
R. Lämmel, J. Saraiva, and J. Visser (Eds.): GTTSE 2005, LNCS 4143, pp. 95 – 143, 2006.
© Springer-Verlag Berlin Heidelberg 2006

The Transformational Approach
to Database Engineering

Jean-Luc Hainaut

University of Namur, Institut d'Informatique Rue Grandgagnage,
21 B-5000 Namur, Belgium
jlh@info.fundp.ac.be

http://www.info.fundp.ac.be/libd

Abstract. In the database engineering realm, the merits of transformational ap-
proaches, that can produce in a systematic way correct, compilable and efficient
database structures from abstract models, has long be recognized. Transforma-
tions that are proved to preserve the correctness of the source specifications have
been proposed in virtually all the activities related to data structure engineering:
schema normalization, logical design, schema integration, view derivation,
schema equivalence, data conversion, reverse engineering, schema optimization,
wrapper generation and others. This paper addresses both fundamental and practi-
cal aspects of database transformation techniques. The concept of transformation
is developed, together with its properties of semantics-preservation (or reversibil-
ity). Major database engineering activities are redefined in terms of transformation
techniques, and the impact on CASE technology is discussed. These principles are
applied to database logical design and database reverse engineering. They are
illustrated by the use of DB-MAIN, a programmable CASE environment that
provides a large transformational toolkit.

1 Introduction

Data structure manipulation has long proved to be a fertile domain for transforma-
tional engineering process modelling. Several contributions have made this approach
a fruitful baseline to solve the complex mapping problems that are at the core of many
database engineering processes.

We can mention the normalization theory, which laid the basis for data- and con-
straint-preserving schema transformations [13], but also the now standard 3-schema
data modeling architecture [48] which clearly complied, more than 25 years ago, to
what the SE comzmunity currently calls Model-Driven Engineering (MDE). Gener-
ally built on these principles, most database design methodologies rely on four ex-
pressions of the database structure, namely the conceptual schema, the logical
schema, the physical schema and the DDL1 code (Fig. 17). According to these ap-
proaches, a schema at one level derives from a more abstract schema at the upper

1 Data Description Language. That part of the DBMS language dedicated to the creation of data

structures.

96 J.-L. Hainaut

level through some kind of translation rules that preserve its information contents,
which clearly are schema transformations. For instance, a logical relational schema
can be produced from the conceptual schema by applying to non SQL-compliant
conceptual structures rewriting rules that produce relational constructs such as tables,
columns and keys. If the rules are carefully selected, the relational schema has the
same information contents as its conceptual origin.

An increasing number of bodies (e.g., the OMG) and of authors recognize the
merits of transformational approaches, that can produce in a systematic way correct,
compilable and efficient database structures from abstract models.

Transformations that are proved to preserve the correctness of the source specifica-
tions have been proposed in virtually all the activities related to schema engineering:
schema normalization [39], logical design [4, 19, 41], schema integration [4, 34],
view derivation [35, 33], schema equivalence [11, 28, 29, 32], data conversion [36,
12, 46], reverse engineering [6, 8, 18, 19], database interoperability [34, 45], schema
optimization [19, 25], wrapper generation [45] and others.

Warning
In the database community, a general formalism in which database specifications
can be built is called a model. The specification of a definite database structure
expressed in such a model is called a schema. Example: the conceptuel schema of
the Customer database is expressed in the Entity-relationship model, while its logi-
cal schema, that is made up of table, column and key definitions, complies with the
relational model.

A First Illustration

Before discussing in deeper detail the concept of transformation and its properties, let
us have a look at a first practical application of the concept. The schemas of Fig. 1
show a popular example, namely the production of a relational schema (top right),
from a small conceptual schema (top left) that describes a set of books for which a
collection of copies are available. The graphical conventions will be described later,
but the essence of the schemas can be grasped without further explanation.

The main stream of the process is covered by the two top schemas. The translation
rules that have been applied can be identified easily:

1. each entity type is represented by a table,

2. each single-valued attribute is represented by a column,

3. each all-attribute identifier is represented by a primary or alternate key,

4. each one-to-many relationship type is represented by a foreign key,

5. each multivalued attribute is represented by a table, comprising the source at-
tribute that is declared a primary key, and by an additional table made up of a
foreign key to the table that represents the entity type of the attribute and an-
other foreign key to the new attribute table; both foreign keys form the primary
key of their table.

Of course, other, more or less sophisticated, sets of rules exist, but this one is
adequate for demonstration purpose.

 The Transformational Approach to Database Engineering 97

We can read this derivation process from another, transformational, point of view.
We do not produce another schema, but we progressively modify the source concep-
tual schema, until it complies with the structural patterns allowed by the relational
model.

This interpretation, which will prove much more powerful and flexible than the
translation rules approach, is illustrated in the alternate circuit (top → down → right
→ up) of Fig. 1.

1-1

0-N

of

COPY
CopyNbr
DatePurchased
id: of.BOOK

CopyNbr

BOOK
ISBN
Title
Author[0-5]
DatePublished

id: ISBN

⇒

No more than 5 WRITE rows
per BOOK row.

WRITE
AuthorName
ISBN
id: ISBN

AuthorName
ref: ISBN
ref: AuthorName

COPY

ISBN
CopyNbr
DatePurchased
id: ISBN

CopyNbr
ref: ISBN

BOOK
ISBN
Title
DatePublished

id: ISBN

AUTHOR
AuthorName
id: AuthorName

⇓ ⇑

0-N

1-1

of

1-N0-5 write

COPY
CopyNbr
DatePurchased
id: of.BOOK

CopyNbr

BOOK
ISBN
Title
DatePublished

id: ISBN

AUTHOR
AuthorName

id: AuthorName

⇒

1-1

0-N

of 1-1

1-N

aw

1-1

0-5

bw

WRITE

id: bw.BOOK
aw.AUTHORCOPY

CopyNbr
DatePurchased
id: of.BOOK

CopyNbr

BOOK
ISBN
Title
DatePublished

id: ISBN

AUTHOR
AuthorName
id: AuthorName

Fig. 1. Two ways to describe the derivation of a relational schema from a conceptual schema

The first modified schema (bottom left) derives from the source conceptual schema
(top left) as follows: the multivalued attribute Author has been replaced with the
entity type AUTHOR comprising the identifying attribute AuthorName, and the many-
to-many relationship type write.

98 J.-L. Hainaut

Then (bottom right), the new many-to-many relationship type write is replaced
with entity type WRITE together with two one-to-many relationship types bw and aw.
The schema does not include multivalued attributes or complex relationship types
anymore.

Finally, each one-to-many relationship type is replaced with a foreign key. Hence
the final version, at the top right side.

The Structure of This Paper

This short illustration raises several questions and problems, to some of which this
paper will try to answer, at least partially. The paper is organized in two parts, that
allow two levels of reading.

The first part, that includes Sections 2 to 8, develops practical aspects of the
transformational paradigm. Section 2 positions the role of transformation in the data-
base realm. In Section 3, we show that dealing with multiple databases leads us to
introduce a generic pivot model, the GER, that is intended to represent a large variety
of operational models. Its graphical representation is sketched and a formal semantics
is suggested. In this section, we also show how specific operational models can be
defined in the GER. The concept of schema transformation is precisely defined in
Section 4, in which the property of semantics-preservation is defined and analyzed. In
Section 5, we describe some useful elementary and complex GER transformations,
that are then used in Section 6 to revisit the Database Design process, showing that it
is intrinsically a (complex) schema transformation. Similarly, Section 7 studies the
Reverse Engineering process as an application of the transformational paradigm.
Section 8 discusses the role of transformations in CASE tools, and illustrates this
point with the toolkit and the assistants of DB-MAIN.

The second part, comprising Sections 9 to 12, develops formal aspects of trans-
formations that were only sketched and suggested in Part 1. Section 9 describes the
ERM, an extended N1NF2 relational model the semantics of which is borrowed from
the relational theory. Section 10 maps the GER onto the ERM so that the former can
be given a precise formal semantics. Section 11 described a small set of ERM trans-
formations that can be proved to be semantics-preserving. Finally, Section 12 exploits
the GER-ERM mapping to prove the semantics-preservation property of selected
practical GER transformations.

Section 13 concludes the paper.

Part 1 Transformations for Database Engineering

2 Transformational Engineering

Producing efficient software by applying systematic transformations to abstract speci-
fications has been one of the most mythical goals of software engineering since the

2 Non 1st Normal Form. Qualifies a relational structure that uses non simple domains. Elements

of a non simple domain can be tuples and/or sets. In particular, a relation or the powerset of a
relation can be a valid domain. A N1NF relational model is a relational model in which non
simple domains are allowed.

 The Transformational Approach to Database Engineering 99

late seventies. For instance, [3] and [14] consider that the process of developing a
program [can be] formalized as a set of correctness-preserving transformations [...]
aimed to compilable and efficient program production. In this context, according to
[37], a transformation is a relation between two program schemes P and P' (a pro-
gram scheme is the [parameterized] representation of a class of related programs; a
program of this class is obtained by instantiating the scheme parameters). It is said to
be correct if a certain semantic relation holds between P and P'. The revival of this
dream has now got the name of Model-Driven Architecture [38], or, more generally,
Model-Driven Engineering (MDA/MDE).

It is not surprising that this view has been adopted and developed by the database
community since the seventies. Indeed, the data domain has relied on strong
theories that can cope with most of the essential aspects of database engineering,
from clean data structuring (including normalization) to operational data structures
generation.

In particular, producing a target schema from a source schema can be modeled
either by a set of translation rules, or by a chain of restructuring operators or
transformations. The latter has proved particularly attractive, notably in complex,
incremental, processes.

The question of how many operators are needed to cover the current needs in data-
base engineering is still open, though it has been posed for long: in the 80's, authors
suggested that four [15] [29] to six [11] were enough, but experience has shown that
there is no clear answer, except that surely more transformations are needed, as we
will show in the following.

One of the peculiarities of transformational approaches in the database realm is that
they must, in all generality, cope with three aspects of the application system, namely
the data structures, the data, and the programs. Let us consider a scenario in which a
database must be migrated from a technology to another one. Clearly, this database
must be transformed, whatever the meaning of this term, into another database. This
means that three components of the application must be modified.

1. The database schema, that must comply with the data model of the target tech-
nology, and, possibly, include additional requirements that have emerged since
the last schema modification.

2. The data themselves, that must be restructured according to the new schema,
possibly through some kind of ETL process.

3. The application programs, that must interface with the new schema and comply
with the new API. This generally involves rewriting some sections of the source
code.

Each of these modifications follows its own rules, but we should not be surprised
by the idea that the first one should strongly influence the others. This view currently
is emerging under the name co-transformation [30]. Indeed, it has been proved that it
is possible to automatically derive data transformations (ETL) directives, as a SQL
script for instance, from schema transformations [27]. Program transformation is
much more complex. Automating this conversion has been studied in [26] and [9],
and has been proved to be feasible.

100 J.-L. Hainaut

One of the arguments of this paper is that one can study all transformations, includ-
ing inter-model transformations, in the framework of a single model3. This raises the
question of the nature of this generic model. Two approaches have been proposed,
that distinguish themselves by the granularity of the model [24].

One approach, that can be called minimalistic, or bottom-up, relies on a very sim-
ple and abstract formalism, from which one can define more elaborated and richer
models. Such a model generally represents the schema constructs specific to a definite
model by abstract nodes and edges, together with assembly constraints. AutoMED
[7] is a typical representative of this approach.

Another approach, symmetrically called maximalistic or top-down, is based on a
large spectrum model, that includes, though in an abstract form, the main constructs
of the set of operational models that are used in the engineering processes. The GER
model follows this principle. It has been described in [21] and [24], and will be the
basis of this paper.

3 Modeling Data Structures

3.1 Dealing with Multiple Models

Some database engineering processes transform schemas from one model to itself,
involvin one model only. Such is the case of relational normalisation, and of XML
manipulation. These processes make use of intra-model transformations. Being dedi-
cated to this model, their form generally is quite specific (e.g., respectively relational
algebra and XSLT) and cannot be reused for other models.

