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Abstract

The paper describes the proper interpretation of the fiducial argument, as given
by Fisher in (only) his first papers on the subject. It argues that far from being
a quaint, little, isolated idea, this was the first attempt to build a bridge between
aleatory probabilities (the only ones used by Neyman) and epistemic probabilities
(the only ones used by Bayesians), by implicitly introducing, as a new type, frequentist
epistemic probabilities. Some (partly rather unknown) reactions by other statisticians
are discussed, and some rudiments of a new, unifying general theory of statistics are
given which uses upper and lower probabilities and puts fiducial probability into a
larger framework. Then Fisher’s pertaining 1930 paper is being reread in the light of
present understanding, followed by some short sections on the (legitimate) aposteriori
interpretation of confidence intervals, and on fiducial probabilities as limits of lower
probabilities.
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1 Introduction

It may look surprising at first glance if at a conference on upper and lower probabilities a
paper is presented about fiducial probabilities [7] which, whatever their detailed interpre-
tation, belong to the class of proper probabilities. The reasons are as follows. (Proper)
fiducial probabilities arose (somewhat surprisingly) as a special case in a side branch of
my inference theory using upper and lower probabilities [19], and understanding of the
general theory may help (and certainly has helped me) to understand the “mysterious”
fiducial theory, and find an appropriate place for it in a larger framework. On the other
hand, my experience both with the literature and with many oral discussions is that there
still exists a lot of confusion, not only about the fiducial argument, but also about related
concepts such as aleatory and epistemic probabilities, a frequentist interpretation of epis-
temic probabilities, and the difference between Fisher’s and Neyman’s interpretation of
confidence intervals. Since all this is also part of my theory, an understanding of these
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(historical) concepts is obviously required for a full understanding of my theory. But what
is mysterious to me is that more than 70 years after Fisher’s [7] first (and correct) paper
about the fiducial argument, there is still no clarity about it, and most descriptions of it
(following Fisher’s erroneous later work) are from half true to plainly wrong and nonsen-
sical. Therefore I thought it perhaps worthwhile to try to explain the (proper) fiducial
argument and its surroundings in more detail.

The fiducial argument was meant to be a new mode of inference, making superfluous
the appeal to a (usually unknown) apriori distribution to be entered into Bayes’ theorem.
From 1930 to about 1960, it was one of the “hottest” topics of debate in statistics, with
participation of top statisticians across the whole spectrum, from J.W. Tukey to A.N.
Kolmogorov. As some mathematical contradictions (within the later, false interpretation
by Fisher) could be derived, the whole debate fell into oblivion soon after Fisher’s death
(in 1962), and many young statisticians today have never even heard of a fiducial argument
or probability.

To give briefly one of the simplest examples: Let (entirely within a frequentist frame-
work) a random variable X have the distribution N(θ, 1) (normal with unknown loca-
tion θ and known variance 1), where θ may be anywhere on the real line. Then for
every fixed c ∈ R1, and for every (true, unknown, fixed) parameter θ it is true that
P (X ≤ θ + c) = Φ(c) (with Φ being the cumulative standard normal). Equivalently,
P (θ ≥ X − c) = Φ(c). Now assume we have observed (a realisation of the random vari-
able) X = x (e.g., X = 3). Then Fisher, using the “modus ponens”, plugs in the observed
x (this is the controversial “fiducial argument”) and obtains P (θ ≥ x − c) = Φ(c) (e.g.,
with c = 1, P (θ ≥ 3−1) = P (θ ≥ 2) = Φ(1) (this is interpreted as a “fiducial probability”
for θ, namely the probability that θ ≥ 2; letting c move from −∞ to +∞, one obtains the
whole “fiducial probability distribution” of θ).

Now what is random? θ? But θ was a fixed unknown constant. Moreover, P is actually
Pθ (this θ is often suppressed). Are there two different θ’s in the same formula?

