Skip to main content

Type Inference in Systems Biology

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4210))

Abstract

Type checking and type inference are important concepts and methods of programming languages and software engineering. Type checking is a way to ensure some level of consistency, depending on the type system, in large programs and in complex assemblies of software components. Type inference provides powerful static analyses of pre-existing programs without types, and facilitates the use of type systems by freeing the user from entering type information. In this paper, we investigate the application of these concepts to systems biology. More specifically, we consider the Systems Biology Markup Language SBML and the Biochemical Abstract Machine BIOCHAM with their repositories of models of biochemical systems. We study three type systems: one for checking or inferring the functions of proteins in a reaction model, one for checking or inferring the activation and inhibition effects of proteins in a reaction model, and another one for checking or inferring the topology of compartments or locations. We show that the framework of abstract interpretation elegantly applies to the formalization of these abstractions and to the implementation of linear time type checking as well as type inference algorithms. Through some examples, we show that the analysis of biochemical models by type inference provides accurate and useful information. Interestingly, such a mathematical formalization of the abstractions used in systems biology already provides some guidelines for the extensions of biochemical reaction rule languages.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cardelli, L.: Typeful programming. In: Neuhold, E.J., Paul, M. (eds.) Formal Description of Programming Concepts, pp. 431–507. Springer, Heidelberg (1991)

    Google Scholar 

  2. Hucka, M., et al.: The systems biology markup language (SBML): A medium for representation and exchange of biochemical network models. Bioinformatics 19, 524–531 (2003)

    Article  Google Scholar 

  3. Fages, F., Soliman, S., Chabrier-Rivier, N.: Modelling and querying interaction networks in the biochemical abstract machine BIOCHAM. Journal of Biological Physics and Chemistry 4, 64–73 (2004)

    Article  Google Scholar 

  4. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: POPL 1977: Proceedings of the 6th ACM Symposium on Principles of Programming Languages, pp. 238–252. ACM Press, New York (1977)

    Chapter  Google Scholar 

  5. Cousot, P.: Types as abstract interpretation (invited paper). In: POPL 1997: Proceedings of the 24th ACM Symposium on Principles of Programming Languages, pp. 316–331. ACM Press, New York (1997)

    Chapter  Google Scholar 

  6. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. Journal of Physical Chemistry 81, 2340–2361 (1977)

    Article  Google Scholar 

  7. Calzone, L., Chabrier-Rivier, N., Fages, F., Soliman, S.: Machine learning biochemical networks from temporal logic properties. Transactions on Computational Systems Biology (2006) CMSB 2005, Special Issue (to appear)

    Google Scholar 

  8. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., Harris, M.A., Hill, D.P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J.C., Richardson, J.E., Ringwald, M., Rubin, G.M., Sherlock, G.: Gene ontology: tool for the unification of biology. Nature Genetics 25, 25–29 (2000)

    Article  Google Scholar 

  9. Levchenko, A., Bruck, J., Sternberg, P.W.: Scaffold proteins biphasically affect the levels of mitogen-activated protein kinase signaling and reduce its threshold properties. PNAS 97, 5818–5823 (2000)

    Article  Google Scholar 

  10. Kohn, K.W.: Molecular interaction map of the mammalian cell cycle control and DNA repair systems. Molecular Biology of the Cell 10, 2703–2734 (1999)

    Google Scholar 

  11. Chabrier-Rivier, N., Chiaverini, M., Danos, V., Fages, F., Schächter, V.: Modeling and querying biochemical interaction networks. Theoretical Computer Science 325, 25–44 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Thomas, R., Gathoye, A.M., Lambert, L.: A complex control circuit: regulation of immunity in temperate bacteriophages. European Journal of Biochemistry 71, 211–227 (1976)

    Article  Google Scholar 

  13. Soulé, C.: Graphic requirements for multistationarity. ComplexUs 1, 123–133 (2003)

    Article  Google Scholar 

  14. Markevich, N.I., Hoek, J.B., Kholodenko, B.N.: Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades. Journal of Cell Biology 164, 353–359 (2005)

    Article  Google Scholar 

  15. Ciliberto, A., Novák, B., Tyson, J.J.: Steady states and oscillations in the p53/mdm2 network. Cell Cycle 4, 488–493 (2005)

    Article  Google Scholar 

  16. Kaufman, M.: Private communication (2006)

    Google Scholar 

  17. Marhl, M., Haberichter, T., Brumen, M., Heinrich, R.: Complex calcium oscillations and the role of mitochondria and cytosolic proteins. BioSystems 57, 75–86 (2000)

    Article  Google Scholar 

  18. Borghans, J., Dupont, G., Goldbeter, A.: Complex intracellular calcium oscillations: a theoretical exploration of possible mechanisms. Biophysical Chemistry 66, 25–41 (1997)

    Article  Google Scholar 

  19. Ghosh, R., Tomlin, C.: Lateral inhibition through delta-notch signaling: A piecewise affine hybrid model. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 232–246. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  20. Thomas, R., Kaufman, M.: Multistationarity, the basis of cell differentiation and memory. Chaos 11, 170–195 (2001)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fages, F., Soliman, S. (2006). Type Inference in Systems Biology. In: Priami, C. (eds) Computational Methods in Systems Biology. CMSB 2006. Lecture Notes in Computer Science(), vol 4210. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11885191_4

Download citation

  • DOI: https://doi.org/10.1007/11885191_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46166-1

  • Online ISBN: 978-3-540-46167-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics