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Abstract. We introduce a constraint-based framework for studying in-
finite qualitative simulations concerned with contingencies such as time,
space, shape, size, abstracted into a finite set of qualitative relations. To
define the simulations we combine constraints that formalize the back-
ground knowledge concerned with qualitative reasoning with appropriate
inter-state constraints that are formulated using linear temporal logic.
We implemented this approach in a constraint programming system
(ECLiPSe) by drawing on the ideas from bounded model checking. The
implementation became realistic only after several rounds of optimiza-
tions and experimentation with various heuristics.
The resulting system allows us to test and modify the problem spec-
ifications in a straightforward way and to combine various knowledge
aspects. To demonstrate the expressiveness and simplicity of this ap-
proach we discuss in detail two examples: a navigation problem and a
simulation of juggling.

1 Introduction

1.1 Background

Qualitative reasoning was introduced in AI to abstract from numeric quan-
tities, such as the precise time of an event, or the location or trajectory of an
object in space, and to reason instead on the level of appropriate abstractions.
Two different forms of qualitative reasoning were studied. The first one is con-
cerned with reasoning about continuous change in physical systems, monitoring
streams of observations and simulating behaviours, to name a few applications.
The main techniques used are qualitative differential equations, constraint prop-
agation and discrete state graphs. For a thorough introduction see [15].

The second form of qualitative reasoning focuses on the study of contingen-
cies such as time, space, shape, size, directions, through an abstraction of the
quantitative information into a finite set of qualitative relations. One then relies
on complete knowledge about the interrelationship between these qualitative re-
lations. This approach is exemplified by temporal reasoning due to [1], spatial
reasoning introduced in [10] and [19], reasoning about cardinal directions (such
as North, Northwest); see, e.g., [17], etc.
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In this paper we study the second form of qualitative reasoning. Our aim is to
show how infinite qualitative simulations can be naturally formalized by means
of temporal logic and constraint satisfaction problems. Our approach allows us to
use generic constraint programming systems rather than specialized qualitative
reasoning systems. By a qualitative simulation we mean a reasoning about
possible evolutions in time of models capturing qualitative information. One
assumes that time is discrete and that only changes adhering to some desired
format occur at each stage. Qualitative simulation in the first framework is
discussed in [16], while qualitative spatial simulation is considered in [9].

1.2 Approach

In the traditional constraint-based approach to qualitative reasoning the qualita-
tive relations (for example overlap) are represented as constraints over variables
with infinite domains (for example closed subsets of R2) and path-consistency
is used as the constraint propagation; see, e.g., [11].

In our approach we represent qualitative relations as variables. This allows us
to trade path-consistency for hyper-arc consistency which is directly available in
most constraint programming systems, and to combine in a simple way various
theories constituting the background knowledge. In turn, the domain specific
knowledge about simulations is formulated using the linear temporal logic. These
temporal formulas are subsequently translated into constraints.

Standard techniques of constraint programming combined with techniques
from bounded model checking can then be used to generate simulations. To
support this claim, we implemented this approach in the constraint programming
system ECLiPSe . However, this approach became realistic only after fine-tuning
of the translation of temporal formulas to constraints and a judicious choice of
branching strategy and constraint propagation. To show its usefulness we discuss
in detail two case studies. In each of them the solutions were successfully found
by our implementation, though for different problems different heuristic had to
be used.

The program is easy to use and to interact with. In fact, in some of the case
studies we found by analyzing the generated solutions that the specifications were
incomplete. In each case, thanks to the fact that the domain specific knowledge is
formulated using temporal logic formulas, we could add the missing specifications
in a straightforward way.

1.3 Structure of the paper

In Section 2 we discuss examples of qualitative reasoning and in Section 3 explain
our formalization of the qualitative reasoning by means of constraints. Next, in
Section 4 we deal with qualitative simulations by introducing inter-state con-
straints which connect different stages of simulation and determine which sce-
narios are allowed. These constraints are defined using linear temporal logic.
Their semantics is defined employing the concept of a cyclic path borrowed from
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the bounded model checking approach (see [5]) for testing validity of temporal
formulas.