In 1930 [7] and 1933 [8], Fisher gave correct (though cumbersome, brief and incomplete,
hence apparently misunderstood) interpretations of this “tempting” result. But starting
in 1935 [9], he really believed he had changed the status of θ from that of a fixed unknown
constant to that of a random variable on the parameter space with known distribution
(cf. [11]). Apparently he needed this unfounded and false assumption in order to “solve”
the Behrens-Fisher problem (the test for equality of means of two independent normal
samples with unknown and possibly different variances, as opposed to the two-sample t-
test). The “solution” was shown to be mathematically wrong; but Fisher was intuitively
fully convinced of the importance of “fiducial inference”, which he considered the jewel in
the crown of the “ideas and nomenclature” for which he was responsible ([31], p. 370);
and he vigorously defended his false interpretation up to his last statistics book [11]. Later
on, most statisticians, unable to separate the good from the bad in Fisher’s arguments,
considered the whole fiducial argument Fisher’s biggest blunder, or his one great failure
(cf., e.g., [31], [6]), and the whole area fell into disrepute.

By contrast, I consider the (properly interpreted) fiducial argument the first (though
highly incomplete) attempt to bridge the gap between a wholly aleatory Neyman-Pearson
theory and a wholly epistemic Bayesian theory, either of which comprising only one-half of
what statistics should be [20]; and Fisher does so by introducing (implicitly) frequentist(!)
intersubjective epistemic probabilities (for a brief explanation of concepts, see Sec. 3).
These concepts have strong implications for the everyday practical use of statistics, such
as the aposteriori interpretation of confidence intervals (see Sec. 5). I thus agree with
Fisher, not in his formal later interpretation of the fiducial argument (which is wrong),
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but about the importance of the basic idea (and the correctness of his first interpretation,
which he later denied).

I can only speculate about the reasons why the fiducial argument was not clarified
earlier. Some reasons might be:

1. Lack of distinction between aleatory and epistemic probabilities (cf. Sec. 3). I
believe Fisher felt the distinction intuitively, but he never clearly formulated it. For
the Neyman-Pearson school, there exist only aleatory probabilities (very strictly so!),
and for (strict) Bayesians there exist only epistemic probabilities (perhaps apart from
a few simple cases where Hacking’s principle might be applicable), hence the two
school basically cannot even talk to each other (cf. also [20]).

2. Almost nobody seems to have checked on which probability space the (proper) fidu-
cial probabilities can be defined! (Cf. the example above.) While the axiomatic
foundation of probability spaces was done only a few years after Fisher’s first fidu-
cial paper [21], I find it surprising that apparently none of the later mathematical
statisticians (with only one exception [25] known to me) has asked this basic ques-
tion.

3. There seems to be an implicit conviction that there can be no frequentist epistemic
probabilities (apart, perhaps, again from simple uses of Hacking’s principle). This
leaves only “logical” and subjectivist Bayesian results for scientists who really want
to learn from data (and not just obey behavioristic rules), both of which are unsat-
isfactory in principle for them.

4. Within frequentist statistics, it seems often impossible for the thinking of statisticians
to get away from the deeply entrenched paradigm of independent repetitions of
the SAME experiment, although apart from a few applications, such as quality
control and simulation studies, they hardly ever exist in science. Most scientists
do DIFFERENT independent experiments each time, and frequentist properties of
statistical methods can and should be evaluated with regard to such sequences of
experiments. (If this should be considered an enlargement of the formal definition
of “frequentist”, then I find it long overdue. This point certainly was clear already
to Fisher, for example, and other early writers.)

5. It is very tempting to believe that something which formally looks like a probability
distribution is actually a probability distribution, without regard to the restrictions
and interpretations under which it was derived. I am talking, of course, about the
general misinterpretation of the “fiducial probability distribution”.

6. Perhaps a major reason is Fisher’s highly intuitive and condensed style of writing,
which requires “reading from within” (trying to “feel” what he meant and thought)
rather than “reading from the outside” (superficially taking words literally). - In
addition, probably few statisticians went “back to the roots”, to Fisher’s first papers
on the topic; it is the custom in our scientific enterprise to try to be always at the
forefront of research; and the forefront in this case was leading astray because of
Fisher’s later blunder. (Still, the fact that some kind of blunder became known
to exist, might have motivated a few more statisticians to study the origins more
carefully.)

This paper contains some reflections on various reactions to the fiducial argument by
other writers (Sec. 2), and mainly (throughout the paper, and specifically in Sec. 4) a
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description of what I consider the proper fiducial argument, based on a new reading and
interpretation of Fisher’s first pertaining papers ([7], [8]) in relation to my more general
approach [19]. It seems necessary to explain a few rudiments of my approach before Section
4 (Sec. 3). Some remarks on the dispute between Fisher and Neyman about the proper
interpretation of confidence intervals are also added (Sec. 5), as well as a short section on
fiducial probabilities as limiting and special cases of lower probabilities (Sec. 6).