Other processes, on the contrary, produce a result that is expressed into a model
that is different from that the source schema. The most obvious example is the so-
called database logical design, the goal of which is to transform an abstract
conceptual schema into an operational (say, relational) logical schema as will be
discussed in Section 6.2. In such cases one makes use of inter-model
transformations. Many comprehensive processes, such as database design, reverse
engineering and integration involve several abstraction levels and several
technologies (and therefore models).

To master this complexity, several approaches rely on some kind of pivot model.
The idea is quite simple, and has been adopted as an elegant way to solve the combi-
natorial explosion in situations in which mappings must be developed from any of M
formalisms to any of N formalisms. Theoretically, one would need N x M distinct
mappings. Thanks to the introduction of a intermediate or pivot formalism P, one
needs to define M + N formalisms only. Language translation and plateform-
independent components are two of the most common examples.

In the database engineering realm, dealing with a dozen models is not uncommon
in large organizations. Developing, migrating, integrating, reverse engineering
databases or publishing corporate data on the web all are processes that require inter-
model schema transformation and, accordingly, data conversion. Considering
N operational models, and admitting that the mappings among any pair of models
are potentially useful in some processes, we need to define N2 mappings, while

3 As illustrated in Fig. 1.

 The Transformational Approach to Database Engineering 101

the introduction of a pivot model allows us to reduce the number of mappings to
2 x N + 1. Fig. 2 identifies the mappings that will, sooner or later, be useful in an
organization in which the data are stored in CODASYL and relational databases, that
describes its information needs through Entity-relationship schemas, and that
produces XML documents. Sixteen inter-model mappings are necessary, while the
pivot model reduces the number of mapping to nine only. Moreover, all the mappings
but one serve the mere function of formalism conversion (Σm>m', with m ≠ m'), and
therefore are fairly simple, while the power needed to express complex data structure
transformation is the responsibility of one mapping only, namely Σp>p. Introducing
any new operational model M implies the development of two additional mappings
Σm>p and Σp>m.

An interesting consequence of approaches based on a pivot model is that inter-
model transformations reduce to intra-model ones.

Pivot Model

Σp>p

Relat. Model

CODASYL Model XML Model

Σrel>p

Σp>rel

Σp>cod

Σcod>p

Σer>p

Σp>er

Σp>xml

Σxml>p

ER Model

Fig. 2. Introducing a pivot model among N models reduces the number of inter/intra-model
mappings

The example of relational logical design, that is, producing a relational schema
from a conceptual schema, is illustrated in Fig. 3, which is just a subset of Fig. 2. It
reads as follows:

1. the source conceptual schema is transformed into the pivot model (Σer>p),

2. the resulting schema is transformed through a set of rules (Σp>p) such as those
that are largely described in the literature (see [4] for example4);

3. finally, the transformed schema obtained is expressed into the target relational
model (Σp>rel).

The next section describes in an informal way the main constructs of a pivot model
on which we will base our discussion, namely the GER model.

Remark. The interpretation of Fig. 2, 3 and some of those that follow, needs to be
precised a bit further. All schemas that can be expressed in model M are represented
by the M-labelled ellipse. The mapping Σm>m' states that any schema expressed in the
source model M is transformed through Σm>m' into a schema that complies with the
target model M'.

4 Not the most recent reference actually, but still one of the best.

102 J.-L. Hainaut

Pivot Model

Σp>p

Relat. ModelΣp>relΣer>pER Model

Fig. 3. Modeling relational logical design with a pivot model

Remark. The interpretation of Fig. 2, 3 and some of those that follow, needs to be
precised a bit further. All schemas that can be expressed in model M are represented
by the M-labelled ellipse. The mapping Σm>m' states that any schema expressed in the
source model M is transformed through Σm>m' into a schema that complies with the
target model M'.

3.2 The Generic Entity-Relationship Model (GER)

The GER model, GER for short, is an extended Entity-relationship model that inclu-
des, among others, the concepts of schema, entity type, domain, attribute, relationship
type, keys, as well as various constraints. In this model, a schema is a description of
data structures. It is made up of specification constructs which can be, for conve-
nience, classified into the usual three abstraction levels, namely conceptual, logical
and physical. We will enumerate some of the main constructs that can appear at each
level (Fig. 4).

• A conceptual schema comprises entity types (with/without attributes;
with/without identifiers), super/subtype hierarchies (single/multiple; total and
disjoint properties), relationship types (binary/N-ary; cyclic/acyclic; with/without
attributes; with/without identifiers), roles of relationship type (with min-max
cardinalities5; with/without explicit name; single/multi-entity-type), attributes (of
entity or relationship types; multi/single-valued; atomic/compound; with
cardinality6), identifiers (of entity type, relationship type, multivalued attribute;
comprising attributes and/or roles), constraints (inclusion, exclusion, coexistence,
at-least-one, etc.)

• A logical schema comprises record types, fields, arrays, single-/multi-valued
foreign keys, redundant constructs, etc.

• A physical schema comprises files, record types, fields, access keys (a generic
term for index, calc key, etc), physical data types, bag/list/array multivalued
attributes, and other implementation details.

3.3 Formal Semantics of the GER

In this paper, we develop transformational operators and discuss their properties.
Many approaches rely on some intuitive rewriting rules expressed graphically.
Though this is quite appropriate to allow readers to grasp the idea of the operators, a

5 The role cardinality constraint, denoted by i-j, specifies the range of the number of relation-

ships in which an entity can appear in a definite role. Value N of j denotes infinity.
6 Same as role cardinality applied to the number of attribute values per parent instance.

 The Transformational Approach to Database Engineering 103

1-1

0-N

of

T

PERSON
Name
Address

EMPLOYEE

Employe Nbr
Date Hired

id: Employe Nbr

ACCOUNT
Account NBR
Amount
id: of.CUSTOMER

Account NBR

CUSTOMER
Customer ID

id: Customer ID

ORDER
ORD-ID
DATE_RECEIVED
ORIGIN
DETAIL[1-5] array

REFERENCE
QTY-ORD

id: ORD-ID
ref: ORIGIN
ref: DETAIL[*].REFERENCE

PRODUCT
PRO_CODE
CATEGORY
DESCRIPTION
UNIT_PRICE
id: PRO_CODE

acc
acc: CATEGORY

PRODUCT.DAT

PRODUCT

Fig. 4. A typical hybrid schema made up of conceptual constructs (e.g., entity types PERSON,
CUSTOMER, EMPLOYEE and ACCOUNT, relationship type of, identifiers Customer ID of
CUSTOMER), logical constructs (e.g., record type ORDER, with various kinds of fields inclu-
ding an array, foreign keys ORIGIN and DETAIL.REFERENCE) and physical objects (e.g.,
table PRODUCT with primary key PRO_CODE and indexes PRO_CODE and CATEGORY,
table space PRODUCT.DAT). Note that the identifier of ACCOUNT, stating that the accounts
of a customer have distinct account numbers (Account NBR), makes it a dependent or weak
entity type.

more formal treatment is necessary. In particular, we must base the definition and
the evaluation of the properties of each operator on a rigorous basis, that is, a
formal semantics of the GER. This is important for at least two reasons. First,
formal semantics allows us to reason about transformations, and in particular to
state its main properties such as the preservation of the information capacity of the
source schemas. Secondly, implementing a set of transformations, for instance in a
CASE tool, must rely on a completely defined semantics of both the model and the
operators.

In Part 2, Sections 9 and 10, we will give the GER a precise semantics by stating
mapping rules between the constructs of the GER and constructs of a variant of the
N1NF relational formalism, called Extended Relational Model (ERM). Each GER
construct will be given an ERM interpretation, and, conversely, each construct of the
ERM will be given a GER interpretation. Basically, these mappings are the inter-
model transformations Σger>erm and Σerm>ger depicted in Fig. 5. The ERM is
described in Section 9 while mapping Σger>erm and its inverse are presented in
Section 10. The reader will find a complete formalization of the GER in [16].

[44] follows another approach. The author associates with HERM, a variant of the
ER model, a specific notation with a precise ad hoc semantics, that includes an
algebra and a calculus.

104 J.-L. Hainaut

Extended Rel.
Model

Σerm>ger

Σger>erm

GER Model

Fig. 5. Expressing the semantics of the GER model by a bidirectional mapping with the
Extended Relational Model (ERM)

Note. The interpretation of the inverse mapping Σerm>ger is a bit more complex than
suggested. Indeed, Σger>erm is not surjective, so that some ERM schemas have no
GER counterpart. To be quite precise, we should define the subset ERM* of ERM
that makes Σger>erm surjective. However, we will ignore this for simplicity sake.
This is no problem since ERM* is closed under the set of ERM transformations
Σerm>erm that we will use7. Proving this is fairly easy but would lead us beyond the
scope of this paper. In the rest of this paper, we will admit that the composition
Σerm>ger ° Σger>erm is the identity mapping without loss of generality.

3.4 Specifying Operational Models in the GER

Popular operational formalisms, that is, those which are in practical use among deve-
lopers, can be expressed as specializations of the GER. In general, deriving model M
from model M0 (here the GER) consists in,

1. selecting the constructs of M0 that are pertinent in M;
2. specifying the structural constraints on this subset so that only schemas valid in

M can be built;
3. renaming these constructs in order to make them compliant with the taxonomy

of M; this step will be ignored in this paper.

This process materializes the mapping ΣM>M0. We will briefly discuss this map-
ping for two models, namely Entity-relationship model and the SQL2 relational
model (Fig. 6). Similar mapping can be (and have been) developed for CODASYL
and IMS models, for standard files structures, and for XML DTDs and Schemas.

GER Model Relat. ModelΣrel>gerΣer>gerER Model

Fig. 6. Two mappings described in Sections 3.5 and 3.6

3.5 GER Expression of the Entity-Relationship Model

Let us first observe that there is no such thing as a standard ER model. At least a
dozen formalisms have been proposed, some of them being widely used in popular

7 Σerm>erm is the set of ERM-to-ERM transformations. Applying operators from the subset of

Σerm>erm that underlies Σger>ger (as discussed in Section 12) to any ERM* schema pro-
duces an ERM* schema.

 The Transformational Approach to Database Engineering 105

text books and in CASE tools. However, despite divergent details, they all share
essential constructs such as entity type, relationship types with roles, some kind of
role cardinality/multiplicity, attributes and unique keys. Due to the nature of the GER,
restricting it to a definite Entity-relationship model is fairly straighforward, so that we
do not propose to develop the Σer>ger mapping.

The increasing popularity of the UML class model8 (aka class diagrams) incites
some authors and practitioners to use them to specify database conceptual and logical
schemas. This was not the primary objective of the UML formalism, so that it exhibits
severe flaws and weaknesses in database modelling. However, mapping Σuml>ger can
be developed in the same way as for other models.

3.6 GER Expression of the Standard Relational Model (SQL2)

A relational schema mainly includes tables, domains, columns, primary keys, unique
constraints, not null constraints and foreign keys. The relational model can therefore
be defined as in Fig. 7.

relational constructs GER constructs assembly rules

database schema schema

table entity type an entity type includes at least one
attribute

domain simple domain

nullable column single-valued and atomic
attribute with cardinality [0-1]

not null column single-valued and atomic
attribute with cardinality [1-1]

primary key primary identifier a primary identifier comprises
attributes with cardinality [1-1]

unique constraint secondary identifier

foreign key reference group the composition of the reference
group must be the same as that of
the target identifier

SQL names GER names the GER names must follow the
SQL syntax

Fig. 7. Defining the standard relational (SQL2) model as a subset of the GER model (mapping
Σrel>ger)

A GER schema made up of constructs from the second column only, and that satis-
fies the assembly rules stated in the third column, can be called a relational GER
schema. As a consequence, a relational schema cannot comprise is-a relations, rela-
tionship types, multivalued attributes nor compound attributes.

8 The term UML model has a specific interpretation in UML, where it denotes what we call a

schema in this paper.

106 J.-L. Hainaut

4 Schema Transformation

Let us denote by M the unique model in which the source and target schemas are ex-
pressed, by S the schema on which the transformation is to be applied and by S' the
schema resulting from this application. Let us also consider sch(M), a function that
returns the set of all the valid schemas that can be expressed in model M, and inst(S), a
function that returns the set of all the instances that comply with schema S.