In Section 5 we explain how the inter-state constraints are translated to con-
straints of the underlying background knowledge. Next, in Section 6 we discuss
technical issues pertaining to our implementation that generates infinite quali-
tative simulations. In the subsequent two sections we report on our case studies.
Finally, in Section 9 we discuss the related work.

2 Qualitative Reasoning: Setup and Examples

As already said, in qualitative reasoning, one abstracts from the numeric quan-
tities and reasons instead on the level of their abstractions. These abstractions
are provided in the form of a finite set of qualitative relations, which should
be contrasted with the infinite set of possibilities available at the numeric level.
After determining the ‘background knowledge’ about these qualitative relations
we can derive conclusions on an abstract level that would be difficult to achieve
on the numeric level. The following three examples illustrate the matters.

Example 1 (Region Connection Calculus). The qualitative spatial reasoning with
topology introduced in [19] and [10] is concerned with the following set of qual-
itative relations:

RCC8 := {disjoint,meet, overlap, equal, covers, contains, covered-by, inside}.

The objects under consideration are here spatial regions, and each region pair is
in precisely one RCC8 relation; see Fig. 1.
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Fig. 1. The eight RCC8 relations

The background knowledge in
this case is the set of possible rela-
tion triples pertaining to triples of
regions. For example, the relation
triple 〈meet,meet,meet〉 is possible
since there exist three regions pair-
wise touching each other. In contrast,
the triple 〈inside, inside, disjoint〉 is
impossible since for any three regions
A,B,C, if A is inside B and B is
inside C, then A cannot be disjoint

with C. The set of possible triples is called the composition table; it is pre-
sented in the above two papers. In total, the table lists 193 relation triples.

Example 2 (Cardinal Directions). Qualitative reasoning dealing with relative di-
rectional information about point objects can be formalized using the set of
cardinal directions

Dir := {N,NE,E, SE, S, SW,W,NW, EQ},

3



that consists of the wind rose directions together with the identity relation de-
noted by EQ; see [12]. The composition table for this form of qualitative reasoning
is provided in [17].

Example 3 (Relative Size). Qualitative reasoning about relative size of objects
is captured by the relations in the set

Size := {<,=, >}.

The corresponding composition table is given in [13].

Other examples of qualitative reasoning deal with shape, directional infor-
mation about regions or cyclic ordering of orientations. In some of them the
qualitative relations are non-binary and the background knowledge is more com-
plex than the composition table. To simplify the exposition we assume in the
following binary qualitative relations.

3 Formalization of Qualitative Reasoning

In what follows we follow the standard terminology of constraint programming.
So by a constraint on a sequence x1, . . . , xm of variables with respective do-
mains dom(x1), . . . , dom(xm) we mean a subset of dom(x1) × · · · × dom(xm).
A constraint satisfaction problem (CSP) consists of a finite sequence of
variables X with respective domains and a finite set of constraints, each on a
subsequence ofX . A solution to a CSP is an assignment of values to its variables
from their domains that satisfies all constraints.

We study here CSPs with finite domains and solve them using a top-down
search interleaved with constraint propagation. In our implementation we use
a heuristics-controlled domain partitioning as the branching strategy and
hyper-arc consistency of [18] as the constraint propagation.

We formalize the qualitative reasoning within the CSP framework as follows.
We assume a finite set of objects O, a finite set of binary qualitative relations Q
and a ternary relation CT representing the composition table. Each qualitative
relation between objects is modelled as a constraint variable the domain of which
is a subset of Q. We stipulate such a relation variable for each ordered pair of
objects and organize these variables in an array Rel which we call a qualitative
array .