The paper discusses only one-dimensional problems. The emphasis is on frequentist
properties, as opposed to full conditionality and coherence; elsewhere I have shown that
(symmetrical) optimal compromises between the two desiderata can be defined (including
Bayes solutions closest to a frequentist interpretation, and vice versa), and that they can
be numerically very close to each other ([17], [19]).

2 Some reactions to the fiducial argument

The history of Fisher’s work on fiducial probabilities is excellently described by Zabell [31].
Briefly, Fisher discovered and solved the argument 1930 [7] for the correlation parameter,
and 1933 [8] he solved it for the variance in normal samples (with a critical discussion
of Jeffreys’ approach to this problem). In 1935 [9], Fisher “solved” the Behrens-Fisher
problem by assuming that the “fiducial distribution” is an ordinary probability distribution
of a random parameter, and from then on he had to defend himself not only against lack
of understanding, but also against justified criticisms. He tried - in vain - to escape
these criticisms by some spurious conditioning arguments, but he was unable to retract
gracefully from an untenable position (after previously having criticised Bayesians for the
same reason). He even accepted the Bayesian derivation (with an improper prior) for
the Behrens-Fisher test given by Jeffreys, after having criticised Jeffreys and stressing the
differences of their approaches in 1933 [8]. His last major authoritative (though partly
false) claims are in 1955 [10] and in his book 1956 [11]. (It should be clear that by the
proper fiducial argument I mean Fisher’s argument of 1930 and 1933, and not anything
building upon his later erroneous work.)

It may be noted that already quite early, Fisher spoke occasionally and briefly of
“fiducial inequalities” (in situations with discrete variables), thus faintly foreshadowing
the use of upper and lower probabilities in these cases. In his 1956 book [11] and earlier, he
contrasted fiducial probabilities and likelihoods as the main inference tools for continuous
and discrete data, resp.; it seems to me that likelihoods might here better be replaced by
upper and lower probabilities (while maintaining a central auxiliary role in both situations,
of course).

By restricting himself to proper probabilities, Fisher obtained a rather limited theory.
This reminds me of Bayes who in his scholium implicitly made the same restriction. Neither
seems to have thought - or known - about upper and lower probabilities, although they
had been introduced much earlier by James (Jacob) Bernoulli.

A number of statisticians, starting with Bartlett, tried to check the Behrens-Fisher
test or to find conditions under which Fisher’s new methods could be justified by other,
objective arguments (cf., e.g., [1], [28], [29]). A number of other statisticians were more
indirectly inspired by Fisher’s work, trying to find something new in a similar direction.
They include Fraser [12] trying to exploit group structures if they happen to be available,
and especially Dempster ([4], [5]), whose work on different kinds of upper and lower prob-
abilities led to the theory of belief functions by Shafer [27], Smets and others. Probably
many if not most older participants at this conference have at one time or other thought
hard about fiducial probabilities and were motivated by them for their own work, but
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since these “offsprings” are not the topic of this paper, I apologize for not going into more
details.

Kolmogorov [22] discusses fiducial probabilities in a summarizing report on contem-
porary British statistics. In Footnote 12, he suggests the introduction of a new axiom: if
all conditional probabilities of an event, given the parameters, exist and are equal, then
the unconditional probability exists and equals this value. At first, I was puzzled by this
remark. Later, I thought that maybe this can be interpreted to be the axiomatic intro-
duction of a new kind of probability (an epistemic one, to use present wording) which
does not depend on any (unknown) parameters. Viewed this way, it may make deep sense,
although it is still highly incomplete (for example, the underlying probability space and
the epistemic interpretation are not discussed). - Incidentally, Kolmogorov quite natu-
rally discusses sequences of different experiments (as opposed to repetitions of the same
experiment); and he partly argues in favor of unconditional statements in applications, for
practical reasons.