4.1 Specification of a Transformation

A transformation Σ consists of two mappings T and t (Fig. 8):

1. T is the structural mapping from sch(M) onto itself, that replaces source construct
C in schema S with construct C'. C' is the target of C through T, and is noted C' =
T(C). In fact, C and C' are classes of constructs that can be defined by structural
predicates. T is therefore defined by the weakest precondition P that any cons-
truct C must satisfy in order to be transformed by T, and the strongest postcondi-
tion Q that T(C) satisfies. T specifies the rewriting rule of Σ.

2. t is the instance mapping from inst(S) onto inst(S'), that states how to produce the
T(C) instance that corresponds to any instance of C. If c is an instance of C, then
c' = t(c) is the corresponding instance of T(C). t can be specified through any al-
gebraic, logical or procedural expression.

According to the context, Σ will be noted either <T,t> or <P,Q,t>.
The nature of the most suited formalism in which P, Q and t could be expressed9

will not be discussed here. In the following, we will use abstract schema fragments
following the graphical convention of the underlying model.

C' = T(C)

c' = t(c)c

C T

t

inst_ofinst_of

Fig. 8. The two mappings of schema transformation S ≡ <T,t>. The inst_of arrow from x to X
indicates that x is an instance of X.

4.2 Generic, Parametric and Instantiated Transformations

Let us consider relation R, the attributes of which are partitioned into non empty
subsets I, J and K. Considering Σ, a (lossy) variant of relational decomposition trans-
formation, predicates P and Q as well as instance transformation t can be written as
follows:

9 Description logic [2] could be a good candidate for P and Q.

 The Transformational Approach to Database Engineering 107

P R(U); {I,J,K} partition of U;
T Q R1(IJ);

 R2(IK);

t let r be the current instance of R; let r1, r2 be instances of R1, R2;
 r1 = r[IJ]; r2 = r[IK];

Σ is generic, since it gives an abstract pattern that must be applied to an actual
relation before being carried out. Let us apply Σ to relation CUST(C#, CNAME,
CADD, CACC) of a supposedly current schema. We observe that there are several
ways to instantiate Σ according to the values we assign to variables I, J and K, leading
to as many instantiated transformations. For this reason, we call Σ a parametric
transformation. For instance, with assignments I := {CNAME} and J := {C#, CADD},
we get the following fully instantiated transformation.

P CUST(C#, CNAME, CADD, CACC); I = {CNAME}; J = {C#, CADD} ;
T Q C1(CNAME, C#, CADD);

 C2(CNAME, CACC);

t let c be the current instance of CUST; let c1, c2 be instances of C1, C2;
 c1 = c[CNAME, C#, CADD]; c2 = c[CNAME, CACC];

A generic transformation can be partially instantiated if some, but not all, variables
of P have been instantiated.

Each transformation Σ is associated with an inverse transformation Σ' which can
undo the result of the former under certain conditions that will be detailed in the next
section.

4.3 Semantics Preservation Properties of Transformations

One of the most important properties of a transformation is the extent to which the
target schema can replace the source schema without loosing information. This prop-
erty is called semantics preservation or reversibility.

Some transformations appear to augment the semantics of the source schema (e.g.,
adding an attribute), some remove semantics (e.g., removing an entity type), while
others leave the semantics unchanged (e.g., replacing a relationship type with an
equivalent entity type). The latter are called reversible or semantics-preserving. If a
transformation is reversible, then the source and the target schemas have the same
descriptive power, and describe the same universe of discourse, although with a dif-
ferent presentation.

Similarly, in the pure software engineering domain, [3] introduces the concept of
correctness-preserving transformation aimed at compilable and efficient program
production.

108 J.-L. Hainaut

We must consider two different classes of transformations, namely reversible and
symmetrically reversible.

1. A transformation Σ1 = <T1,t1> = <P1,Q1,t1> is reversible, iff there exists a trans-
formation Σ2 = <T2,t2> = <P2,Q2,t2> such that, for any construct C, and any ins-
tance c of C: P1(C) ⇒ ([T2(T1(C))=C] and [t2(t1(c))=c]). Σ2 is the inverse of Σ1,
but the converse is not true. For instance, an arbitrary instance c' of T(C) may not
satisfy the property c'=t1(t2(c')).

2. If Σ2 is reversible as well, then Σ1 and Σ2 are called symmetrically reversible.
In this case, Σ2 = <Q1,P1,t2>. Σ1 and Σ2 are called SR-transformations for
short.

Example

The so-called decomposition theorem of the 1NF relational theory [13] is an example
of reversible transformation that can be described as follows10.

P1 R(U); {I,J,K} partition of U; I →→ J|K;
T1

Q1 R1(IJ); R2(IK);

t1 let r be the current instance of R; let r1, r2 be instances of R1, R2;
 r1 = r[IJ]; r2 = r[IK];

However, there is no reason for any arbitrary couple of instances r1 of R1 and r2 of
R2 to enjoy the inverse property r = (r1*r2)[IJ]. We must refine this transformation in
order to make it symmetrically reversible. This transformation and its inverse are
summarized here below.

P1 R(U); {I,J,K} partition of U; I →→ J|K;
T1

Q1 R1(IJ); R2(IK); R1[I] = R2[I];

t1 let r be the current instance of R; let r1, r2 be instances of R1, R2;
 r1 = r[IJ]; r2 = r[IK];

t2 let r1, r2 be current instances of R1, R2; let r be an instance of R;
 r = r1*r2[IJK];

4.4 Generating and Studying GER Transformations

The complexity of high-level models, and that of the GER in particular, makes the
study of their transformations particularly complex. To begin with, experience shows
that several dozens of operators can be useful, if not necessary, to describe the most
important engineering processes. Then, identifying and proving the reversibility de-
gree of each of them can be a huge and complex task, notably since there is no agreed
upon algebra or calculus to express Entity-relationship queries.

10 Denotes a multivalued dependency, [] the projection operator and * the join operator.

 The Transformational Approach to Database Engineering 109

The key lies in the ERM formalism that expresses the semantics of the GER. In-
deed, the relational model, of which the ERM inherits, includes a strong and simple
body of properties and inference rules that can be used to built a relational transfor-
mational theory. We can reasonably expect the set of transformations defined for the
ERM to be far smaller and simpler than that of the GER.

If this idea proves to be correct, then we will be provided with a nice way to gener-
ate, explain, and reason on, GER transformations. Fig. 9 illustrates this approach.

Extended Rel.
Model

Σerm>erm

Σerm>ger

Σger>erm

GER Model

Σger>ger

Fig. 9. Generating and specifying GER transformations through their expression in the
Extended Relational Model

According to this view, each GER transformation can be modelled as the com-
pound mapping:

Σger>ger = Σerm>ger ° Σerm>erm ° Σger>erm

Since Σerm>ger and Σger>erm are symmetrically reversible, a transformation in
Σger>ger is semantics-preserving iff there exists a (possibly compound) transforma-
tion in Σerm>erm that is symmetrically reversible. Section 11 describes the main
transformations of Σerm>erm. Then, Section 12 interprets three popular GER trans-
formations as compound ERM transformations.

5 Typology of Practical Transformations

This section describes several families of GER transformations with which complex
engineering processes will be built.

5.1 Mutation Transformations

A mutation is an SR-transformation that changes the nature of an object. Considering
the three main natures of object, namely entity type, relationship type and attribute,
six families of mutation transformations can be defined. Fig. 10 shows the structural
mapping (T) of some representative operators (couples of operators Σ1 to Σ3) applied
to typical schema fragments. The transformations Σ4 are not primitive since they can
be defined by combining other mutations. However, they have been added due to their
usefulness.

110 J.-L. Hainaut

P = source schema Q = target schema

Σ1
i-j0-N r

BA

T1
⇒
⇐
T1'

1-1

 i-j

rB

1-1

0-N

rA

R

id: rA.A
rB.B

BA

Σ2

0-N i-jr

B
A

A1
id: A1

T2
⇒
⇐
T2'

B
A1[i-j]
ref: A1[*]

A
A1
id: A1

Σ3

A
A1
A2[i-j]
A3

T3
⇒
⇐
T3'

1-Ni-j ra2

EA2
A2
id: A2

A
A1
A3

Σ4

A
A1
A2[i-j]
A3

T4
⇒
⇐
T4'

i-j 1-1ra2

EA2
A2
id: ra2.A

A2

A
A1
A3

Fig. 10. Six representative mutation transformations Σ1 to Σ3. Transformations Σ1 generalized
to N-ary rel-types as will be shown in Fig. 26. Though not primitive, compound transforma-
tions Σ4 are shown as well. Cardinality constraints [i-j] are arbitrary values.

5.2 Other Elementary Transformations

The mutation transformations can solve many database engineering problems, but
other operators are needed to model special situations.

Expressing supertype/subtype hierarchies in DMS that do not support them
explicitly is a recurrent problem. The technique of Fig. 11 is one of the most
commonly used [4] [23]. It consists in representing each source entity type by an
independent entity type, then to link each subtype to its supertype through a one-to-
one relationship type. The latter can, if needed, be further transformed into foreign
keys by application of Σ2-direct.

 The Transformational Approach to Database Engineering 111

 P = source schema Q = target schema

Σ5 D
C

C1
C2

B
B1
B2

A
A1
A2

T5
⇒
⇐
T5'

1-1

0-1r

1-1

0-1 s

A
A1
A2
excl: s.C

r.B

C
C1
C2

B
B1
B2

Fig. 11. Transforming an is-a hierarchy into one-to-one relationship types and conversely. The
exclusion constraint (excl:s.C,r.B) states that an A entity cannot be simultaneously linked to a B
entity and a C entity. It derives from the disjoint property (D) of the subtypes.

Transformations Σ3 and Σ4 showed how to process standard multivalued attributes.
When the collection of values is no longer a set but a bag, a list or an array, operators
to transform them into standard multi-valued attributes are most useful. Transforma-
tions Σ6 in Fig. 12 are dedicated to arrays. Similar operators have been defined for the
other types of containers.

 P = source schema Q = target schema

Σ6

A
A1
A2[0-5] array
A3

T6
⇒
⇐
T6'

A
A1
A2[5-5]

Index
Value[0-1]

A3
id(A2):

Index

Fig. 12. Converting an array A2 into a set-multivalued attribute and conversely. The values are
distinct wrt component Index (id(A2):Index). The latter indicates the position of the cell that
contains the value (Value). The domain of Index is the range [1..5].

Attributes defined on the same domain and the name of which suggests a spatial or
temporal dimension (e.g., departments, countries, years or pure numbers) are called
homogeneous serial attributes. In many situations, they can be interpreted as the rep-
resentation of an indexed multivalued attributes (Fig. 13). The identification of these
attributes must be confirmed by the analyst.

112 J.-L. Hainaut

 P = source schema Q = target schema

Σ7

 A
A1
A2X
A2Y
A2Z
A3

T7
⇒
⇐
T7'

dom(A2.Dimension) = {'X','Y','Z'}

A
A1
A2[3-3]

Dimension
Value

A3
id(A2):

Dimension

Fig. 13. Transforming homogeneous serial attributes {A2X, A2Y, A2Z} into a multivalued
compound attribute A2 and conversely. The values (Value) are indexed with the distinctive
suffix of the source attribute names, interpreted as a dimension (sub-attribute Dimension).

