciplined and reliable 
way to conduct important processes such as logical design, which many students 
too often tend to consider as some kind of magic; 

 Developing CASE tools based on the transformational approach leads to more 
reliable products, notably as far as generation completeness is concerned;  

 A transformational approach based on a pivot model is by construction scalable; 
introducing a new model M involves the development of components independent 
of the existing models.  

Several problems still are to be addressed, of which we mention a sample. 

 How to integrate transformational database engineering into emerging MDE 
framework(s)? 

 How to cope with the other aspects of data structures, in particular how do integ-
rity constraints propagate? 

 How can data structure transformations be propagated to the other components of 
the information system, notably the data (data conversion), the human/computer 
interfaces and the programs? 
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