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Abstract. In this paper, we present a novel multi-layered framework for design-
ing strategies for trading agents. The objective of this work is to provide a frame-
work that will assist strategy designers with the different aspects involved in de-
signing a strategy. At present, such strategies are typically designed in an ad-hoc
and intuitive manner with little regard for discerning best practice or attaining re-
usability in the design process. Given this, our aim is to put such developments
on a more systematic engineering footing. After we describe our framework, we
then go on to illustrate how it can be used to design strategies for a particular type
of market mechanism (namely the Continuous Double Auction), and how it was
used to design a novel strategy for the Travel Game of the International Trading
Agent Competition.

1 Introduction

The last decade has seen a significant change in the nature of electronic commerce with
the emergence of economic software agents [11]: rational players that are capable of
autonomous and flexible actions to achieve their objectives [12] and that are endowed
with sophisticated strategies for maximising utility and profit on behalf of their human
owners. Today, electronic trading markets1 allow access to a plenitude of information
that enables such software agents to be more informed and respond more efficiently
than humans could ever hope to. Now, such trading markets are governed by protocols
that define the rules of interaction amongst the economic agents. In some cases, these
protocols have a clearly optimal strategy. For example in the Vickrey auction, the best
strategy is to reveal one’s true valuation of the item and for English auctions it is to bid
up to one’s true valuation. However, in other settings, the analyses yielding these best
strategies often make use of a range of restrictive assumptions; ranging from analysing
the market in isolation (i.e. not taking into account dependencies on other related mar-
kets), to assumptions on the agent behaviour (such as perfect and complete information
availability). Furthermore, several of the standard market mechanisms have been modi-
fied or certain complex mechanisms may have been implemented such that an analytical
approach cannot yield a best strategy. For example, in eBay auctions2 (which are multi-
ple English auctions modified with a deadline, proxy bidding and discrete bids) bidding

1 An electronic trading market is here defined as an online institution in which there is an ex-
change of resources or services using a currency as the trading token. Such markets range from
auctions, to supply chains, to barter systems.
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until one’s valuation is no longer always the optimal strategy and in Continuous Double
Auctions (CDAs) (which are a symmetric auction mechanism with multiple buyers and
sellers) there is no known optimal strategy [7].

Given this background, there has been considerable research endeavour to develop
trading agents with heuristic strategies that are effective in particular marketplaces [18,
22]. Though more of a black art than an engineering endeavour at present, we believe the
design of successful strategies in such marketplaces can nevertheless be viewed as ad-
hering to a fundamental and systematic structure. To this end, in this paper, we provide
a general framework for designing strategies which is simple enough to be applicable in
a broad range of marketplaces, but modular enough to be used in the design of complex
strategic behaviour. We believe such a model is important for the designers of trading
agents because it provides a principled approach towards the systematic engineering of
such strategies which, in turn, can foster more reliable and robust strategies.

As there is no systematic software engineering framework currently available for
designing strategies for trading agents, this paper advances the state of the art by pro-
viding the first steps towards such a model. Specifically, our framework is based upon
three main principles:

1. An agent requires information about itself and its environment in order to make
informed decisions.

2. An agent rarely has full information or sufficient computational resources to man-
age all the extracted information.

3. Given its limited computational resources and information, an agent needs to em-
ploy heuristics in order to formulate a successful strategy.

In more detail, in order to operate in such situations, we advocate a multi-layered
design framework. We believe this is appropriate because most strategies can be viewed
as breaking down the task of bidding into a set of well defined sub-tasks (such as gather-
ing relevant information, processing that information and using that processed informa-
tion in a meaningful manner). This decomposition can be viewed as a series of (semi-)
distinct steps that are handled by different layers. Furthermore, our aim is to ensure
our model is sufficiently abstract to be used as the agent model in more general agent-
oriented software engineering frameworks, such as Gaia [23] and Agent UML [1]. To
this end, our framework is inspired by the distinction made in economics between in-
formation and the knowledge derived thereof [6], and is augmented by the behavioural
layer (since the behaviour dictates which knowledge an agent seeks within an environ-
ment). Specifically, our framework consists of three layers: the Information, Knowledge
and Behavioural layers (hence we term our framework the IKB model hereafter).