One of the greatest mysteries for me around the fiducial argument is why the extremely
important 1957 paper by Pitman [25] seems to have gone virtually unnoticed in the dis-
cussion of the fiducial argument. (I owe the reference to Robert Staudte.) Pitman gives
a lucid and deep mathematical description of the fiducial argument, what is right and
what is wrong about it, and mathematical conditions under which it can be applied. He
is not afraid of calling a mistake a mistake, such as Fisher’s [11] claim that the parame-
ter has now the status of a random variable (simple acknowledgment of this fact would
have made most past discussions of “fiducial probabilities” superfluous). In the same sen-
tence (p. 325) he asserts that nevertheless “... we are able to make statements about
the unknown parameter with a calculable probability of being right” (this is precisely my
viewpoint). Pitman also discusses the fiducial distribution of several parameters, while
making it clear that Fisher’s integrations for the “Behrens-Fisher solution” were simply
not permissible. He does not go further into the conceptual interpretation, but any truly
informed mathematical paper about the fiducial argument has to incorporate what he
has to say. Nevertheless Pitman’s paper is not cited in Cox and Hinkley [3], Walley [30],
Zabell [31], Efron [6], to name a few prominent works discussing fiducial inference; and
this, although Pitman is not entirely unknown in mathematical statistics, the journal in
which the paper appeared is not totally obscure, and the paper was an invited review
article on Fisher’s most important book on foundations, and was written in Stanford, a
place not totally provincial in statistics.

Cox and Hinkley [3] just give the usual “on the one hand ... on the other hand ...”
type of discussion of the fiducial argument; and in exercise 7 of Ch. 7, p. 248 (accessible
through the index), they try to discredit fiducial probabilities (without using the word
here) by using an operation (curtailing the distribution) which was (correctly) explicitly
forbidden in Fisher’s early works (though not in his later, incorrect works).

Most statisticians, after making up their mind that the whole fiducial argument was
just a big blunder, tried to forget it. C.R. Rao [26] may have been one of the last fa-
mous statisticians to include it in an ordinary applied statistics textbook, though with
reservations. But although the argument in its later form had been proven wrong, some
statisticians, such as J.W. Tukey, still thought “there may be something to it”. I learned
this attitude from him in the seventies, and in our last telephone conversation in July
2000, a few days before his death, he confirmed to me that this still was his opinion.

In his 1996 Fisher Lecture, Efron [6] gave (among other things) a reasonable sounding
discussion of the desirability of something like fiducial inference in future statistics. But
then (end of Section 8), out of the blue he suddenly speculates: “Maybe Fisher’s biggest
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blunder will become a big hit in the 21st century!” I agree of course about the hit (though,
slowly as statistics progresses, it may well be the 22nd century), but just by rereading his
paper I can’t find any reason or justification for his optimism (unless there is a - direct
or indirect - connection with my talk on foundations at Stanford in the Berkeley-Stanford
Colloquium in March 1994). In any case, it is gratifying to see (also in the discussion
of the paper) that some statisticians might be willing to take a fresh look at the fiducial
argument, recognizing its basic importance for statistics.

3 Some rudiments of a new general theory of statistics

Before rereading Fisher’s 1930 paper, it seems necessary to explain some of the concepts
which are hidden in and behind Fisher’s early work, and which should make this work
more comprehensible.

The broadest view of my emerging theory is given in [14], some more solutions in [15],
the probably most readable introduction in [18], and the most recent highly condensed
survey in [19]. I first noticed the connection with fiducial probabilities in an abstract [13],
and later in a chapter in [14].

Let me now try to explain my view of statistics.
I became more and more convinced that we have to distinguish between aleatory and

epistemic probabilities. Aleatory probabilities (as in dice throwing) are supposed to be
probabilities occurring objectively in Nature (in “random experiments”). (Of course, I
am aware that the whole concept of an objectively existing Nature - as well as that of
probabilities - can be criticized philosophically, but without it we could have no science,
and we have been quite successful with it. Here I am trying to keep the discussion on a
reasonably pragmatic level.) Usually, aleatory probabilities are unknown to us (except in
simulation studies, or under Laplacean assumptions of symmetry), but we are trying to
learn something about them. Aleatory probabilities are frequentist, that is, they obey the
law of large numbers. This (besides the usual axioms) gives them an (approximate, but
arbitrarily accurate) operational interpretation: In a long sequence of (usually different!)
independent experiments, all with probability of “success” (different “successes”!) equal p,
the observed fraction of “successes” will be close to p (with the usual precise mathematical
formulation).

But many statisticians, and users of statistics, also want to learn something, and want
to know some probabilities (and not only approximately, if it can be done). Probabilities
which refer to our (personal or intersubjective, assumed or true!) state of knowledge are
called epistemic. It would be nice if we could derive known epistemic probabilities from
the unknown aleatory probabilities.