For each triple a, b, c of elements of O we have then a ternary constraint comp

on the corresponding variables:

comp(Rel [a, b], Rel [b, c], Rel [a, c]) :=

CT ∩ (dom(Rel [a, b])× dom(Rel [b, c])× dom(Rel [a, c])).

To assume internal integrity of this approach we also adopt for each ordered
pair a, b of elements of O, the binary constraint conv(Rel [a, b], Rel [b, a]) that
represents the converse relation table, and postulate that Rel [a, a] = equal for
all a ∈ O.

We call these constraints integrity constraints.
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4 Specifying Simulations using Temporal Logic

In our framework we assume a conceptual neighbourhood between the qual-
itative relations. This is a binary relation neighbour between the elements
of the relation set Q describing which atomic changes in the qualitative re-
lations are admissible. So only ‘smooth’ transitions are allowed. For exam-
ple, in the case of the Region Connection Calculus from Example 1, the
relation between two regions can change from disjoint to overlap only indi-
rectly via meet. The neighbourhood relation for RCC8 has 22 elements such
as 〈disjoint,meet〉, 〈meet,meet〉, 〈meet, overlap〉 and their converses and is shown
in Fig. 2.

disjoint meet overlap

equal

covered-by

covers

inside

contains

Fig. 2. The RCC8 neighbourhood
relation

We assume here that objects can
change size during the simulation. If we
wish to disallow this possibility, then the
pairs 〈equal, covered-by〉, 〈equal, covers〉,
〈equal, inside〉, 〈equal, contains〉 and their
converses should be excluded from the
conceptual neighbourhood relation.

In what follows we represent each
stage t of a simulation by a CSP Pt

uniquely determined by a qualitative ar-
ray Qt and its integrity constraints. Here
t is a variable ranging over the set of natu-
ral numbers that represents discrete time.
Instead of Qt[a, b] we also write Q[a, b, t], as in fact we deal with a ternary array.

The stages are linked by inter-state constraints that determine which sce-
narios are allowed. The inter-state constraints always include constraints stipu-
lating that the atomic changes respect the conceptual neighbourhood relation.
Other inter-state constraints are problem dependent.

A qualitative simulation corresponds then to a CSP consisting of stages all of
which satisfy the integrity constraints and the problem dependent constraints,
and such that the inter-state constraints are satisfied. To describe the inter-state
constraints we use atomic formulas of the form

Q[a, b] ∈ R, Q[a, b] /∈ R, Q[a, b] = q, Q[a, b] 6= q,

where R ⊆ Q and q ∈ Q. As the latter three forms reduce to the first one, we
deal with the first form only.

We employ a propositional linear temporal logic with four temporal op-
erators, (eventually), (next time), (from now on) and U (until), and
with the usual connectives. We use bounded quantification as abbreviations,
e.g., φ(o1) ∨ . . . ∨ φ(ok) abbreviates to ∃A ∈ {o1, . . . , ok}. φ(A).

Given a finite set of temporal formulas formalizing the inter-state constraints
we wish then to exhibit a simulation in the form of an infinite sequence of ‘atomic’
transitions which satisfies these formulas and respects the integrity constraints.
In the Section 5 we explain how each temporal formula is translated into a
sequence of constraints.
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Qk

Fig. 3. A (k − ℓ)-loop

Paths and loops We now proceed by explaining the meaning of a temporal
formula φ with respect to an arbitrary infinite sequence of qualitative arrays,

π := Q1, Q2, . . . ,

that we call a path . Our goal is to implement this semantics, so we proceed in
two stages:

– First we provide a definition with respect to an arbitrary path.
– Then we limit our attention to specific types of paths, which are unfoldings

of a loop.

In effect, we use here the approach employed in bounded model checking; see [5].
Additionally, to implement this approach in a simple way, we use a recursive
definition of meaning of the temporal operators instead of the inductive one.