In more detail, the information layer records raw data from the market environment.
This is then processed by the knowledge layer in order to provide the intelligent data
which is used by the behavioural layer to condition the agent’s strategy. To illustrate
the use of our framework, we chose two example marketplaces that are popular for
trading agents. Firstly, we consider the marketplaces with one auction protocol, the
CDA, which is widely used in trading stocks. We place a number of the standard CDA
strategies within it. Secondly, we consider a more complex scenario, the Travel Game
of the International Trading Agent Competition (TAC) where an agent has to strategise



in multiple simultaneous auctions of different formats. In both cases, we employed our
IKB model successfully.

The remainder of this paper is structured as follows. We review related work in the
field in section 2. Section 3 outlines the IKB model, which is then applied to our trading
market examples in sections 4 and 5. Section 6 concludes.

2 Related Work

Much work has been carried out on abstracting the design of electronic markets [13, 16].
However, this work tends to emphasise the methodologies for designing the markets
themselves or on proposing new market infrastructures [2, 19]. The systematic design
of strategies for agents operating in these markets has, in general, been considered to a
lesser extent. In this latter vein, however, Vetsikas et al. [20] proposed a methodology
for deciding the strategy of bidding agents participating in simultaneous auctions. Their
methodology decomposes the problem into sub-problems that are solved by partial
or intermediate strategies and then they advocate the use of rigorous experimentation
to evaluate those strategies to determine the best overall one across all the different
auctions. However, their methodology is very much tailored to simultaneous auctions
in general and the TAC in particular [22]. Thus, it cannot readily be generalised to other
auction formats or other market mechanisms. Furthermore, other approaches, including
[2, 8], look at the strategic behaviour of agents. However, they avoid issues related to the
information and knowledge management aspects of designing trading agents (focusing
instead mainly on the strategic behaviour of the strategy).

3 The IKB Model

In this section, we detail the main components that the designer of a trading agent strat-
egy should pay attention to. In so doing, we develop a framework for designing strate-
gies in trading markets. In our model, we have a market M regulated by its predefined
protocol. The collection of variables representing the dynamics of the system at time tk
is represented by the state variable pM(tk). Within this market, there is a set of trading
agents, I, that approach the market through a set of actions which are determined by
their strategies. In order to formulate its best strategy, an agent ideally needs to know
which state it is currently in (agent state), the market state and the actions it can take.

Definition 1. Agent’s State. An agent i’s state, pi(tk), at time tk is a collection of
variables describing its resources (computational and economic) and privately known
preferences.

Definition 2. Market State. The market state, pM(tk), at time tk is a collection of
variables describing all the (public and private) attributes of the market.

Definition 3. Strategy. A strategy, Si, for agent i ∈ I, defines a mapping Γi from
the history of the agent state H(pi(tk−1)) and the market states H(pM(tk−1)), and
current agent state pi(tk) and the market state pM(tk) to a set of atomic actions SAi =
{ai

1, a
i
2, . . . , a

i
k, . . .}, ai

k ∈ Ai where Ai is the set of all possible actions for agent i at
time tk.



The actions chosen by strategy Si then affect the external environment such that it
causes a change in the market state. In fact, this strategy could interplay with strategies
selected by other agents, I \ i, as well as some external input(s), extn, (where n is the
number of external signals not caused by participatory agents) so as to lead the market
to the new state:

pM(tk+1) = T (pM(tk), H(pM(tk−1)), SA1, . . . , SAI , ext1, . . . , extn) (1)

where T (.) is the state transfer function. From definition 3, it is clear that in order
for an agent to know which strategy is best, it should know the complete description
and history of the states (all market information), a complete description of all actions
available to it, its preferences over the states, a model of its opponents’ state, behaviour
and preferences, and the state transfer function.

In practice, however, an agent will typically not have all this information (for nu-
merous reasons, such as limited sensory capabilities, privacy of opponent’s information
and limited knowledge of relevant external signals). Furthermore, an agent’s limited
computational resources imply that it might not be able to keep a history of all past
interactions. Given this, there is a need for designing feasible strategies that use limited
computational and sensory resources. To this end, we advocate the following design
principle where an agent manages its limited capabilities through its Information Layer
(IL), its Knowledge Layer (KL) and its behavioural Layer (BL) (as shown in figure 1).