But the Neyman-Pearson theory considers only aleatory probabilities. Neyman ([23],
[24]) explicitly excluded inductive inference, hence all learning processes and the epistemic
probabilities which they could lead to. This is very satisfactory for pure mathematicians,
because it keeps the basis of the theory mathematically and conceptually simple, and it
may be tolerable for decision theorists; but it is frustrating for many applied statisticians
and users of statistics who actually want to learn something from their data (also in a
broader context), and not just “behave inductively” without any thinking being allowed.

On the other hand, all Bayesian theories (and we have to distinguish at least between
Bayes - if we want to call him a Bayesian -, Laplace, Jeffreys, and the Neo-Bayesians,
who may be further split up) use, at least in principle, only epistemic probabilities (except
perhaps for the conditional distributions of the observations, given the parameters, which
may be considered aleatory, but which are quickly transformed away). They start with
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epistemic prior distributions for the parameters, and they end with epistemic posterior
distributions or some predictions or decisions derived from them. Bayesian probabilities
may be subjective (as with the Neo-Bayesians) or “logical”, “canonical” or “objective” (a
very dubious term), as with the other Bayesian schools mentioned; these logical probabil-
ities are intersubjective, that means, they are the same for scientists with the same data
(and model) and the same background knowledge. But none of them has a frequentist
interpretation (unless the prior chosen happens to be a true aleatory prior). The concept
of a true, unknown aleatory probability distribution which governs the success of Bayesian
claims and bets, is alien to (strict) Neo-Bayesian theory, and the self-assuring success of
Bayesian “fair bets” results from them being evaluated by their own subjective priors.
We shall see that Fisher, in effect, tried to introduce frequentist intersubjective epistemic
probabilities (without using these qualifying terms).

It seems natural to describe epistemic probabilities by bets or odds (or odd ratios),
as has been commonly done already centuries ago. Bayesian (pairs of) fair bets (“If I
am willing to bet p : q on A, I am also willing to bet q : p on Ac”) are two-sided bets
and correspond 1:1 to ordinary probabilities (“P (A) + P (Ac) = 1”). But if we are not in
a decision situation, but in an inference situation, we may also consider one-sided bets,
expressing partial lack of knowledge about the true probability (up to total ignorance); in
order to avoid “sure loss” with bets both on A and on Ac, we must have P (A)+P (Ac) ≤ 1
and are thus led to (some form of) upper and lower probabilities. (The Bayesian claims
for equality to 1 are circular and just not true, except for enforced decisions.)

If the expected gain of my one-sided bet, evaluated under the true (unknown) aleatory
(not epistemic!) probability of A is nonnegative, I call my bet “successful”. Obviously, I
cannot bet successfully on A (except 0 : 1) without any knowledge about its probability;
but the amazing fact is that in general I can find nontrivial successful bets if I have
independent past observations from the same parametric model.

The bets cannot, of course, in general be conditionally successful given any fixed past
observation, and at the same time informative, because usually there may be totally
misleading past observations; but they can be successful when averaged also over the
distribution of the past observations. Their success can be operationally checked and
empirically validated by considering long sequences of independent successful bets (from
different experiments!); with bounded and sufficiently variable gains the average gain will
most likely be > −ε for n large enough.

My theory is mainly for prediction, because I find prediction in general more important
in practice than parameter estimation (cf. [16]), and it can be checked empirically. But
the theory can also be done for random (!) parameter sets; and then, in some cases, it just
gives the (proper) fiducial probabilities (as frequentist epistemic proper probabilities).

4 Rereading Fisher’s 1930 fiducial paper

(It may be useful for the reader to get a copy of this paper, e.g. from [2].)
In the beginning of the paper, Fisher [7] attacks Bayes (incorrectly, but mildly) and