We write |=π φ to express that φ holds along the path π. We say then that π
satisfies φ. Given π := Q1, Q2, . . . we denote by πi the subpath Qi, Qi+1, . . ..
Hence π1 = π. The semantics is defined in the standard way, with the exception
that the atomic formulas refer to qualitative arrays. The semantics of connec-
tives is defined independently of the temporal aspect of the formula. For other
formulas we proceed by recursion as follows:

|=πi
Q[a, b] ∈ R if Q[a, b, i] ∈ R;

|=πi
φ if |=πi+1

φ;

|=π φ if |=π φ and |=π φ;

|=π φ if |=π φ or |=π φ;

|=π χ U φ if |=π φ or |=π χ ∧ (χ U φ).

Next, we limit our attention to paths that are loops. Following [5] we call a
path π := Q1, Q2, . . . a (k − ℓ)-loop if

π = u · v∗ with u := Q1, . . . , Qℓ−1 and v := Qℓ, . . . , Qk;

see Fig. 3. By a general result, see [5], for every temporal formula φ if a path
exists that satisfies it, then a loop path exists that satisfies φ. This is exploited
by our algorithm. Given a finite set of temporal formulas Φ it tries to find a path
π := Q1, Q2, . . . consisting of qualitative arrays that satisfies all formulas in Φ,
by repeatedly trying to construct an infinite (k− ℓ)-loop. Each such (k− ℓ)-loop
can be finitely represented using k qualitative arrays. The algorithm is discussed
in Section 6.
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5 Temporal Formulas as Constraints

A temporal formula restricts the sequence of qualitative arrays at consecutive
stages (time instances). We now show how to translate these formulas to con-
straints in a generic target constraint language. The translation is based on un-
ravelling the temporal operators into primitive Boolean constraints and primitive
constraints accessing the qualitative arrays. Furthermore, we discuss a variation
of this translation that retains more structure of the formula, using non-Boolean
array constraints.

We assume that the target constraint language has primitive Boolean con-
straints and reified versions of simple comparison and arithmetic constraints.
(Recall that a reified constraint generalizes its base constraint by associating
with it a Boolean variable reflecting its truth.)

Paths with and without loops. Both finite and infinite paths can be accommo-
dated within one constraint model. To this end, we view a finite sequence of
qualitative arrays together with their integrity constraints as a single CSP. The
sequence Q1, . . . , Qk can represent both

an infinite path π = (Q1, . . . , Qℓ−1) · (Qℓ, . . . , Qk)
∗, for some ℓ > 1 and k > ℓ,

or a finite path π = Q1, . . . , Qk.

To distinguish between these cases, we interpret ℓ as a constraint variable. We
define ℓ = k+1 to mean that there is no loop, so we have dom(ℓ) = {1, . . . , k+1}.
A new placeholder array Qk+1 is appended to the sequence of qualitative arrays,
without integrity constraints except the neighbourhood constraints connecting
it to Qk. Finally, possible looping is realized by conditional equality constraints

(ℓ = j) → (Qj = Qk+1)

for all j ∈ {1, . . . , k}. Here Qp = Qq is an equality between qualitative arrays,
i.e., the conjunction of equalities between the corresponding array elements.

Translation into constraints. We denote by cons(φ, i) ≡ b the sequence of con-
straints representing the fact that formula φ has the truth value b on the path
πi. The translation of a formula φ on Q1, . . . , Qk is initiated with cons(φ, 1) ≡ 1.

We define the constraint translation inductively as follows.

Atomic formulas:

cons(true, i) ≡ b translates to b = 1;

cons(Q[a1, a2] ∈ R, i) ≡ b translates to Q[a1, a2, i] = q, (q ∈ R) ≡ b.