5.3 Compound Transformations

A compound transformation is made up of a chain of more elementary operators in
which each transformation applies on the result of the previous one. The
transformation Σ8 in Fig. 14, illustrated by a concrete example, transforms a complex
relationship type R into a sort of bridge entity type comprising as many foreign keys
as there are roles in R. It is defined by the composition of Σ1-direct (generalized to
N-ary rel-types) and Σ2-direct. This operator is of frequent use in relational database
design.

 source schema target schema

Σ8

0-N

0-N

0-N

export

Volume

PRODUCT

Prod_ID

id: Prod_ID

COUNTRY
Ctry_Name

id: Ctry_Name

COMPANY
Cy_Name

id: Cy_Name

T8
⇒
⇐
T8'

PRODUCT
Prod_ID

id: Prod_ID

EXPORT
Prod_ID
Ctry_Name
Cy_Name
Volume

id: Ctry_Name
Prod_ID
Cy_Name

ref: Cy_Name
ref: Prod_ID
ref: Ctry_Name COUNTRY

Ctry_Name

id: Ctry_Name

COMPANY
Cy_Name

id: Cy_Name

Fig. 14. Transformation of a complex relationship type into relational structures

The transformation Σ9 is more complex (Fig. 15). It is composed of a chain of four
elementary operators. The first one transforms the serial attributes Expense-2000,
..., Expense-2004 into multivalued attribute Expense comprising subattributes
Year (the dimension) and Amount (transformation Σ7-direct). The second one

 The Transformational Approach to Database Engineering 113

extracts this attribute into entity type EXPENSE, with attributes Year and Amount
(transformation Σ4-direct). Then, the same operator is applied to attribute Year,
yielding entity type YEAR, with attribute Year. Finally, entity type EXPENSE is
transformed into relationship type expense (Σ1-inverse).

 source schema target schema

Σ9

Project
Dep#
InitialBudget
Expense-2000
Expense-2001
Expense-2002
Expense-2003
Expense-2004

T9
⇒
⇐
T9'

dom(Year) = [2000..2004]

1-N

5-5

expense

Amount

YEAR
Year
id: Year

Project
Dep#
InitialBudget

Fig. 15. Extracting a temporal dimension from homogeneous serial attributes

5.4 Predicate-Driven Transformations

A predicate-driven transformation Σp applies an operator Σ to all the schema objects
that meet a definite predicate p.

predicate-driven transformation interpretation

RT_into_ET(ROLE_per_RT(3 N))

transform each rel-type R into an entity type
(RT_into_ET), if the number of roles of R
(ROLE_per_RT) is in the range [3 N]; in short,
convert all N-ary rel-types into entity types.

RT_into_REF(ROLE_per_RT(2 2) and
 ONE_ROLE_per_RT(1 2))

transform each rel-type R into reference attributes
(RT_into_REF), if the number of roles of R is 2 and
if R has from 1 to 2 "one" role(s), i.e., R has at least
one role with max cardinality 1; in short, convert all
one-to-many rel- types into foreign keys.

INSTANTIATE(MAX_CARD_of_ATT(2 4))

transform each attribute A into a sequence of single-
value instances, if the max cardinality of A is
between 2 and 4; in short, convert multivalued
attributes with no more than 4 values into serial
attributes.

Fig. 16. Three examples of predicate-driven transformations. Rel-type is a short-hand for
Relationship type.

114 J.-L. Hainaut

It will be specified by Σ(p). p is a structural predicate that states the properties
through which a class of patterns can be identified. In general, the inverse of Σp can-
not be derived from the expression of Σ and p. Indeed, there is no means to derive the
predicate p' that identifies the constructs resulting from the application of Σp, and only
them.

We give in Fig. 16 some useful transformations that are expressed in the specific
language of the DB-MAIN tool (Section 8), which follows the Σ(p) notation. Most
predicates are parametric. For instance, the predicate ROLE_per_RT(n m), where n
and m are integers such that n ≤ m, states that the number of roles of the relationship
type falls in the range [n..m]. The symbol "N" stands for infinity.

5.5 Model-Driven Transformations

A model-driven transformation is a goal-oriented compound transformation made up
of predicate-driven operators. It is designed to transform any schema expressed in
model M into an equivalent schema in model M'.

As illustrated in the discussion of the relational model expressed as a specialization
of the GER (Fig. 7), identifying the components of a model also leads to identifying
the constructs of the GER that do not belong to it. Except when M is a subset of M',
an arbitrary schema S ∈ sch(M) may include constructs that violate M'. Each class of
constructs that can appear in a schema can be specified by a structural predicate. Let
PM denote the set of predicates that defines model M and PM' that of model M'. In the
same way, each potentially invalid construct can also be specified by a structural
predicate. Let PM/M' denote the set of predicates that identify the constructs of M that
are not valid in M'. In the DB-MAIN language used in Fig. 16, ROLE_per_RT(3 N) is
a predicate that identifies N-ary relationship types that are known to be invalid in
DBTG CODASYL schemas, while MAX_CARD_of_ATT(2 N) defines the family of
multivalued attributes, that is invalid in the SQL2 database model. Finally, we ob-
serve that a set such as PM can be rewritten as a single predicate formed by anding its
components.

Let us now consider predicate p ∈ PM/M', and let us choose a transformation Σ =
<P,Q,t> such that,

(p ⇒ P) ∧ (PM' ⇒ Q)

Clearly, the predicate-driven transformation Σ(p) solves the problem of the invalid
constructs defined by p. Proceeding in the same way for each component of PM/M'
provides us with a series of operators that can transform any schema in model M into
schemas in model M'. We call such a series a transformation plan, which is the
practical form of any model-driven transformation. In real situations, a plan can be
more complex than a mere sequence of operations, and may comprise loops to
process recursive constructs for instance. Transformation plans implement what some
authors call strategies, that is, deterministic or heuristic reasoning on how to apply
transformations to reach a definite goal. [1] propose strategies to convert VDM data
types in relational structures while [40] applies semi-procedural strategies to high-
level engineering processes.

 The Transformational Approach to Database Engineering 115

In addition, transformations such as those specified above may themselves be
compound, so that the set of required transformations can be quite large. In such
cases, it can be better to choose a transformation that produces constructs that are
not fully compliant with M', but that can be followed by other operators which
complete the job. For instance, transforming a multivalued attribute into relational
structures can be obtained by an ad hoc elementary transformation. However, it can
be thought more convenient to first transform the attribute into an entity type + a
one-to-many relationship type (Σ4-direct), which can then be transformed into a
foreign key (Σ2-direct). This approach produces transformation plans which are
more detailed and therefore less readable, but that rely on a smaller and more stable
set of elementary operators.

The transformation toolset of DB-MAIN includes about thirty operators that have
proved sufficient to process schemas in a dozen operational models. If the
transformations used to build the plan have the SR-property, then the model-driven
transformation that the plan implements is symmetrically reversible. When applied
to any source schema, it produces a target schema semantically equivalent to the
former.

6 Modeling Standard Database Engineering Processes as
Transformations

Complete database engineering processes, such as database development, database
reverse engineering, data warehouse design or database migration comprise several
steps, most of which can be viewed as chains of transformations, or, more
specifically, transformation plans. This section illustrates the issue by modeling one
of the major processes, namely database logical design, through the transformational
paradigm.

6.1 Database Design

The process of designing and implementing a database that is to meet definite users
requirements has been described extensively in the literature [4] and has been avail-
able for several decades in CASE tools. It comprises four main sub-processes, namely
(Fig. 17):

1. Conceptual design, the goal of which is to translate users requirements into a
conceptual schema, which is a technology-independent abstract specification11.

2. Logical design, which produces a logical schema that losslessly translates the
constructs of the conceptual schema according to a specific technology family12.

3. Physical design, which augments the logical schema with performance-oriented
constructs and parameters, such as indexes, buffer management policies or lock
management parameters.

11 Or Platform-Independent Model (PIM according to the MDA/MDE vocabulary.
12 The logical and physical schemas can be called Platform-Specific Model (PSM in the

MDA/MDE vocabulary).

116 J.-L. Hainaut

4. Coding, that translates the physical schema (and some other artefacts) into the
DDL code of the DBMS.

Calling the whole process DB-Design, and the four sub-processes respectively
ConcD, LogD, PhysD and Coding, we can describe them with the transformational
notation:

 DDL code = DB-design(Users requirements)

 DB-design = Coding ° PhysD ° LogD ° ConcD

These processes are model-driven transformations that can be described by
transformation plans. The level of formality of these processes depends on the
methodology, on the existence of CASE support and of non functional requirements
such as performance and robustness, that generally require human expertise. For
instance, conceptual design is a highly informal process based on human
interpretation of complex information sources, while logical design can be an
automated process completely described by a transformation plan. Anyway, these
processes can be decomposed into sub-processes that, in turn, can be modelled by
transformations and described by transformation plans, and so forth, until the latter
reduce to elementary operators such as those described in Sections 5.1 and 5.2.
Below, we examine the Logical design process in further detail.

Conceptual design

Logical design

Physical design

Coding

Logical schema

Physical schema

Users requirements Conceptual schema

DDL code

Fig. 17. The main processes of database design

6.2 Database Logical Design

We consider the most popular conceptual source model, namely the Entity-
relationship model, and the most popular logical target model, the SQL2 relational
model, to which Oracle, SQL Server, DB2, PostgreSQL, Firebird and many others are
compliant. The GER expression of the SQL2 model has been developed in Fig. 7. By
complementing this table, we identify the Entity-relationship constructs that do not
belong to the SQL2 model, the four most important of which being transformed as
follows.

 The Transformational Approach to Database Engineering 117

Transforming is-a relations
Transformation Σ5-direct eliminates this structure without semantics loss by introduc-
ing one-to-one (functional) rel-types. The latter can then be processed by the mutation
transformation Σ2-direct that generates foreign keys.

Transforming relationship types
Two cases must be considered. The easy case is that of functional rel-types, that can
be replaced by foreign keys through transformation Σ2-direct.

The complex patterns comprise non-functional rel-types, that is, those which are
many-to-many, or N-ary, or which have attributes. They are first transformed into
entity types with operator Σ1-direct. Then, the resulting functional rel-types are
transformed into foreign keys (Σ2-direct). Note that the whole process is a compound
transformation that has been described as Σ8-direct.

Transforming multivalued attributes
A multivalued attribute that directly depends on its parent entity type (level 1) is
transformed into an entity type, through the compound mutation operator Σ4-direct. If

transform
is-a relations (Σ5d)

transform complex
rel-types (Σ1d)

transform level-1 multi-
valued attributes (Σ4d)

disaggregate level-1
compound attributes (Σ10d)

still non simple attributes ?
no

yes

transform functional
rel-types (Σ2d)

any failure ?

Add technical Id
where needed (Σ11d)

yes

no

Process names

Fig. 18. A simple transformation plan for logical relational database design

118 J.-L. Hainaut

0-N 1-Nwritten

0-1

0-N

works on

0-N
responsible

0-1

responsible-for

0-N

0-N

reserved

Reservation date

1-1

0-N

of

0-N

0-N

0-N

borrowing
Borrow-Date
Return-Date[0-1]
id: COPY

Borrow-Date

D

REPORT
Report Code
Version
id': Report Code

PROJECT
ProjCode
Title
ContractNo[0-1]
Company
id: ProjCode
id': ContractNo

DOCUMENT
DocID
Title
Date-Published
Keyword[0-10]
id: DocID

COPY
Serial-No
Date-Acquired
Location

Store
Shelf
Row

id: of.BOOK
Serial-No

BORROWER
PID
Name
Address

Street
City

Phone[1-5]
id: PID

BOOK
ISBN
Publisher
id': ISBN

AUTHOR
Name
First-Name[0-1]
Origin[0-1]

Fig. 19. A representative conceptual schema

the attribute is compound, it is suggested to incorporate its components in the new
entity type, and not the attribute itself. This generates a one-to-many rel-type, that is
further transformed into a foreign key.

Transforming single-valued compound attributes
The simplest way to transform a level 1 compound attribute is to replace it with its
components, a technique called disaggregation (transformation Σ10-direct, not
illustrated). Another technique consists in processing the attribute as if it was
multivalued as described here above (Σ4-direct). In this case, it is transformed into an
entity type and a functional rel-type, itself transformed into a foreign key.

Note on the transformation of a rel-type into a foreign key
This transformation requires the other entity type to have an identifier made up of
attributes. Otherwise, we have to give it a technical identifier (transformation Σ11-
direct, not illustrated).

 The Transformational Approach to Database Engineering 119

Grouping similar transformations and reorganizing the operations logically provides us
with a simple but fairly powerful transformation plan that transforms most conceptual
Entity-relationship schemas into pure relational schemas (Fig. 18). Since we have used
SR-transformations only, the whole process is semantics-preserving13. Actual plans are
more complex, but follow the same approach. Let us mention some extensions:
eliminating optional identifiers, other techniques to implement is-a relations (e.g., by
descending or ascending inheritance), instantiating multivalued attributes, concatenating
multivalued attributes, concatenating compound attributes, etc.