the then Bayesians (to discuss this part would mean another section - there appear to be
some parallels between the history of Bayes’ argument and of the fiducial argument); and
then he discusses likelihood (describing it, like the fiducial argument, more as an empirical
discovery rather than an invention). Starting at the bottom of p. 532 (p. 433 in [2]), he
discusses the fiducial argument with the example of the correlation coefficient, even giving
a table for n = 4 which for every ρ gives the upper 95% value (now “confidence limit”) for
r. And this relationship “implies the perfectly objective fact that in 5% of samples r will
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exceed the 95% value corresponding to the actual value of ρ in the population from which
it is drawn.” (And he goes on to define ρr, the “fiducial 5% value of ρ” corresponding to
a given observed r.) Thus the actual value of ρ (an unknown constant) may be anything
(or have any prior distribution, for that matter): among all unselected(!) pairs (ρ, r)
(typically from different experiments!), in 5% of all cases ρ will be smaller than ρr. The
random event “ρ < ρr” (where the randomness is in ρr!) has an epistemic (known to us),
frequentist probability of 5%. We can bet on its truth successfully 1 : 19, and we can even
bet on its complement successfully 19 : 1; that means, we have not only a lower, but a
proper probability for this event and a Bayesian (pair of) fair bet(s). The bets can be
validated by taking any sequence of (different) independent experiments with arbitrary
values of ρ, the (unselected!) observed values of r and the corresponding values of ρr; in
exactly 5% of all cases (in the long run), ρ will be found to be less than ρr.

“If a value r = .99 were obtained from the sample, we should have a fiducial 5% ρ
equal to about .765. The value of ρ can then only be less than .765 in the event that r has
exceeded its 95% point, an event which is known to occur just once in 20 trials. In this
sense ρ has a probability of just 1 in 20 of being less than .765.” Here (if “in this sense” is
interpreted correctly) Fisher is still correct, but dangerously close to his later mistake of
considering the “fiducial distribution” (which he defines next) as an ordinary probability
distribution. The event “ρ < .765” can correctly be included in a sequence of events of
the form “ρ < ρr”, all having epistemic probability 1/20; but the other members of any
such sequence (“almost surely”) don’t have ρr = .765 (with some dubiously “random” ρ’s
floating around), but rather any sequence of fixed, predetermined, arbitrary, haphazardly
taken, even aleatorily random values of ρ, random values of r whose distributions depend
on them, and the corresponding values of ρr determined by r. (By contrast, when we
wanted to define a “probability distribution for ρ”, .765 would have to be a fixed value in
repetitions of the same experiment - there is nothing of that here.)

I think one of the reasons why we still have problems with fiducial probabilities, is
that we lack an adequate formalism for frequentist epistemic probabilities. For a start,
let me offer the following. Given an ordinary, aleatory parametric model, consider a
class of random “claims” or “statements” {S} depending on a random variable X on that
model. In the simplest case, this is a single random statement (e.g., “θ ≥ X − 1”), or
a complementary pair of such statements. We can call a random claim “assessable” if it
has the same (aleatory) probability under all parameter values; this probability value is
taken to define the epistemic (since it is known to us) probability P of the random claim
(cf. also [22]). We then define, for each θ, a mapping V = Vθ (depending on θ) from the
space of possible realisations of the random claims to the two-point space Ω = ΩS = {true,
false} with V (S) = “true” if S is true. Obviously, the probability of a randomly (via X)
selected claim to be true is P , independently of θ (but the set of all claims which are true
is different for each θ). Hence we obtain a fixed probability distribution on Ω (belonging
to our random claim), independently of θ.

If we have several random claims on the same probability space, we can build the
cartesian product of the ΩS ’s, and no matter what happens with the joint distributions,
the marginal distributions of the single ΩS ’s are still correct. Sometimes we may derive
new assessable claims. In particular, if we have a sequence of independent claims (based on
independent aleatory experiments), with the same probability of being true, we can apply
the law of large numbers, and hence we can bet successfully (and even fairly) P : (1− P )
on the truth of any one claim (whose realisation is randomly selected by some XS) and
will come out even in the long run. (The problem of selection among different possible
random claims or successful bets is still not quite solved in the general theory (cf. [19]):
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one idea has a deeper interpretation, and the other is mathematically more elegant.)
The “fiducial distribution of a parameter θ for a given statistic T” may be considered

as a collection, or shorthand notation, for all (mutually compatible) successful claims or
bets about θ derivable from T . (Note that Fisher writes: “for a given statistic T”! T
will be different next time.) At most it might perhaps be called a “random distribution”,
depending on T . From it can be derived epistemic probabilities and successful bets on
events of the form “a < θ < b” (etc., by simple linear operations), but not, e.g., of the
form “θ2 < a” or “|θ| < b” (cf. [25]).