In more detail, the Market State (MS) contains public information (i.e. information
available to all agents in the market) and private/semi-private information (i.e. informa-
tion available to one/some agents). We now provide a description of each of the layers
that pertain to the agent:

– Information Layer. The IL contains data which the agent has extracted from the
MS and private information about its own state. This extraction is a filtering process
(which we represent as the Information Filter in figure 1) whose objectives are
defined by the KL (e.g. filtering out only transaction prices).

– Knowledge Layer. The KL represents the gathered knowledge that is aggregated
from the data in IL (e.g. bids submitted in the market). The BL queries the KL to
obtain the knowledge it requires.

– Behavioural Layer. The BL determines the agent’s strategic behaviour by deciding
on how to use the information available to it in order to interact with the market
through a set of actions (e.g. submitting a bid). It queries the KL for the relevant
knowledge it requires (e.g the belief that a bid will be accepted in the market).

We next describe each of these layers in further detail, whilst explaining the process
through which an agent uses a plethora of raw data to select appropriate actions.

3.1 The Information Layer

This section deals with how an agent gathers information which is then passed on to the
KL. The KL will select the data being stored in the IL by modifying the information
filter (see figure 1) appropriately. This filter will screen the data from the MS with some
noise (due to environmental noise or the agent’s sensory limitations). As a result, the IL



Fig. 1. Structure of the IKB Model

of an agent will contain a noisy, restricted view of all information which it can observe.
Furthermore, the IL will also contain information about the agent’s state, pi(t), as well
as its action set Ai.

We distinguish between information and knowledge in the following way:

Definition 4. Information. Information is raw data that can be sensed by an agent.

Definition 5. Knowledge. Knowledge is the processed data that is computed by an
agent from the information it has gathered.

Now, information is typically categorised as follows [15]:

– Complete/Incomplete: An agent has complete information if it is aware of the com-
plete structure of the market (that is, its action sets and the result of each action).
Otherwise, it has incomplete information.

– Perfect/Imperfect: An agent has perfect information if it is certain of its state, the
history of the market’s and the agent’s states (H(pM(tk−1)) and H(pi(tk−1))) that
have led it into this state. Otherwise, it has imperfect information.

As argued in section 1, an agent’s sensory and computational limitations imply that
it will rarely have perfect and complete information. For example an agent might not
be aware of its complete action set (i.e. an agent might believe that its action set at
time tk is A′i ⊂ Ai) or it may be unsure of which state it is in (i.e. it expresses an
uncertainty over pi(tk)). Thus, the agent will need to have certain heuristics in order to
guide its search for information. This information can be gathered from public, semi-
private and private sources. Public information is observable by all agents (i ∈ I) in the



market and includes things such as the market price in a stock exchange, the minimum
increment in an eBay auction and the number of lots of flowers on sale in a Dutch
flower auction. Semi-private information is that which is available to a subset of the
agents (i ∈ J ⊂ I) and includes things such as the amount that a supplier might
require from an agent and the code to signalling actions by a bidder ring in an auction
[14]. Private information is only observable by a single agent and includes items such
as its budget or the goods it is interested in. Thus, given the required information that
the KL has requested, the agent will devote its limited resources to obtaining it. Then
having gathered the required information from the market, the agent proceeds to use
this information to infer knowledge in the KL.

3.2 The Knowledge Layer

The Knowledge Layer connects the Information and the Behavioural layers (see section
3.3). It infers knowledge from the information sensed by the agent and passes it to the
BL which acts upon it. In order to do so, the KL is requested by the BL as to which
knowledge to acquire. This knowledge could be, for example, the current Sharpe ratio3

of a stock or a forecast of market price based on a particular prediction model. Based
on this and the current knowledge of the agent’s state, the KL will decide upon the
information it requires and set the information filter accordingly. The KL will then use
the input from the IL to infer the appropriate knowledge which it will output to the BL.

Mirroring the IL, the KL can be segmented into knowledge about the agent’s and the
market’s state. The former is what the agent knows about itself. This includes knowl-
edge pertaining to its sub-goals (such as its risk attitude or the deadline by which a good
is to be delivered) and knowledge about its state pi(tk). The latter is what the agent
knows about the market and would include items such as the degree of competitiveness
in the market, the opponents’ state and any available market indicators.