Connectives:

cons(¬φ, i) ≡ b translates to (¬b′) ≡ b, cons(φ, i) ≡ b′;

other connectives are translated analogously.
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Formula φ: The next-time operator takes potential loops into account.

cons( φ, i) ≡ b translates to

if i < k then
cons(φ, i + 1) ≡ b;

if i = k then
ℓ = k + 1 → b = 0,

ℓ 6 k → b =
∧

j∈{1,...,k} (ℓ = j → cons(φ, j)) .

Formula φ: We translate φ by unravelling its recursive definition φ∨ φ.
It suffices to do so a finite number nunravel of steps beyond the current state,
namely the number of steps to reach the loop, max(0, ℓ− i), plus the length
of the loop, k − ℓ. A subsequent unravelling step is unneeded as it would
reach an already visited state. We find

nunravel = k −min(ℓ, i).

This equation is a simplification in that ℓ is assumed constant. For a variable
ℓ, we ‘pessimistically’ replace ℓ here by the least value in its domain, min(ℓ).

Formulas φ and φ U ψ: These formulas are processed analogously to φ.

The result of translating a formula is a set of primitive reified Boolean con-
straints and accesses to the qualitative arrays at certain times.

Translation using array constraints. Unravelling the temporal operators leads
to a creation of several identical copies of subformulas. In the case of the tem-
poral operator where the subformulas in essence are connected disjunctively, we
can do better by translating differently. The idea is to push disjunctive informa-
tion inside the variable domains. We use array constraints, which treat array
lookups such as x = A[y1, . . . , yn] as a constraint on the variables x, y1, . . . , yn
and the (possibly variable) elements of the array A. Array constraints generalize
the classic element constraint.

Since we introduce new constraint variables when translating φ using array
constraints, one needs to be careful when φ occurs in the scope of a negation.
Constraint variables are implicitly existentially quantified, therefore negation
cannot be implemented by a simple inversion of truth values. We address this
difficulty by first transforming a formula into a negation normal form, using the
standard equivalences of propositional and temporal logic.

The constraint translations using array constraints (where different from
above) follow. The crucial difference to the unravelling translation is that here i
is a constraint variable.

Formula φ: A fresh variable j ranging over state indices is introduced, mark-
ing the state at which φ is examined. The first possible state is the current
position or the loop start, whichever is earlier. Both ℓ and i are constraint
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variables, therefore their least possible values min(ℓ), min(i), respectively,
are considered.

cons( φ, i) ≡ b translates to new j with dom(j) = {1, . . . , k},

min(min(ℓ),min(i)) 6 j,

cons(φ, j) ≡ b.

Formula φ: This case is equivalent to the previous translation of φ, but
we now need to treat i as a variable. So both “if . . . then” and → are now
implemented by Boolean constraints.

6 Implementation

Given a qualitative simulation problem formalized by means of integrity con-
straints and inter-state constraints formulated as temporal formulas, our pro-
gram generates a solution if one exists or reports a failure. During its execution
a sequence of CSPs is repeatedly constructed, starting with a single CSP that is
repeatedly step-wise extended. The number of steps that need to be considered
to conclude failure depends on the temporal formulas and is finite [5]. The se-
quence of CSPs can be viewed as a single finite CSP consisting of finite domain
variables and constraints of a standard type and thus is each time solvable by
generic constraint programming systems. The top-down search is implemented
by means of a regular backtrack search algorithm based on a variable domain
splitting and combined with constraint propagation.

The variable domain splitting is controlled by domain-specific heuristics if
available. We make use of the specialized reasoning techniques due to [20] for
RCC8 and due to [17] for the cardinal directions. In these studies maximal
tractable subclasses of the respective calculi are identified and corresponding
polynomial decision procedures for non-temporal qualitative problems are dis-
cussed. In our terminology, if the domain of each relation variable in a qualita-
tive array belongs to a certain class, then a certain sequence of domain split-
tings intertwined with constraint propagation finds a solving instantiation of the
variables without backtracking if one exists. However, here we deal with a more
complex set-up: sequences of qualitative arrays together with arbitrary temporal
constraints connecting them. These techniques can then still serve as heuristics.
We use them in our implementation to split the variable domains in such a
way that one of the subdomains belongs to a maximal tractable subclass of the
respective calculus.