6.3 Case Study

The conceptual schema of Fig. 19 includes, in a small footprint, several interesting
constructs, such as complex rel-types, a cyclic rel-type, is-a relations, multivalued
attributes, compound attributes, an entity type without identifier, an optional identi-
fier, a mandatory many role (written.AUTHOR [1-N]) and a hybrid identifier.

The application of the transformation plan of Fig. 18, extended to the elimination
of optional identifiers14, produces the relational schema of Fig. 20.

7 Modeling Database Reverse Engineering Process as
Transformations

Many database engineering processes, such as maintenance, evolution, migration,
integration or federation require the availability of a complete and up to date
documentation, that is, for a database, its logical and conceptual schemas. Needless to
say that these essential documents most often are missing, specially for legacy
databases that can be more than 20 years old.

Database reverse engineering is the process through which one attempts to recover
or to rebuild these schemas when they are missing, obsolete or incomplete. We will
show that several important aspects of this process can be modelled by
transformtions. Intensive research in the last decade have shown that reverse
engineering generally is much more complex than initially thought.

We can put forward three major sources of difficulties, namely (1) the absence of
systematic design (empirical coding still is the most popular way to design a
database), (2) the weaknesses of the legacy (and, paradoxically modern as well)
DBMS, that force the developer to resort to various tricks to code the data structures
and the integrity constraints and (3) only the DDL code provides a reliable description
of the database physical constructs.

13 This assertion is not quite correct if we only use the transformations presented in this paper.

In particular, some constraints can be lost, or incompletely translated. Such is the case for
cardinality constraints [i-j] where 1 < j < N. A more comprehensive plan, making use of more
precise transformations, can preserve these constraints until the coding phase, e.g., in the
form of SQL triggers.

14 Several DBMS do not manage correctly candidate keys comprising a nullable column.

120 J.-L. Hainaut

written

Auth_ID
DocID

id: Auth_ID
DocID

ref: DocID
equ: Auth_ID

reserved

PID
DocID
Reservation date

id: DocID
PID

ref: DocID
ref: PID

REPORT

DocID
Report Code
Version

id: DocID
ref

id': Report Code

PROJECT

ProjCode
Title
Company

id: ProjCode

Phone

PID
Phone

id: PID
Phone

equ: PID

Keyword

DocID
Keyword

id: DocID
Keyword

ref: DocID

DOCUMENT

DocID
Title
Date-Published
REPORT[0-1]
BOOK[0-1]

id: DocID
excl: BOOK

REPORT

COPY

DocID
Serial-No
Date-Acquired
Loc_Store
Loc_Shelf
Loc_Row

id: DocID
Serial-No

ref: DocID

ContractNo

ContractNo
ProjCode

id: ContractNo
id': ProjCode

ref

borrowing

DocID
Serial-No
Borrow-Date
PID
ProjCode
Return-Date[0-1]

id: DocID
Serial-No
Borrow-Date

ref: DocID
Serial-No

ref: PID
ref: ProjCode

BORROWER

PID
Name
Add_Street
Add_City
ProjCode[0-1]
Responsible[0-1]

id: PID
ref: Responsible
ref: ProjCode

BOOK

DocID
ISBN
Publisher

id: DocID
ref

id': ISBN

AUTHOR

Auth_ID
Name
First-Name[0-1]
Origin[0-1]

id: Auth_ID

Fig. 20. The relational schema obtained by the application of the transformation plan of Fig. 18
on the conceptual schema of Fig. 19

7.1 Database Reverse Engineering

In complex projects, for instance when the database includes several hundreds or
thousands of tables15, the core of the process will be organized as described in Fig. 21.
It comprises four main sub-processes, namely:

1. Parsing, that rebuilds the raw physical schema by merely parsing the DDL code
(codeddl). Only the constructs that have been explicitly declared in the code can
be recovered.

2. Refinement, which enriches the raw physical schema with the undeclared
constructs and constraints that have been elicited through the analysis of program
code (codeprg), as well as other sources that we will ignore here. Sometimes
more than 50% of the specifications can be retrieved in this way.

15 An SAP database can comprise 30,000 tables and more than 200,000 columns.

 The Transformational Approach to Database Engineering 121

3. Cleaning, which removes the technical constructs, such as the indexes, and which
produces the logical schema.

4. Conceptualization, which derives a plausible conceptual schema from the logical
schema.

Cleaning

Parsing

Refinement

Logical schema

Physical schema

Conceptual schema

codeddl codeprg

Conceptualization

Raw physical schema

Fig. 21. The four main processes of database reverse engineeering

Calling the whole process DB-REng, and the four sub-processes Parse, Refine,
Clean and Concept respectively, we can write:

 Conceptual schema = DB-REng(codeddl, codeprg)

 DB-design = Concept ° Clean ° Refine ° Parse

An interesting, and not really surprising, aspect of database reverse engineering is that
all the processes we have mentioned appear to be the reverse of database design proc-
esses. Indeed, we have the following relations:

 Refine o Parse = Coding-1

 Clean = PhysD-1

 Concept = LogD-1

This observation has a deep influence on the specifications and the strategies of the
reverse processes. For instance, since the Conceptualization process is the inverse of
Logical design, it should be possible to derive a transformation plan for the former
just by reversing the plan of Logical design. Though this approach has proved
successful, the problem is a bit more complex due to the undisciplined way legacy
databases were designed. When the logical schema was built, it had to meet not only
functional requirements (that is, to express all the semantics of the conceptual
schema), but also non-functional requirements such as time-space optimization,

122 J.-L. Hainaut

security or privacy. The satisfaction of the latter requirements can deeply affect the
readability of the logical schema to such an extent that it has become quite difficult to
understand.

In the next section, we will very shortly describe the Conceptualization process as
a transformation process, and elaborate a representative transformation plan.

7.2 Logical Schema Conceptualization

Reversing a transformation plan is a new concept that would deserve some further
discussion [22]. Due to space limit, we will give a simplified definition that is valid
for linear plans only, that is, plans which do not include if-then-else or loop con-
structs:

 Considering a transformation Σ implemented by transformation plan T, T' is an
inverse of T if it implements the inverse of Σ.

 If T is a linear transformation plan, T' can be built as follows: each operator of T
is replaced with its inverse, then the resulting sequence is reversed.

Deriving a linear plan from the plan proposed for Logical design in Fig. 18 is not
too difficult, provided we target simpler schemas, that meet such realistic

transform
is-a relations (Σ5d)

transform complex
rel-types (Σ1d)

transform level-1 multi-
valued attributes (Σ4d)

disaggregate level-1
compound attributes (Σ10d)

transform functional
rel-types (Σ2d)

add technical Id
where needed (Σ11d)

Remove technical Id
(Σ11i)

Transform FK into functional
rel-types (Σ2i)

Aggregate heterogeneous
serial attributes (Σ10i)

transform attribute entity types
into multi-valued attributes (Σ4i)

transform relationship entity
types into rel-types (Σ1i)

transform one-to-one rel-types
into is-a relations (Σ5i)

transform functional
rel-types (Σ2d)

Transform FK into functional
rel-types (Σ2i)

Fig. 22. Building a linear transformation plan for the Conceptualization process

 The Transformational Approach to Database Engineering 123

restrictions as the following: a multivalued attribute can be compound, but no
compound attributes can have components that are themselves compound or
multivalued. Fig. 22 depicts the linearized plan for Logical design (left), and a
tentative transformation plan for Logical schema Conceptualization obtained by
inverting the former (right).

The resulting plan introduces new processes and terms that deserve some
explanation. Removing a technical Id is valid provided it does not represent any
application domain concept. A series of heterogeneous serial attributes is a pattern in
which a sequence of attributes, generally of different types, have names that present
strong similarities, and that suggest that these attributes form an implicit aggregate
(Example: Address-City, Address-Street, Address-Number). An attribute entity type
AE is an entity type the goal of which obviously is just to add an elementary
information to another entity type. It comprises one or a few attributes that are all part
of the identifier of AE, and is linked to another entity type only, through a mandatory
role. A relationship entity type is an entity type the role of which obviously is just to
link two or more entity types. Transforming one-to-one rel-types into is-a relations
must be carried out with caution, since it must be semantically pertinent. A one-to-one
rel-type between MANAGER and CAR does not mean that CAR is a subtype of
MANAGER!

Finally, let us observe that the second step of the resulting transformation plan
(right) is useless and can be discarded, though it does no harm16.

7.3 Case Study

The application of this transformation plan to the logical relational schema of Fig. 20
is left as an exercice to the reader, preferably with the help of the Transformation
assistant of the DB-MAIN CASE tool. Some observations:

1. identifying serial attributes forming attributes Location and Address is a manual
process,

2. deleting the technical id of AUTHOR is a manual process,
3. the conceptual names of most one-to-many rel-types cannot be recovered (default

names are suggested but they generally are not suitable), and must be assigned
manually.

8 Transformations in CASE Tools

Following the discussion of this paper, it is not surprising that the transformational
paradigm is particularly suited to build CASE tools. All CASE tools rely, often im-
plicitly, on some kind of schema transformations. Due to the popularity of the MDE
approaches, we can expect future CASE tools to include programmable transforma-
tion toolsets. In the past, some examples of transformation-based tools have been
described, e.g., in [42]. We can also mention Silverrun, a CASE tool that explicitly
makes use of transformations.

16 A desirable property of these plans is their idempotence. It is not guaranteed in general.

124 J.-L. Hainaut

Fig. 23. The elementary transformation assistant of DB-MAIN

We will describe briefly the transformation facilities of DB-MAIN17, a CASE tool
dedicated to the support of the main database engineering processes, including non
standard ones, such as database reverse engineering, interoperability, active and tem-
poral database design, wrapper generation and XML engineering. DB-MAIN is based
on the GER model and offers a toolset of about 30 elementary transformations.

DB-MAIN includes a collection of programmable assistants that are intended to
help the analysts in complex and tedious tasks. Two of them are of particular interest,
namely the Transformation assistant and the Advanced transformation assistant. Both
allow the analyst to apply predicate-driven transformations on the current schema and
to build transformation plans through a scripting facility.

Fig. 23 shows a typical screen of the first assistant. Its left part proposes a list of
labelled patterns (a user-friendly interface to built-in structural predicates), accompa-
nied by a set of possible actions that are performed on all the instances of the pattern
in the current schema. The right part allows the analyst to build linear transformation
plans that can be saved and reused later.

The second assistant is more powerful, and therefore more complex. It is based on
predicate-driven transformations following the syntax Σ(p) described in Section 5.4,
and illustrated in Fig. 16. It allows non-linear transformation plans to be developed.

Part 2 Formal Aspects of Database Transformations

These sections which follow provide the bases for building a formal system in which
GER transformations can be rigorously defined and such properties as semantics
preservation can be studied.

17 The free Education edition of DB-MAIN is available at the following address: http://www.

info.fundp.ac.be/libd, select "DB-MAIN CASE".

 The Transformational Approach to Database Engineering 125

9 The Extended Relational Model (ERM)

ERM is a variant of the N1NF relational model. It includes the concepts of domain,
relation (schema and instance), attribute and constraints.

9.1 Domain

A domain is a named set of elements. It is declared by its name and the specification
of the set of elements. A domain is dynamic if its set can change over time. Some
predefined basic domains are provided, such as number, string or date. The model
includes a special dynamic basic domain, called entities, whose structure is immate-
rial, but the goal of which could be to denote application domain entities. A user-
defined domain is defined by an element set which is a subset of that of another
domain. A relation is a valid domain. Any domain defined as a subset of the domain
entities is an entity domain, and so forth transitively.

Example of user-defined domains

birth_Date: date;
name: string;
PERSON: entities;
EMPLOYEE: PERSON;
CONTACT: address;

9.2 Relation and Attribute

According to the relational theory, a relation is a subset of the cartesian product of
domains. An element of a relation is a tuple. A relation is described by its schema,
that specifies the format and the constraints that its instances must satisfy. The current
instance of a relation is the current set of tuples.

The schema of a relation comprises its name, a set of attributes and a set of con-
straints. An attribute has a name and is defined on a domain. It represents a participation
of a domain in the relation. A domain can appear more than once, defining as many
distinct attributes. An attribute defined on an entity domain is an entity attribute.