3.3 The Behavioural Layer

The Behavioural Layer represents the decision-making component of the strategy. In
this context, such strategies are targeted towards finding the optimal action4 in the mar-
ket. However, as outlined earlier, more often than not, there is no known optimal action,
as the market is too complex and the set of actions too large to determine such an opti-
mal action analytically. Then, as there is no best strategy, a heuristic approach is taken.
Thus, the BL instructs the KL as to what knowledge it needs to gather from the market
which, as described in subsection 3.2, is computed from the market information. With
the relevant knowledge of the market and its goals, the agent i forms a decision based
on its strategy Si and interacts with the market through actions SAi. The goal of an
agent’s strategy is typically profit-maximisation, with the more sophisticated strategies
considering both short-term and long-term risk. The formulation of the strategy usually
depends on such goals and the market protocols.

Given this insight, we categorise the different behavioural properties of the strategy
into different levels. In more detail, we distinguish those strategies in terms of the type

3 The Sharpe ratio is a measure of a stock’s excess return relative to its total variability [17].
4 Here, “optimal” means the agent’s most profitable action, given the current market conditions.



of information (in equation 1) that is used, i.e., whether they use a history of market
information or not, and, where they consider external information or not.

1. No History (ignores H(pM(tk−1)) from equation 1). Such reactive strategies make
myopic decisions based only on current market conditions, pM(tk). The myopic
nature of these strategies imply a lower workload on the KL since they require less
information to sense and process. Reactive strategies usually exploit the more com-
plex bidding behaviour of competing strategies and thus require less computational
resources to strategise. One example of such a strategy is the eSnipe strategy5 which
is frequently used on Ebay to submit an offer to buy near the end of the auction.

2. History (considers H(pM(tk−1) in equation 1). We further subdivide those strate-
gies that use a history of market information as being predictive or not (i.e. whether
they predict {pM(tk+1), pM(tk+2), . . .} or not). The non-predictive strategies typ-
ically use H(pM(tk−1)) to estimate pM(tk).
(a) Non-predictive: The non-predictive strategy is typically belief-based and forms

a decision based on some belief of the current market conditions. The agent’s
belief is computed from the history of market information in the KL, and usu-
ally represents the belief that a particular action will benefit the agent in the
market (e.g. an offer to buy that is accepted). Given its belief over a set of
actions, the agent then determines the best action over the short or long term.

(b) Predictive: A strategy makes a prediction about the market state in order to
adapt to it. Now, because future market conditions (that the trading agent adapts
to) cannot be known a priori, the adaptive strategy typically makes some pre-
diction using the history of market information. The KL is required to keep
track of how the market (knowledge) is changing to predict the future mar-
ket, while the BL uses this knowledge about the market dynamics to improve
its response in the market. Being adaptive is particularly important in situa-
tions where the environment is subject to significant changes. By tracking such
changes and adapting its behaviour accordingly, the agent aims to remain com-
petitive in changing market conditions.

3. No External Information (ignores ext1, . . . , extn in equation 1). In this case, the
strategy does not consider any signals external to the market (e.g. the falling mar-
ket price of a good affecting the client’s preferences for another type of good in an
auction). However, the agent can choose whether or not to use the (internal) infor-
mation (e.g. the e-Snipe strategy uses the internal market information, while the ZI
Strategy [10] in the CDA does not make use of any market information).

4. External Information (considers ext1, . . . , extn in equation 1). It is possible that
signals external to the market can influence the preferences of the participants, such
as an event independent of the market causing the clients’ preferences in the market
to change (e.g. unforeseen weather conditions affecting the production of wheat and
thus the market for wheat indirectly). Thus, external information can be a valuable
source of information that the agent can use to strategise in the market.

Having presented our IKB model for designing trading strategies, we now consider
a specific example of a market mechanism that has spawned a gamut of strategies, and
discuss how our model can be applied to it.