We implemented the algorithm and both translations of temporal formulas to
constraints in the ECLiPSe constraint programming system [22]. The resulting
program is about 2000 lines of code. We used as constraint propagation hyper-
arc consistency algorithms directly available in ECLiPSe in its fd and propia

libraries and for array constraints through the implementation discussed in [6].
In the translations of the temporal formulas, following the insight from bounded
model checking, redundancy in the resulting generation of constraints is reduced
by sharing subformulas.
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7 Case Study 1: Navigation

Consider a ship and three buoys forming a triangle. The problem is to generate
a cyclic route of the ship around the buoys. We reason qualitatively with the
cardinal directions of Example 2.

– First, we postulate that all objects occupy different positions:

∀a, b ∈ O. a 6= b → Q[a, b] 6= EQ.

– Without loss of generality we assume that the buoy positions are given by

Q[buoya, buoyc] = NW, Q[buoya, buoyb] = SW, Q[buoyb, buoyc] = NW

and assume that the initial position of the ship is south of buoy c:

Q[ship, buoyc] = S.

– To ensure that the ship follows the required path around the buoys we stip-
ulate:

(

Q[ship, buoyc] = S → (Q[ship, buoya] = W ∧

(Q[ship, buoyb] = N ∧

(Q[ship, buoyc] = E ∧

(Q[ship, buoyc] = S ))))
)

.

In this way we enforce an infinite circling of the ship around the buoys.

a

b

c

123

4

5

6

7 8 9

10

11

12

13

Fig. 4. Navigation path

When fed with the above constraints our
program generated the infinite path formed
by the cycle through thirteen positions de-
picted in Fig. 4. The positions required to be
visited are marked by bold circles. Each of
them can be reached from the previous one
through an atomic change in one or more
qualitative relations between the ship and
the buoys. One hour running time was not
enough to succeed with the generic first-fail
heuristic, but it took only 20 s to find the
cycle using the Dir-specific heuristic. The
array constraint translation reduced this
slightly to 15 s.

The cycle found is a shortest cycle satisfying the specifications. Note that
other, longer cycles exist as well. For example, when starting in position 1 the
ship can first move to an ‘intermediate’ position between positions 1 and 2,
characterized by:

Q[ship, buoyc] = SW, Q[ship, buoya] = SE, Q[ship, buoyb] = SE.

We also examined a variant of this problem in which two ships are required
to circle around the buoys while remaining in the N or NW relation w.r.t. each
other. In this case the shortest cycle consisted of fifteen positions.
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8 Case Study 2: Simulating of Juggling

Next, we consider a qualitative formalization of juggling. We view it as a pro-
cess having an initialization phase followed by a proper juggling phase which is
repeated. As such it fits well our qualitative simulation framework.

We consider two kinds of objects: the hands and the balls. For the sake of
simplicity, we only distinguish the qualitative relations ‘together’, between a
ball and a hand that holds it or between two touching balls, and ‘apart’. This
allows us to view the juggling domain as an instance of an existing topological
framework: we identify ‘together’ and ‘apart’ with the relations meet and disjoint

of the RCC8 calculus.
In our concrete study, we assume a single juggler (with two hands) and three

balls. We aim to recreate the three-ball-cascade, see [14, p. 8]. So we have five
objects:

O := Hands ∪ Balls ,

Hands := {left-hand, right-hand},

Balls := { balli | i ∈ {1, 2, 3} }.

The constraints are as follows.

– We only represent the relations of being ‘together’ or ‘apart’:

∀x, y ∈ O. (x 6= y → Q[x, y] ∈ {meet, disjoint}).

– The hands are always apart:

Q[left-hand, right-hand] = disjoint.