In general, the value of an attribute of a tuple is a subset of its domain. To specify
the size of this subset, a cardinality property [i-j] is associated with each attribute A. It
states the minimum and maximum numbers of domain values that are assigned to A in
any tuple. If j = 1, A is single-valued otherwise it is multivalued. If i = 0, A is optional
otherwise it is mandatory. The default cardinality property is [1-1].

Examples

address (Street: name,
 City: name);

employee (PId: number,
 Name: name,
 1st-name[0-1]: name,
 Phone[1-5]: phone,
 Contact: address);

126 J.-L. Hainaut

Interpretation: an employee has one (default [1-1], that is, from 1 to 1) personal ID,
one name, from 0 to 1 first name, from 1 to 5 phone numbers, and one contact, which
is made up of one street and one city.

If the concept of address is not considered important (for instance, it is not referred
to elsewhere), the domain address could be specified in line as follows:

employee (…, Contact: (Street: name, City: Name));

In some situations, the specification of the domain will be ignored for simplicity.
Consequently, the following notation will be allowed.

employee (PId, Name, 1st-name[0-1], Phone[1-5], Contact: address);

In particular, specially in formal declarations, if an attribute is given the name of its
domain, we will use the following shorthand, where A is both the name of a domain
and an attribute defined on it:

R(A,B,C) ≡ R(A:A, B:B, C:C)

9.3 Non-set Attributes

By default, the value of an attribute is a set of domain values. Due to the generality of
the GER, that is intended, among others, to describe logical and physical schemas, we
need more poweful data structures, such as set, bag, list and array attributes:

R (A, B[0-5]set:number, C); also defined as: R (A, B[0-5]:number, C)
R (A, B[0-5]bag:number, C);
R (A, B[0-5]list:number, C);
R (A, B[0-5]array:number, C);

When the values in a list or in an array have to be unique, we write:

R (A, B[0-5]u-list:number, C);
R (A, B[0-5]u-array:number, C);

9.4 Constraints

ERM includes the uniqueness and inclusion constraints, as well as various depend-
encies, such as functional (FD) and multivalued (MV), of the standard relational
model18. Candidate key {A,B,C} of R will be declared by the clause id(R): A,B,C.
When possible, and where no ambiguity may arise, this specification can be replaced
by continuously underlining the components of the key. Inclusion constraints between
algebraic expressions are allowed.

18 These constraints have been defined on 1NF models, and their generalization to

N1NF models is far from trivial. Due to the limited scope of this paper, and without
loss of generality, we will ignore the complexity of the constraint patterns of N1NF
models.

 The Transformational Approach to Database Engineering 127

Examples

1. R (A, B, C, D); id(R): A,B; also defined as: R (A, B, C, D)19
2. S(E, G, H); S[G,H] ⊆ R[A,B];
3. T(A, B, C); T[A] = A;

Example 1 declares a candidate key in both alternative syntaxes. Example 2 declares a
foreign key through an inclusion constraint. Expression R[G,H] denotes the projection
of the current instance of R on attributes (A,B). Example 3 expresses a domain con-
straint. Every element of domain A must appear as the value of attribute A of at least
one tuple of the current instance of T.

In a N1NF structure, a local key can hold in a multivalued compound attribute. In
the following example, we declare that, for each product tuple, the candidate key
{Year} holds in each instance of Sales (no two sales the same year):

product (ProNbr: number,
 Description: name,
 Sales[0-N]: (Year: date, Volume: number));

The notation is extended as follows:

id(product.Sales): Year;

or by underlining the components:

product (ProNbr, Description, Sales[0-N]: (Year, Volume));

ERM includes a special form of cardinality constraint, through which we can state
how many tuples of the current instance of a relation must/can share a common do-
main value.

Considering the relation schema R(A,B,C) and an instance r of R,

card(R.A): [I-J],
is interpreted as20

∀a∈A, I ≤ ⏐r(A=a)⏐ ≤ J

Examples

1. R (A, B, C); card(R.A): [0-5];
2. R (A, B, C); card(R.(B,C)): [1-3];

Example 1 declares that any value of domain A may not appear in more than 5 tuples
of (any instance of) R. Example 2 shows a generalization of the constraint. It declares
that any couple of values of domains B and C must appear in 1 to 3 tuples of (any
instance of) R.

Note that candidate keys as well as the domain constraint T[A] = A are special cases
of cardinality constraint. Note also that cardinality properties and cardinality
constraints serve different purposes, and that none can replace the other one.

19 The graphical convention is as follows: the key of R(A,B,C) is {A,B} while R(A,B,C) has two

keys {A} and {B}.
20 Expression r(A=a) denotes the set of tuples of r where A=a.

128 J.-L. Hainaut

9.5 An ERM Schema Example

We are now able to propose a more comprehensive example of ERM schema.

• domains

CUSTOMER: entities;
VEHICLE: entities;
CAR, BOAT: VEHICLE;
Name: string;

• relations

cust (CUSTOMER, CId: number, Name: name, Phone[0-3]: string),
owns (owner: CUSTOMER, CAR);

• constraints

VEHICLE = CAR ∪ BOAT;
id(cust): CId;
card(owns.owner): [0-5];
owns(CAR) = CAR;

10 Formal Semantics of the GER

The mapping Σger>erm (Section 3.3) is fairly straighforward for most GER
constructs. The inverse mapping is easy to derive as well. The main rules are
presented in Fig. 24, and need little explanation, except for the representation of an
entity type, since it seems to differ from the usual way one translates a conceptual
schema into relational structures, as illustrated in Fig. 1 for example. First, let us
recall that the goal of this section is not to produce relational databases, as
discussed in Section. 6.2, but rather to give an operational model rigorous
semantics.

An entity type E is merely represented by an entity domain, with name E,
independently of any other feature, such as attributes, it may be concerned with.

When entity type E participates in relationship type (rel-type for short) R, with role
r, its representation also appears as the domain of ERM attribute r of the relation R
that expresses this rel-type (see rel-types of and export in Fig. 24).

Now, how to express the GER attributes of E? Through a special relation that
aggregates each entity with its GER attribute values. The relation is given the
conventional name desc-E, for description of E. This relation comprises an entity
attribute, with name E, and defined on entity domain E. This attribute is a key of the
relation. Then, for each GER attribute, it comprises an ERM attribute, with the same
name and the same domain. Later on, we will see that, in some circumstances, this
relation can include other entity domains.

In this way, we can easily describe, beyond plain GER structures, an entity type
without attributes, or without identifiers, or with complex constraint patterns.

 The Transformational Approach to Database Engineering 129

GER constructs ERM constructs

PERSON

PERSON: entities;

PERSON

EMPLOYEE CUSTOMER

PERSON: entities;

EMPLOYEE: PERSON;

CUSTOMER: PERSON;

D

PERSON

EMPLOYEE CUSTOMER

PERSON: entities;

EMPLOYEE: PERSON;

CUSTOMER: PERSON;

EMPLOYEE ∩ CUSTOMER = ∅

T

PERSON

EMPLOYEE CUSTOMER

PERSON: entities;

EMPLOYEE: PERSON;

CUSTOMER: PERSON;

EMPLOYEE ∪ CUSTOMER = PERSON

ORDER

Ord-ID
Date-Received
Origin

id: Ord-ID

ORDER: entities;
desc-ORDER(ORDER,
 Ord-ID: number,
 Date-received: date,
 Origin: string);

id(desc-ORDER): Ord-ID;

1-1
0-N

owner of

CUSTOMER ACCOUNT

of(owner: CUSTOMER, ACCOUNT);

of[ACCOUNT] = ACCOUNT;

0-N

1-N0-20

export

Vol

PRODUCT

COUNTRY

COMPANY export(COMPANY, PRODUCT, COUNTRY, Vol);

export[PRODUCT] = PRODUCT;

card(export.COMPANY): [0-20];

ORDER
Ord-ID
Date-Received
Origin
ref: Origin

CUSTOMER
Customer-ID

id: Customer-ID

desc-ORDER(ORDER, …, Origin: string);

desc-CUSTOMER(CUSTOMER, Customer-ID);

id(desc-CUSTOMER): Customer-ID;

desc-ORDER[Origin]
 ⊆ desc-CUSTOMER[Customer-ID];

Fig. 24. Main GER-to-ERM transformations (left to right) and their inverse (right to left)

130 J.-L. Hainaut

Note on the Representation of Functional Relationship Types

A rel-type is functional if it is binary, has no attributes and if at least one of its roles
has cardinality [i-1]. Let us consider the functional rel-type of, between ACCOUNT and
CUSTOMER, in Fig. 4, and recalled in Fig. 24. These three constructs translate in
ERM as follows (note that the identifier of ACCOUNT has not been translated yet):

CUSTOMER, ACCOUNT: entities;
desc-CUSTOMER(CUSTOMER, …);
desc-ACCOUNT(ACCOUNT, Account-Nbr, Amount);
of(CUSTOMER, ACCOUNT);
desc-CUSTOMER[CUSTOMER] = CUSTOMER;
desc-ACCOUNT[ACCOUNT] = ACCOUNT;
of[ACCOUNT] = ACCOUNT;

This schema happens to meet the preconditions of the semantics-preserving project-
join transformation that will be studied in Section 11.1. Its application yields the fol-
lowing equivalent, but simpler, schema, in which the relations desc-ACCOUNT and of
have been joined:

CUSTOMER, ACCOUNT: entities;
desc-CUSTOMER(CUSTOMER, …);
desc-ACCOUNT'(ACCOUNT, Account-Nbr, Amount, Customer: CUSTOMER);
desc-CUSTOMER'[CUSTOMER] = CUSTOMER;
desc-ACCOUNT'[ACCOUNT] = ACCOUNT;

This form is quite interesting. Indeed, it allows us to specify, in a particularly simple
and elegant way, complex constraints, such as hybrid identifiers, that is, identifiers
that combine attributes and/or remote roles. Such an identifier is associated with en-
tity type ACCOUNT in Fig. 4, the legend of which tells us that the accounts of a cus-
tomer have distinct Account numbers, which makes [ACCOUNT] a dependent or
weak entity type. Specifying this identifier is straightforward:

id(desc-ACCOUNT)': Customer, Account-Nbr

11 The ERM Transformations

In this section, we describe five important families of semantics-preserving paramet-
ric transformations that can be applied to ERM schemas. Basically, they are relational
transformation and could be applied to any N1NF schema as well.

For each family, after a description of the principles, we specify the structural
mapping T, through conditions P and Q (expressed in an intuitive way, through
abstract structural patterns), if available, the description of useful variants, the signa-
ture of direct and inverse transformation, a discussion of their properties and an
example. The t part will be ignored here. See [20] for a more detailed description of
these transformations.

In the following descriptions, U is the set of attributes of relation R, while I, J and
K denote subsets of U.

 The Transformational Approach to Database Engineering 131

11.1 Project-Join Transformations

Principle
A relation R in which a multivalued dependency (e.g., a FD) holds can be decom-
posed into smaller fragments according to this dependency [13].

Structural mapping

P R(U); {I,J,K} is a partition of U; I →→ J|K;
Q R1(I J); R2(I K); R1[I]=R2[I];

Variants
The project-join transformation can be particularized to relations in which I, J and/or
K are made up of one attribute only, in which K is optional, in which K is multivalued,
in which J is empty, and in which J and K are multivalued.

Signatures

direct : (R1,R2) ←⎯ PJ(R,I,J)
reverse : R ←⎯ PJ-1(R1,R2,I)

Discussion
This transformation is the variant of the relational decomposition theorem mentioned
in Section 4.3. It is therefore symmetrically reversible.

Example

Source schema works(who:EMP,in:PROJ,for:DEPART)
 works:who ⎯→ for

Transformation (works-in,works-for) ←⎯ PJ(works,{who},{in})

Target schema works-in(who:EMP,in:PROJ)
 works-for(who:EMP,for:DEPART)
 works-in[who] = works-for[who]

11.2 Denotation Transformation

Principle
The result of a query E defined by, say, an algebraic expression, and the schema of
which comprises attributes AE, is explicitly represented in schema S with a denota-
tional domain X. Bijective relation D acts as a dictionary for the elements of X. This
operator is mainly technical and is used as a basis for the next transformation. It is
trivially symmetrically reversible.