5 www.esnipe.com



4 Applying IKB to the CDA

The CDA is a symmetric auction with multiple buyers and sellers and presently is one
of the most popular auction formats in marketplaces populated by autonomous software
agents. In CDAs, traders are allowed to submit offers to buy (bids) or to sell (asks) at
any time during the trading day. There is an outstanding bid (ask) which is the highest
bid (lowest ask) submitted in the market at any time during the auction. Furthermore,
the market clears continuously whenever a bid can be matched to an ask. Such CDAs
are widely used, indeed they are the principal financial institution for trading securities
and financial instruments (e.g. the NYSE and the NASDAQ both run variants of the
CDA). Because there is no known dominant strategy in the CDA, several researchers
have worked on competing alternatives [4, 9, 21], developing trading agents that have
been shown to be capable of outperforming humans in experimental settings [5]. We
now give a formalised definition of the single-unit, single-item CDA institution, whose
market state at time tk is pM(tk) =< g,B,S, price(tk), bid(tk), ask(tk) > where:

1. g is the good being auctioned off.
2. B = b1, . . . , bnb is the finite set of identifiers of bidders in the market, where nb is

the number of current bidders.
3. S = s1, . . . , sns is the finite set of identifiers of sellers in the market, where ns is

the number of current sellers.
4. price(tk) denotes the current market price of good g in the market. This corre-

sponds to the most recent transaction price.
5. bid(tk) denotes the outstanding bid at time tk.
6. ask(tk) denotes the outstanding ask at time tk.

The agent state at time tk, is pi(tk) =< idi, ni(tk),vi = (vi1, . . . , vn(tk)), budgeti(tk),
compi(tk) > where:

1. idi defines the identity of the agent as either a buyer or a seller agent.
2. ni(tk) defines the number of items an agent wishes to buy or sell.
3. vi = {v1,i, . . . , vni(tk),i} is the set of limit prices 6 ordered from highest to lowest

in the case of a bidder and vice versa in the case of a seller.
4. budgeti(tk) is the budget available to agent i.
5. compi(tk) is the computational resources (memory and processing power) avail-

able currently to agent i.

The action set of the agent depends on its identity (idi). If it is a buyer, it hasAi =<
bidi, silent > where bidi ∈ Re+ and silent is no bid. Correspondingly, if it is a seller
its action set is Ai =< aski, silent > where aski ∈ Re+. It should be noted that in
the CDA, SAi will only be singletons (i.e. an agent can only take a single action at a
time). The state transfer function TCDA is the rules for acceptance and rejection of bids
and asks as well as the clearing rules (see below). The standard CDA is not influenced
by external signals (i.e. the transfer function TCDA has no ext1, . . . , extn arguments7)
and the market changes each time an agent submits a bid or an ask and thus simulta-
neous bidding does not occur. Thus pM(tk+1) = TCDA(pM(tk),H(pM(tk−1)), SAi)
whereby T (.) is defined by the following rules:

6 This is the highest value at which a buyer would buy or the lowest value a seller will accept.
7 Thus, a CDA strategy does not consider external information.



ZI ZIP Kaplan GD RB
Information Limit Limit price and Limit price and Limit price and Limit price and

Layer price transaction price and Outstanding history of bid/ask transaction price
Current bid/ask and bid/ask and transaction price and limit price
current profit margin

Knowledge None Competitive profit Measures for Belief that bid/ask Target price based
Layer margin, success heuristics will be accepted on estimate of CE

of trade price, risk factor
Behavioural Random History, No history, History, History,

Layer predictive non-predictive non-predictive predictive

Table 1. Analysis of five CDA strategies under the IKB model

– if SAi = bidi, then
• if bidi < bid(tk) then bidi is rejected and pM(tk+1) = pM(tk).
• if bid(t) < bid(i) < ask(t) then bid(tk+1) = bidi and all other market vari-

ables remain unchanged.
• if ask(t) < bidi, then price(tk+1) = cr(ask(tk) + bidi) (where cr(.) is a

clearing rule stating the transaction price at which the clearing should occur)8,
bid(tk+1) = 0 and ask(tk+1) = maxask (where maxask is the maximum ask
an agent can submit in the CDA)

– if SAi = aski, it follows the same intuition as above.
– if SAi = silent ∀i ∈ I and tk+1 − tk > inactivitylimit or tk+1 = deadline,

then the auction ends. inactivitylimit is a pre-defined period of inactivity whereby
no bid or ask is submitted, and deadline, the preset time when the market closes.