– A ball is never in both hands at the same time:

∀b ∈ Balls . ¬ (Q[left-hand, b] = meet ∧ Q[right-hand, b] = meet) .

– From some state onwards, at any time instance at most one ball is in any
hand:

(∀b ∈ Balls . ∀h ∈ Hands . Q[b, h] = meet →

∀b2 ∈ Balls . b 6= b2 → ∀h2 ∈ Hands . Q[b2, h2] = disjoint).

– Two balls touch if and only if they are in the same hand:

(∀b1, b2 ∈ Balls . b1 6= b2 →

(Q[b1, b2] = meet ↔ ∃h ∈ Hands . (Q[h, b1] = meet ∧ Q[h, b2] = meet))).

– A ball thrown from one hand remains in the air until it lands in the other
hand:

(∀b ∈ Balls . ∀h1, h2 ∈ Hands . h1 6= h2 ∧Q[h1, b] = meet →

Q[h1, b] = meet U (Q[h1, b] = disjoint ∧ Q[h2, b] = disjoint ∧

(Q[h1, b] = disjoint U Q[h2, b] = meet))).

11



– A ball in the air will land before any other ball that is currently in a hand,

(∀h1, h2 ∈ Hands . ∀b1, b2 ∈ Balls . Q[h1, b1] = disjoint ∧Q[h2, b2] = meet →

Q[h2, b2] = meet U ((∀h ∈ Hands . Q[h, b2] = disjoint)

U (∃h ∈ Hands . Q[h, b1] = meet))).

– No two balls are thrown at the same time:

(∀b1, b2 ∈ Balls . b1 6= b2 → ∀h1, h2 ∈ Hands .

¬(Q[b1, h1] = meet ∧ Q[b1, h1] = disjoint ∧

Q[b2, h2] = meet ∧ Q[b2, h2] = disjoint)).

– A hand can interact with only one ball at a time:

∀h ∈ Hands . ∀b1 ∈ Balls .

(Q[h, b1] = meet ∧ Q[h, b1] = disjoint ∨

Q[h, b1] = disjoint ∧ Q[h, b1] = meet) →

∀b2 ∈ Balls . b1 6= b2 →

(Q[h, b2] = meet → Q[h, b2] = meet) ∧

(Q[h, b2] = disjoint → Q[h, b2] = disjoint).

Initially balls 1 and 2 are in the left hand, while ball 3 is in the right hand:

Q[left-hand, ball1]=meet, Q[left-hand, ball2]=meet, Q[right-hand, ball3]=meet.

Note that the constraints enforce that the juggling continues forever. Our
program finds an infinite simulation in the form of a path [1..2][3..8]∗; see Fig. 5.
The running time was roughly 100 s using the generic first-fail heuristic; the
RCC8-specific heuristic, resulting in 43min, was not useful.

We stress the fact that the complete specification of this problem is not
straightforward. In fact, the interaction with our program revealed that the
initial specification was incomplete. This led us to the introduction of the last
constraint.

State 1 State 2 State 3 State 4 State 5 State 6 State 7 State 8

1 2 3

1

2 3

3

1

2

2

3

1

2

1

3

1

3

2

3

2

1

2

1

3

Fig. 5. Simulation of Juggling
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Aspect Integration: Adding Cardinal Directions

The compositional nature of the ‘relations as variables’ approach makes it easy
to integrate several spatial aspects (e.g., topology and size, direction, shape etc.)
in one model. For the non-temporal case, we argued in [7] that the background
knowledge on linking different aspects can be viewed as just another integrity
constraint. Here we show that also qualitative simulation and aspect integration
combine easily, by extending the juggling example with the cardinal directions.