Structural mapping

P schema S; algebraic expression E with schema SE(A1,…,An)

Q schema S; domain X; D(X,A1,…,An); D[A1,…,An] = E[A1,…,An]; X appears

in D only

132 J.-L. Hainaut

Signatures

direct : (X,D,{A1,…,An}) ←⎯ den(S,)

reverse : () ←⎯ den-1(X,D)

11.3 Extension Transformations

Principle

The projection of a relation R on a subset {I1,…,In} of its attributes is explicitly

represented by surrogate domain X. Bijective relation D acts as a dictionary for the
elements of X. This domain replaces I in R, leading to relation T.

Structural mapping

P R(U); {I,J} is a partition of U

Q domain X; D(X,I); T(X,J); D[X] = T[X]; X appears in D and T only

Variants
When I = U, J is empty, so that the transformation degenerates into:

P R(U);

Q domain X; D(X,U); X appears in D only

If I comprises at least 2 attributes, it can be partitioned into subsets {I1,..,Im}.

Considering the FD D:X ⎯→ I, we can apply the project-join transformation to D
according to this partition. Expressing the lost FD D:I ⎯→ X on the join of the
fragments, we get the two extension-decomposition transformations (according to
whether J is not empty or empty):

P R(U); {I1,..,Im,J} is a partition of U; m > 1

Q Di(X,Ii); T(X,J); Di[X] = T[X]; i∈[1..m]

(*Di,i∈[1..m]): I1,..,Im ⎯→ X;

X appears in Di and T only; i∈[1..m]

P R(U); {I1,..,Im} is a partition of U; m > 1

Q Di(X,Ii); Di[X] = Dj[X]; i,j∈[1..m]

(*Di,i∈[1..m]): I1,..,Im ⎯→ X;

X appears in Di only; i∈[1..m]

Signatures

Extension

direct : (X,D,T) ←⎯ ext(R,I)
reverse : R ←⎯ ext-1(X,D,T)

 The Transformational Approach to Database Engineering 133

Extension decomposition

direct : (X,{D1,D2,..,Dm},T) ←⎯ ext-dec(R,{I1,I2,..,Im})

reverse : R ←⎯ ext-dec-1(X,{D1,D2,..,Dm},T)

For transformations where J is empty, parameter T is void.

Discussion
This family of operators is particularly powerful, since it allows us to generate most
entity-generating and entity-removing transformations [17]. Based on the den and PJ-1
transformations, it is symmetrically reversible. The role of the parameter I can be inter-
preted as follows: the subset I of attributes of R seems to represent an outstanding
concept which would deserve being described by a new surrogate domain X.

Example of the extension transformation

Source schema program(TEACHER,SUBJECT,DATE)

Transformation (LECTURE,defined-as,program) ←⎯
 ext(program,{TEACHER,SUBJECT})

Target schema domain LECTURE
 program(LECTURE,DATE)
 defined-as(LECTURE,TEACHER,SUBJECT)
 defined-as[LECTURE] = program[LECTURE]

11.4 Composition Transformations

Principle
A relation S is replaced by its composition T with another relation R.

Structural mapping

P R(I K); S(K L); S[K] ⊆ R[K]; I,K,L not empty;

Q R(I K); T(I L); T[I] ⊆ R[I]; R*T: K →→ L|I

Variants
The transformation simplifies when R is bijective:

P R(I K); S(K L); S[K] ⊆ R[K]; I,K,L not empty;

Q R(I K); T(I L); T[I] ⊆ R[I];

The latter form generalizes to N-ary relations:

P R(I K J); S(K L); S[K] ⊆ R[K]; I,J,K,L not empty;

Q R(I K J); T(I L); T[I] ⊆ R[I]

Signatures (simple form)

direct : T ←⎯ comp(R,S,K)
reverse : S ←⎯ comp-1(R,T,I)

134 J.-L. Hainaut

Signatures (N-ary form)

direct : T ←⎯ comp(R,S,K,I)
reverse : S ←⎯ comp-1(R,T,I,K)

Discussion
These operators derive from transformations PJ and PJ-1. Therefore they are symmet-
rically reversible. In the bijective variants, the transformation is symmetrical and can
be seen as substituting in S a key I of R for the key K.

Example

Source schema manages(MANAGER,DEPART)
 works-in(EMPLOYEE,DEPART)
 works-in[DEPART] ⊆ manages[DEPART]

Transformation works-for ←⎯
 comp(manages,works-in,{DEPART})

Target schema manages(MANAGER,DEPART)
 works-for(EMPLOYEE,MANAGER)
 works-for[MANAGER] ⊆ manages[MANAGER]

11.5 Nest-Unnest Transformations

Principle
A N1NF relation R that comprises a multivalued attribute B is replaced by S, its
equivalent 1NF version [43] [31].

Structural mapping

P R(I,B[1-N]);

Q S(I,B);

Variants
The cardinality of attribute B prohibits empty sets (otherwise values of I are lost),
which can be too strong a precondition. Hence the following variant, in which the
tuples of R with an empty B set can be rebuilt from the elements of the evaluation of
that do not appear in S:

P R(I,B[0-N]); R[I] = E; where E is any algebraic expression over the database
schema

Q S(I,B); S[I] ⊆ E;

If B is a compound but single-valued attribute, this operator degenerates into a dis-
aggregation transformation as follows, where K is a set of attributes:

P R(I,B(K));

Q S(I,K);

 The Transformational Approach to Database Engineering 135

Signatures

direct : S ←⎯ unnest(R,B)
reverse : R ←⎯ unnest-1(S,B)

Discussion
Unnest, together with its inverse nest, are the main algebraic operators specific to
N1NF relational models. This version of unnest is symmetrically reversible. Indeed,
R meets the following criterion of reversibility (see [10] for instance): considering the
relation R(A,B[0-N],C), the application of the unnest relational operator on B is (sym-
metrically) reversible iff:

• no tuple of R has an empty B value (as if the cardinality property of B actually
was [1-N]),

• B is functionally (possibly non minimally) dependent on the set of all the other
attributes of R.

Examples

Source schema contacts(EMPLOYEE,PHONE[1-N])

Transformation contact ←⎯ unnest(contacts,PHONE)

Target schema contact(EMPLOYEE,PHONE)

Source schema descr(EMPLOYEE,CHILD[0-N])
 descr[EMPLOYEE] = EMPLOYEE

Transformation children ←⎯ unnest(descr,CHILD)

Target schema children(EMPLOYEE,CHILD)

Note in this example the instance "descr[EMPLOYEE] = EMPLOYEE" of the pattern
"R[I] = E".

12 Analyzing and Generating GER Transformations

12.1 Analyzing GER Transformations

The issue is to prove that a known, but possibly ill-defined, practical transformation is
correct and complete as far as semantics preservation is concerned. In this context, we
will revisit the three transformations that we have informally used in the introductory
example of Fig. 1, and that also are the most popular, notably in database logical design.
Due to space limit, only the main patterns will be discussed. For any variant of the
source schema, such as those that are suggested below, the reader is invited to examine
the ERM expression and to infer the actual resulting schema. For example, in the trans-
formation of attribute A2 into an entity type, no hypothesis is made on the participation
of A2 in an identifier of A. If this is the case, the ERM expression clearly shows how to
deal with this pattern, based on the dependency theory21. This is left as an exercise.

21 More precisely the rules that govern the propagation of FD in the projection, the join and the

selection.

136 J.-L. Hainaut

12.2 Transforming an Attribute into an Entity Type

In Fig. 1, this transformation was applied to attribute Author of BOOK, leading to
entity type AUTHOR. Its abstract GER pattern is as follows.

P Q

A
A1
A2[0-N]
A3

⇔ 1-N0-N rA
A

A1
A3

EA2
A2
id: A2

Fig. 25. Transforming an attribute into an entity type

Variants. The reader is invited to examine the following extensions: A2 is single-
valued; A2 is an identifying attribute for A; A2 is a component of an identifier of A; A
is a compound attribute; the cardinality property is [0-5] or [1-5]; A2 is a set of attrib-
utes of A.

Signatures

direct : (EA2,rA) ←⎯ att-to-et(A,A2)
reverse : A2 ←⎯ att-to-et-1(EA2)

Analysis

We express the source schema (left) in ERM, then we extract and flatten the multival-
ued attribute:

A: entities;
desc-A(A,A1,A2[0-N],A3);
desc-A[A]=A;

⇔

(desc-A',R) ←⎯ PJ(desc-A,{A},{A2})

A: entities;
desc-A'(A,A1,A3);
R(A,A2[1-N]);
desc-A'[A]=A;

⇔

R' ←⎯ unnest(R,A2)

A: entities;
desc-A'(A,A1,A3);
R'(A,A2);
desc-A'[A]=A;

 The Transformational Approach to Database Engineering 137

Now, we define a new entity domain EA2 based on attribute A2 of R':
 ⇔

(EA2,{desc-EA2},rA) ←⎯ ext(R',{A2})

A,EA2: entities;
desc-A'(A,A1,A3);
desc-EA2(EA2,A2);
rA(A,EA2);
desc-A'[A]=A;
desc-EA2[EA2]=rA[EA2]=EA2;

Interpreting this schema in the GER gives the expected target schema (right). We

conclude that att-to-et is an SR-transformation.

12.3 Transforming a Relationship Type into an Entity Type

In the illustration of Fig. 1, we transformed relationship type write into entity type
WRITE. Here is a generalization of this operator for N-ary relationship types, that can
also have attributes (Fig. 26).

P Q

0-N

0-N

0-N
R

R1
R2

CBA

⇔

1-1

0-N

rC

1-1

0-N

rB

1-1

0-N

rA R

R1
R2
id: rA.A

rB.B
rC.C

CBA

Fig. 26. Transforming a relationship type into an entity type

Variants. The roles of R have cardinality constraints other than [0-N]; R is binary;
one (or more) of the roles of R has cardinality [0-1]; R has one (or more) explicit
identifier22.

Signatures

direct : (R,{(A,rA),(B,rB),(C,rC)}) ←⎯ rt-to-et(R)
reverse : R ←⎯ rt-to-et-1(R)

22 The default (not necessarily minimal) identifier of a relationship type is made up of the set of

its roles.

138 J.-L. Hainaut

Analysis
We express the source schema (left) in ERM, then we represent the set of roles by the
new entity domain R:

A,B,C: entities;
R(A,B,C,R1,R2);
desc-A[A]=A;

⇔

(R,{rA,rB,rC},desc-R) ←⎯ ext-dec(R,{{A},{B},{C}})

A,B,C,R: entities;
rA(R,A); rB(R,B); rC(R,C);
desc-R(R,R1,R2);
rA*rB*rC: A,B,C ⎯→ R;
rA[R]=rB[R]=rC[R]=desc-R[R]=R;

Interpreting this schema in the GER gives the expected target schema (right). We
conclude that rt-to-et is an SR-transformation.

12.4 Transforming a Binary Relationship Type into an Attribute

In Fig. 1, we transformed all the one-to-many relationship types into attributes, then
we declared them foreign keys.

P Q

0-N1-1 R

A
A1
A2
id: A1

B
B1
B2

⇔

A
A1
A2
id: A1

B
B1
B2
A1
ref: A1

Fig. 27. Transforming a relationship type into an attribute (foreign key)

Variants. R is optional for B ([1-1] replaced by [0-1]); R is many-to-many ([1-1]
replaced with [0-N]); the identifier of A is made up of more than one attribute; R is
functional from A to B ([0-N] replaced by [0-1]); R is bijective; R is mandatory for A
([0-N] replaced by [1-N]); R.A appears in an identifier of B.