Furthermore, an agent’s state will also change, conditional on whether its bid or ask
is accepted in the market. If an agent’s bid bidi results in a transaction, ni(tk+1) =
ni(tk) − 1, budgeti(tk+1) = budgetitk − price(tk+1) and vi = {v2,i, . . . , vni(tk),i}.
If an agent’s bid is unsuccessful, then the MS relays this private information to the
agent. The agent’s visibility is restricted to only bids and asks being submitted in the
market (with the agent that submitted a bid or an ask, not disclosed) and successful
transactions. This information is publicly available in the MS. Based on the information
that describes the market conditions, the agent strategises to submit a competitive offer
to buy or sell. Given this background, we now analyse a selection of the most popular
strategies for the CDA, from the perspective of the IKB model. We provide a summary
of the analysis in table 1.

– The Zero-Intelligence (ZI) Strategy [10]: The ZI has a random behaviour: it is
non-predictive and does not use the history of market information. It effectively
ignores the market state (MS) and considers only its limit price, vni(tk),i (its private
information state in the IL) when submitting a bid or an ask. The KL does not
compute any knowledge and simply forwards vni(tk),i from the IL to the BL.

– The Zero-Intelligence Plus (ZIP) Strategy [4]: This is a predictive strategy that
uses the history of market information to predict the future market condition and

8 This varies according to the CDA; examples include the midway value or ask(tk).



adapt to it. It learns the profit margin of agent i to remain competitive given the
changing market conditions. The IL collects bid(tk), ask(tk) and price(tk) (as
instructed by the KL). The IL forwards this data, as well as the agent’s profit margin
(private information in its IL), to the KL. That knowledge is then used in the BL to
predict the future market and adapt its profit margin, µi, to it. The BL then submits
Ai =< bidi|aski, silent >, where bidi or aski = (1 + µ)vni(tk),i.

– The Kaplan Strategy [7]: This is a non-predictive strategy that makes a decision
based only on simple heuristics, and ignores the history of market information. The
IL collects the outstanding bid and ask (bid(tk) and ask(tk) respectively) from the
MS. Thereafter, using this information from the IL, the KL calculates the measures
that are used in the heuristic rules of Kaplan’s BL [7]. These rules determine what
action, Ai =< bidi|aski, silent >, the agent i submits in the market.

– The GD Strategy [9]: This is a non-predictive strategy that uses a history of market
information. The BL decides on an action, < bidi|aski, silent >, by solving a risk-
neutral utility maximisation problem involving a belief that a bid or an ask at a par-
ticular value will be successful in the market, and its limit price, vni(tk),i. Thus, the
BL instructs the KL that it requires such knowledge. The KL then defines the Infor-
mation Filter (see figure 1), so that relevant information, namely the history of bids,
asks and transaction prices (H(bid(tk−1)), H(ask(tk−1)) and H(price(tk−1)) re-
spectively) are filtered to the IL. That information, along with the agent’s limit price
is passed to the KL. The KL can then compute the belief and passes it, along with
the limit price, to the BL.

– The Risk-based (RB) Strategy [21]: This strategy is predictive and uses a history
of market information. Furthermore, the RB has a more complex behaviour than the
ZIP. The intrinsic parameter of the strategy, which is updated in response to chang-
ing market conditions, is the risk factor associated with the current good to buy or
sell. The IL is instructed (by the KL) to record bid(tk) and ask(tk) and a history of
transaction prices, H(price(tk−1)). The KL then uses H(price(tk−1)) to estimate
the competitive equilibrium price9 and then a target price (which the agent con-
siders as currently the most profitable offer price in the market). The target price
(which is the market knowledge from the KL) is then used along with the agent’s
limit price, vni(tk),i, obtained from the IL and relayed through the KL, in a set of
bidding rules in the BL. The latter then decides what offer, < bidi|aski, silent >,
the agent i submits.

Having discussed how the IKB model can be applied to existing strategies for the
CDA, we consider in the next section how we can use our framework to engineer a new
trading strategy given a market mechanism.

9 The competitive equilibrium is a price at which transaction prices are expected to converge to
as given by the classical micro-economic theory [15].