As the subject of this paper is modelling and solving, not the actual inter-
aspect background knowledge, we only explain the integration of the three rela-
tions meet, disjoint, equal with the cardinal directions Dir. We simply add

link(Q[a, b], QDir[a, b]) := (Q[a, b] = equal) ↔ (QDir[a, b] = EQ)

as the aspect linking constraint. It refers to the two respective qualitative arrays
and is stated for all spatial objects a, b. We add the following domain-specific
requirements to our specification of juggling:

QDir[left-hand, right-hand] = W;

∀b ∈ Balls . ∀h ∈ Hands . Q[b, h] = meet → QDir[b, h] = N;

∀b ∈ Balls . Q[b, left-hand] = disjoint ∧Q[b, right-hand] = disjoint →

QDir[b, left-hand] 6= N ∧QDir[b, right-hand] 6= N.

We state thus that a ball in a hand is ‘above’ that hand, and that a ball is not
thrown straight upwards.

This simple augmentation of the juggling domain with directions yields the
same first simulation as in the single-aspect case, but now with the RCC8 and
Dir components. The ball/hand relation just alternates between N and NW (or
NE).

We emphasize that it was straightforward to extend our implementation to
achieve the integration of two aspects. The constraint propagation for the link

constraints is achieved by the same generic hyper-arc consistency algorithm used
for the single-aspect integrity constraints. This is in contrast to the ‘relations
as constraints’ approach which requires new aspect integration algorithms ; see,
e.g., the bipath-consistency algorithm of [13].

9 Conclusions

Related Work The most common approach to qualitative simulation is the
one discussed in [15, Chapter 5]. For a recent overview see [16]. It is based on a
qualitative differential equation model (QDE) in which one abstracts from the
usual differential equations by reasoning about a finite set of symbolic values
(called landmark values). The resulting algorithm, called QSIM, constructs the
tree of possible evolutions by repeatedly constructing the successor states. Dur-
ing this process CSPs are generated and solved. This approach is best suited to
simulate the evolution of physical systems.
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Our approach is inspired by the qualitative spatial simulation studied in [9],
the main features of which are captured by the composition table and the neigh-
bourhood relation discussed in Example 1. The distinction between the integrity
and inter-state constraints is introduced there; however, the latter only link con-
secutive states in the simulation. As a result, our case studies are beyond their
reach. Our experience with our program moreover suggests that the algorithm
of [9] may not be a realistic basis for an efficient qualitative reasoning system.

To our knowledge the ‘(qualitative) relations as variables’ approach to mod-
elling qualitative reasoning was first used in [21], to deal with the qualitative
temporal reasoning due to [1]. In [20] this approach is used in an argument to
establish the quality of a generator of random scenarios, whilst the main part of
this paper uses the customary ‘relations as constraints’ approach. In [2, pages
30-33] we applied the ‘relations as variables’ approach to model a qualitative
spatial reasoning problem. In [7] we used it to deal in a simple way with aspect
integration and in [3] to study qualitative planning problems.

In [8] various semantics for a programming language that combines temporal
logic operators with constraint logic programming are studied. Finally, in the
TLPlan system of [4] temporal logic is used to support the construction of
control rules that guide plan search. The planning system is based on an incre-
mental forward-search, so the temporal formulas are unfolded one step at a time,
in contrast to the translation into constraints in our constraint-based system.

Summary We introduced a constraint-based framework for describing infinite
qualitative simulations. Simulations are formalized by means of inter-state con-
straints that are defined using linear temporal logic. This results in a high de-
gree of expressiveness. These constraints are translated into a generic target
constraint language. The qualitative relations are represented as domains of con-
straint variables. This makes the considered CSPs finite, allows one to use hyper-
arc consistency as constraint propagation, and to integrate various knowledge
aspects in a straightforward way by simply adding linking constraints.

We implemented this approach in a generic constraint programming system,
ECLiPSe , using techniques from bounded model checking and by experimenting
with various heuristics. The resulting system is conceptually simple and easy to
use and allows for a straightforward modification of the problem specifications.
We substantiated these claims by means of two detailed case studies.
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