Signatures

direct : {A1} ←⎯ rt-to-att(R.B)
reverse : R ←⎯ rt-to-att-1(B,{A1},A)

Analysis
We express the source schema (left) in ERM, then we apply the composition trans-
formation:

 The Transformational Approach to Database Engineering 139

A,B: entities;
desc-A(A,A1,A2); desc-B(B,B1,B2); R(A,B);
R[B]=B; desc-A[A]=A; desc-B[B]=B;

⇔

R' ←⎯ comp(desc-of-A,R,{A},{A1})

A,B: entities;
desc-A(A,A1,A2); desc-B(B,B1,B2); R'(A1,B);
desc-B[B]=R'[B]=B; desc-A[A]=A;
R'[A1] ⊆ desc-A[A1];

⇔

desc-B' ←⎯ PJ-1(desc-B,R',B)

A,B: entities;
desc-A(A,A1,A2); desc-B'(B,B1,B2,A1);
desc-A[A]=A; desc-B'[B]=B;
desc-B'[A1] ⊆ desc-A[A1];

Interpreting the latter schema in the GER gives the expected target schema (right).

We conclude that rt-to-att is an SR-transformation.

12.5 Generating GER Transformations

This process consists in exploiting the parametric nature of most ERM transforma-
tions to discover new practical GER transformations. This problem is open, but we
can illustrate it through a more in-depth examination of the extension-decomposition
transformation.

Let us consider the transformation depicted in the Fig. 26. Its analysis is based on
the ERM ext-dec transformation of the ERM relation R(A,B,C,R1,R2) that models the
relationship type R.

P Q

0-N

0-N

0-N
R

R1
R2

CBA

⇔

1-1

0-N

rA 1-1

0-N

rB

1-N

0-N

R

R1
R2AB

id: rA.A
rB.B

CBA

Fig. 28. An unusual transformation deriving from the ext-dec transformation

140 J.-L. Hainaut

The GER rt-to-et transformation we have developed was obtained by choosing, in
the ERM ext-dec transformation, the parameter I to be {A,B,C}. In fact, I is any non
empty subset of the attributes of relation R. For instance, I can be any of the following
subsets, that will generate 31 different equivalent target schemas:

{A}, {A,B}, {A,B,C}, {R1}, {R1,R2}, {A,R1}, {A,R1,R2}, {A,B,R1}, {A,B,R1,R2},
{A,B,C,R1}, {A,B,C,R1,R2}, and all the similar patterns obtained by permutation
within {A,B,C} and {R1,R2}.

The reader is invited to prove the correctness of the transformation of Fig. 28 follow-
ing the reasoning of Section 12.3.

13 Conclusions and Perspectives

Database engineering intrinsically has been model-driven for more than three dec-
ades. Designing, normalizing, merging, optimizing data structures can be performed
at an abstraction level that is, to a large extent, platform independent.

The transformational approach enriches this framework considerably, since it
opens the way to more structured and more reliable engineering processes. This paper
shows that such an approach brings several essential benefits.

 Being formal, it can be used to study rigorously basic properties such as semantics
preservation, that states how the operators preserve the information contents of the
schemas;

 To be fruitful, and to avoid combinatorial explosion, a pivot model, with which we
associate a relational semantics, has proved necessary;

 From the pedagogical view point, this approach provides a disciplined and reliable
way to conduct important processes such as logical design, which many students
too often tend to consider as some kind of magic;

 Developing CASE tools based on the transformational approach leads to more
reliable products, notably as far as generation completeness is concerned;

 A transformational approach based on a pivot model is by construction scalable;
introducing a new model M involves the development of components independent
of the existing models.

Several problems still are to be addressed, of which we mention a sample.

 How to integrate transformational database engineering into emerging MDE
framework(s)?

 How to cope with the other aspects of data structures, in particular how do integ-
rity constraints propagate?

 How can data structure transformations be propagated to the other components of
the information system, notably the data (data conversion), the human/computer
interfaces and the programs?

 The Transformational Approach to Database Engineering 141

References and Resources

1. Alves, T.L., Silva, P.F., Visser, J., Oliveira, J.N., Strategic Term Rewriting and Its Appli-
cation to a Vdm-SL to SQL Conversion, in Proc. FM 2005, LNCS, No 3582, Springer-
Verlag. (2005) 399-414

2. Baader, F., Horrocks, I., and Sattler, U. Description logics. In Staab, S. and Studer, R.
(Ed.), Handbook on Ontologies, International Handbooks on Information Systems, pages
3-28. Springer, (2004).

3. Balzer, R. Transformational implementation : An example. IEEE TSE, Vol. SE-7(1).
(1981)

4. Batini, C., Ceri, S., & Navathe, S., B. Conceptual Database Design, Benjamin/Cummings.
(1992)

5. Batini, C., Di Battista, G., Santucci, G. Structuring Primitives for a Dictionary of Entity
Relationship Data Schemas, IEEE TSE, Vol. 19, No. 4. (1993)

6. Bolois, G., & Robillard, P. Transformations in Reengineering Techniques. Proc. of the 4th
Reengineering Forum "Reengineering in Practice", Victoria, Canada. (1994)

7. Boyd, M., McBrien. Towards a Semi-Automated Approach to Intermodel Transformation,
In Proceedings of EMMSAD'04,Volume 1, CAiSE Workshop Proceedings, Riga Technical
University. (2004) 175-188

8. Casanova, M., A., Amaral De Sa. Mapping uninterpreted Schemes into Entity-Relationship
diagrams : two applications to conceptual schema design. IBM J. Res. & Develop., 28(1).
(1984)

9. Clève, A., Henrard, J., Hainaut, J-L. Co-transformations in Information System Reenginee-
ring, in Proc. of WCRE'04/ATEM-04, (2004)

10. Darwen, H., Date, C., J. Relation-valued Attributes, in Date, C., J., Darwen, H., Relational
Database Writings 1989-1991, Addison-Wesley (1993)

11. D'Atri, A., & Sacca, D. Equivalence and Mapping of Database Schemes, Proc. 10th VLDB
conf., Singapore. (1984)

12. Estiévenart, F., François, A., Henrard, J., Hainaut, J-L. Web Site Engineering. Proc. of the
5th International Workshop on Web Site Evolution, Amsterdam, Sept. 2003, IEEE CS
Press. (2003)

13. Fagin, R. Multivalued dependencies and a new normal form for relational databases, ACM
TODS, 2(3). (1977)

14. Fikas, S., F. Automating the transformational development of software, IEEE TSE, Vol.
SE-11. (1985)

15. Hainaut, J-L. Theoretical and practical tools for database design, in Proc. of the Very
Large Databases Conf., pp. 216-224, September, IEEE Computer Society Press. (1981)

16. Hainaut, J.-L. A Generic Entity-Relationship Model. Proc. of the IFIP WG 8.1 Conf. on
Information System Concepts: an in-depth analysis, North-Holland. (1989)

17. Hainaut, J-L. Entity-generating Schema Transformations for Entity-Relationship Models,
in Proc. of the 10th Entity-Relationship Approach, San Mateo (CA), 1991, North-Holland.
(1992)

18. Hainaut, J-L., Chandelon M., Tonneau C., & Joris M. (1993). Contribution to a Theory of
Database Reverse Engineering. Proc. of the IEEE Working Conf. on Reverse Engineering,
Baltimore, May 1993, IEEE Computer Society Press.

19. Hainaut, J-L, Chandelon M., Tonneau C., Joris M. Transformational techniques for data-
base reverse engineering. Proc. of the 12th Int. Conf. on ER Approach, Arlington-Dallas,
ER Institute (and LNCS Springer-Verlag in 1994). (1993)

142 J.-L. Hainaut

20. Hainaut, J-L. Transformation-based database engineering. Tutorial notes, VLDB'95, Zü-
rich, Switzerland, (1995) (available at http://www.info.fundp.ac.be/libd).

21. Hainaut, J-L. Specification preservation in schema transformations - application to seman-
tics and statistics, Data & Knowledge Engineering, 11(1). (1996)

22. Hainaut, J-L., Henrard, J., Hick, J-M., Roland, D., Englebert, V. Database Design Recove-
ry, in Proc. of the 8th Conf. on Advanced Information Systems Engineering (CAiSE•96),
Springer-Verlag (1996)

23. Hainaut, J.-L., Hick, J.-M., Englebert, V., Henrard, J., Roland, D. Understanding imple-
mentations of IS-A Relations, in Proc. of the conference on the ER Approach, Cottbus,
Oct. 1996, LNCS, Springer-Verlag (1996).

24. Hainaut, J-L. Transformation-based Database Engineering. In: [47]. (2005) 1–28
25. Halpin, T., A., & Proper, H., A. Database schema transformation and optimization. Proc.

of the 14th Int. Conf. on ER/OO Modelling (ERA). (1995)
26. Henrard, J., Hick, J-M. Thiran, Ph., Hainaut, J-L. Strategies for Data Reengineering, in

Proc. of WCRE'02, IEEE Computer Society Press. (2002)
27. Hick, J-M., Hainaut, J-L. Strategy for Database Application Evolution: the DB-MAIN Ap-

proach, in Proc. ER'2003 conference, Chicago, Oct. 2003, LNCS Springer-Verlag. (2003)
28. Jajodia, S., Ng, P., A., & Springsteel, F., N. The problem of Equivalence for Entity-

Relationship Diagrams, IEEE Trans. on Soft. Eng., SE-9(5). (1983)
29. Kobayashi, I. Losslessness and Semantic Correctness of Database Schema Transformation

: another look of Schema Equivalence, Information Systems, 11(1). (1986) 41-59
30. Lämmel, R. Coupled Software Transformations (Extended Abstract), In Proc. First Inter-

national Workshop on Software Evolution Transformations (SET 2004). (2004)
[http://banff.cs.queensu.ca/set2004/set2004_proceedings_acrobat4.pdf]

31. Levene, M. The Nested Universal Relation Database Model, LNCS 595, Springer-Verlag.
(1992)

32. Lien, Y., E. On the equivalence of database models, JACM, 29(2). (1982)
33. Ling, T., W. External schemas of Entity-Relationship based DBMS, in Proc. of Entity-

Relationship Approach : a Bridge to the User, North-Holland. (1989)
34. McBrien P., & Poulovassilis, A. Data integration by bi-directional schema transformation

rules, Proc 19th International Conference on Data Engineering (ICDE'03), IEEE Compu-
ter Society Press. (2003)

35. Motro, Superviews: Virtual integration of Multiple Databases, IEEE Trans. on Soft. Eng.
SE-13, 7, (1987)

36. Navathe, S., B. Schema Analysis for Database Restructuring, ACM TODS, 5(2), June
1980. (1980)

37. Partsch, H., & Steinbrüggen, R. Program Transformation Systems. Computing Surveys,
15(3). (1983)

38. Poole, J. Model-Driven Architecture : Vision, Standards And Emerging Technologies. in
Proc. of ECOOP 2001, Workshop on Metamodeling and Adaptive Object Models, (2001)

39. Rauh, O., & Stickel, E. Standard Transformations for the Normalization of ER Schemata.
Proc. of the CAiSE•95 Conf., Jyväskylä, Finland, LNCS, Springer-Verlag. (1995)

40. Roland, D. Database engineering process modelling, PHD Thesis, University of Namur.
http://www.info.fundp.ac.be/~dbm/publication/2003/these-dro.pdf (2003)

41. Rosenthal, A., & Reiner, D. Theoretically sound transformations for practical database de-
sign. Proc. of Entity-Relationship Approach. (1988)

42. Rosenthal, & A., Reiner, D. Tools and Transformations - Rigourous and Otherwise - for
Practical Database Design, ACM TODS, 19(2). (1994)

 The Transformational Approach to Database Engineering 143

43. Schek, H-J., Scholl, M., H. () The relational model with relation-valued attributes, Infor-
mation Systems, 11. (1986) 137-147

44. Thalheim, B. Entity-Relationship Modeling: Foundation of Database Technology.
Springer-Verlag, (2000)

45. Thiran, Ph., Hainaut, J-L. Wrapper Development for Legacy Data Reuse. Proc. of
WCRE'01, IEEE Computer Society Press. (2001)

46. Thiran, Ph., Estiévenart, F., Hainaut, J-L., Houben, G-J, A Generic Framework for Extrac-
ting XML Data from Legacy Databases, in Journal of Web Engineering, Rinton Press,
(2005)

47. van Bommel, P. (Ed.). Transformation of Knowledge, Information and Data: Theory and
Applications, Information Science Publ., Hershey. (2005)

48. van Griethuysen, J.J., (Ed.). Concepts and Terminology for the Conceptual Schema and the
Information Base. Publ. nr. ISO/TC97/SC5-N695. (1982)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