Fig. 2. Structure of the Dolphin strategy for the TAC Travel Game

5 Design a Trading Strategy for the TAC using the IKB

Here, we describe10 how we employ our IKB framework to design a novel strategy for
the TAC11. This competition involves a number of software agents competing against
each other in a number of interdependent auctions (based on different protocols) to
purchase travel packages over a period of 5 days (for the TACtown destination) for
different customers. In more detail, in a TAC Travel Game (each lasting 9 minutes),
there are 8 agents required to purchase packages for up to 8 customers (given their
preferences) and that compete in 3 types of auctions which we describe next.

1. Flight auctions. There is a single supplier for in-flight and out-flight tickets over
different days, with unlimited supply, and ticket prices updating every 10 seconds.
Transactions occur whenever the bid is equal to or greater than the current asking
price of the flight supplier.

2. Hotel auctions. There are two hotels at TACtown, namely Shoreline Shanties (SS)
and Tampa Towers (TT), with TT being the nicer hotel and each hotel having 16
rooms available over 4 different days. Thus, there are 8 different hotel auctions
(given the 2 hotels and rooms being available for 4 different days). Hotel rooms are
traded in 16th-price multi-unit English auctions, whereby the 16 highest bidders are
allocated a room for a particular day in a particular hotel, and at the end of every
minute except the last minute, a hotel auction randomly closes, and the 16th and
17th highest price of each hotel auction that is still open is published.

3. Entertainment auctions. There are three types of entertainment in TACtown, namely
a museum, an amusement park and a crocodile park, and 12 different entertainment
auctions. At the beginning of the game, each agent is randomly allocated 12 en-

10 We only provide a brief description of the formalisation due to lack of space.
11 Our IKB framework is employed in designing our agent, Dolphin which was ranked 4th in the

final of the TAC Travel Game 2005.



tertainment tickets tradeable in the different multi-unit CDAs which clear continu-
ously and close at the end of the game.

Given this background on the TAC environment, our objective is to design a trading
strategy for an autonomous software agent participating in such a game. We develop
the strategy by using the IKB framework, adopting the multi-layered approach. We
now describe the strategy within the different layer prescribed by the IKB.

5.1 The Behavioural Layer

The issues associated with the bidding behaviour can be summarised as follows: (1)
What item to bid for? (2) How much to bid for? (3) When to bid?

Definition 6. Optimal Plan. The optimal plan is the set of travel packages, for 8 dif-
ferent clients, that would yield the maximum profit, given the clients’ preferences (that
determine the utility of the package) and the cost of the packages.

Definition 7. Marginal Profit12. The marginal profit of a hotel room (in a particular
hotel on a particular day) is the decrease in the agent’s total profit if it fails to acquire
that room. Thus, the marginal profit of a hotel room that is not required in the optimal
plan is 0.

Our strategy uses the history of market information, H(pM(tk−1)) without any
external information. The publicly viewable market state pM(tk) is the set of bids and
asks in all open auctions as well as the clearing price of all the closed auctions.

We address the first issue by considering the optimal plan (see definition 6). Thus,
the agent always bids for the set of items (flight tickets, hotel rooms and entertainment
tickets) required for the optimal plan, querying the optimal plan from the KL every 10
seconds. As a hotel auction closes every 60 seconds, the set of items available to the
agent is further constrained and the optimal plan has to be recalculated. We address the
other issues by considering the different auction formats.

First, we consider the 8 flight auctions. Given the manner in which the flight prices
update, it is possible to predict the trend of the price update. Such a trend is queried
from the KL. If the trend suggests a decrease in price, the BL then queries the predicted
lowest ask price of the flight auction, and a bid is placed in that auction when that
minimum is reached, if such flight tickets are required in the optimal plan. Conversely, if
an increasing trend is predicted in a flight auction, we face a trade-off between acquiring
all the tickets in such an auction immediately at the current lowest price, and waiting in
case the agent does not manage to acquire the scarce hotel rooms required in the optimal
plan, which could make the flight tickets redundant (since they are no longer required in
the optimal plan and represent a loss). We implement the trade-off by spreading our bids
in a flight auction over the remaining length of the TAC game. For example, if 4 tickets
are required from a particular flight auction with an increasing trend, we could buy a
single ticket every minute over the next 4 minutes, rather that buying all 4 immediately.

Next, we have the 8 hotel auctions, with a random one clearing (and closing) every
minute. Thus, every minute, as the optimal plan changes, we update our bid in those

12 The marginal profit described here is similar in essence to the marginal value used in [3].



auctions that are yet to close. Now, there is uncertainty in being able to acquire all the
items required in the optimal plan, particularly at the beginning of the game. Further-
more the optimal plan typically changes during the game resulting in an item no longer
being required in the optimal plan as the game progresses. Thus, bidding too high ini-
tially does not pay off since such a bid could result in that item still being acquired.
Thus, our agent does not bid for a hotel room at its marginal profit (see definition 7),
but rather bid low at the beginning of the game and gradually increases its bid for a
room towards its marginal profit as the game progresses, bidding its marginal cost after
the 7th minute before the last hotel auction closes.

Finally, we have the 12 entertainment auctions. Here, we use the RB strategy (see
section 4) to bid in those CDAs. In particular, we have 12 RB traders that bid for the
items required in the optimal plan. The agent further instructs the RB trader to buy
cheap in auctions that do not influence the optimal plan, and sell high all the items
that it holds, if the agent can thus be more profitable rather than using such items in its
optimal plan.

We now consider the knowledge required for the bidding behaviour.

5.2 The Knowledge Layer

Here, we principally require the optimal plan which is given as the solution to an op-
timisation problem. The agent searches for the plan that maximises its profit, which
is the total utility of the packages less their estimated cost. The utility of a package
is determined by a client’s preferences, which is queried from the IL. Furthermore, the
optimisation problem is constrained by different requirements of a feasible package, for
example a client needs to stay in the same hotel for the duration of his/her stay or the
client is required to stay in a hotel during the length of his/her stay [22], with additional
constraints imposed as hotel auctions close. We also consider the additional knowledge
of the predicted clearing price of the hotel auctions and of the flight auctions (based on
the trend of flight prices in those auctions) to estimate the cost of a plan.

Now, for the hotel auctions, we calculate the marginal profit of hotel rooms required
in the plan, to form the bidding price in the active hotel auctions. This is carried out
by considering the next best package if a particular hotel room in the optimal plan
cannot be acquired. The drop in profit then represents the marginal profit of that hotel
room. Next, for the flight auctions, the KL estimates the trend of the flight prices, by
considering its history. Such knowledge is used in the BL to decide when to bid for flight
tickets, and in this layer, to calculate the minimum asking prices when a decreasing
trend is identified. Finally, for the entertainment auctions, the agent has the same KL as
the RB traders, described in section 4.

5.3 The Information Layer

Having obtained the private information about its client preferences, the agent i then
extracts all market information it requires in order to build the knowledge used in its
strategy. Indeed, it tracks information relevant to the TAC Travel Game, such as the
running time of the game and which auctions have closed (which are described by
H(pM(tk−1))), as well as the clients’ preferences that do not change during the game



(which are described by H(pi(tk−1))). When it considers the individual auctions, the
agent has to record the history of published information (bids and asks where available).
In the flight auctions, the history of flight prices is required to estimate the trend, which
represents vital knowledge. In the hotel auctions, the history of the publicly announced
16th highest price can be recorded up to when the auction closes. Such information can
be used to estimate the clearing price of the hotel auctions in future TAC games. Finally,
for the entertainment auctions, the agent has the same IL as the RB traders.

6 Conclusions and Future Work

As electronic marketplaces are being used on a broader scale, we believe software
agents will increasingly dominate the trading landscape. Their ability to make informed
decisions, based on the plenitude of market information, to a degree that human traders
can never achieve, make them ideal candidates for traders. However, as this new breed
of agents are populating the markets, it is becoming a fundamental challenge to design
strategies that can efficiently harness the avalanche of information that is available into
efficient trading behaviour. Given this, the objective of this paper is to provide a sys-
tematic framework for designing such strategies. To this end, we proposed a framework
that can be broken down into three principal components; namely the behavioural layer,
the knowledge layer and the information layer. In so doing, we believe this work is an
important preliminary step towards guiding the strategy designer by identifying the key
models and concepts that are relevant to this task. We applied this model to analyse
a selection of strategies in the CDA mechanism and showed its use when designing a
novel strategy for the TAC Travel Game. Our approach allowed us to first decide upon
the general outline of the strategic behaviour of the TAC strategy, and then delve into
the complex task of implementing it. For the future, we obviously need to verify our
framework further by applying it to different types of market institutions.
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