Replacing equal probabilities by an infimum of probabilities in the introduction of
epistemic probabilities, most of the argument (except the fair bet aspect) can be done also
with lower probabilities. There are some connections with belief function theory [27], but
the interpretation is different.

It seems that Zabell ([31], e.g. p. 374), and probably many other readers, were
confused by Fisher’s wild switching between aleatory and epistemic probabilities. But at
least in his first papers, Fisher was, by intuition, always right; and the point (Fisher’s,
subconsciously, and mine) is that we need both types of probability integrated in order
to get a complete theory of statistics. One type is derived from the other in a perfectly
objective way.

Returning to [7]: In his paper, Fisher finally compares fiducial and Bayes solutions.
Curiously, he first argues by logic and not by insight that the two pertaining distributions
“must differ not only numerically, but in their logical meaning” because the results will
in general differ even though the Bayesian prior may be aleatorily true. But then he goes
into details by considering a prior for which the posterior probability of ρ < .765, given
r = .99, is not 5%, but 10%. He correctly argues that (with the Bayesian sampling) in
10% of all cases where r happens to be exactly = .99, ρ will be less than .765. “Whereas
apart from any sampling for ρ [!], we know that if we take a number of samples of 4, from
the same or from different populations [!], and for each calculate the fiducial 5% value for
ρ, then in 5% of all cases the true value of ρ will be less than the value we have found.
There is thus no contradiction between the two statements. The fiducial probability is
more general and, I think, more useful in practice ...” [exclamation marks added]. The
sequences of events considered by both arguments in a sequence of experiments are clearly
very different.

Here Fisher claims that if an (aleatory, true) Bayesian prior happens to be known,
both methods give valid though different answers (for different questions). Later (e.g., in
[11]), he strongly insists that the fiducial argument must only be used if nothing is known
about the parameter. There is something to both attitudes. Clearly, the fiducial argument
is correct and leads to successful bets even if a Bayesian prior is known. (By the way, this
is also true if an inefficient statistic is used for the fiducial argument, a point against which
Fisher later argues in his Author’s Note in [2], p. 428.) The problem is the efficiency, or
the information, or the selection problem for successful bets alluded to above. According
to present results, if an aleatory Bayesian method is available, it should be used - apart
from questions of robustness or stability, the one big area Fisher refused to look at.

5 The aposteriori interpretation of confidence intervals

As all adherents of the Neyman-Pearson school know, a 95% confidence interval has a
probability of 95% of covering the true unknown parameter apriori, before the data are in.
After the data are in, the probability is 0 or 1, but we don’t know which one. That is all the
theory says. But as probably most of those of us know who tried to teach Neyman-Pearson
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statistics to critical, intelligent, unspoilt users of statistics, these scientists have a strong
intuition that even “after the fact” there is, or should be, something with 95% probability;
and they are very frustrated when they are told their intuition is entirely wrong. (Some
may become overly critical of statistics as a whole, while some others will humbly believe
the “experts”, like the werewolf in Christian Morgenstern’s German poem.)

Now the explanation of the conflict is simple. Both sides are right, in a way. Since
Neyman considers only aleatory probabilities, for him 0 or 1 are the only possibilities. But
the scientist using statistics can bet 19 : 1 that the unknown fixed parameter is in the
fixed (but randomly derived) confidence interval, and in a long sequence of such bets with
different independent experiments (and different confidence intervals with the same level),
she will be right in 95% of all cases (or at least 95%, if she uses conservative confidence
intervals), so her bets are successful. This means, she correctly has a frequentist epistemic
probability (or lower probability, for the conservative intervals) of 95% for the event or
claim that the parameter is covered, in full accordance with her intuition.

By the way, she would be rather stupid - though not wrong - offering the same bet
again and again in the case of many independent replications of the SAME experiment,
because after a while she could have learned much more about the parameter - unless the
information that it was the same experiment was withheld from her, or some such artificial
device.

It should be noted that the aposteriori interpretation of confidence intervals (and thus
the implicit fiducial argument and a subconscious switch between aleatory and epistemic
probability) was probably centuries old (cf. the related Endnote 8 in [31]); certainly around
1900 interpretations like “the odds are 1 : 1 that the true mean is within ±1 probable
error” were commonplace (cf., e.g., “Student’s” writings; cf. also the remarks on Maskell
in [31], p. 371). It is Neyman’s merit that he clarified the purely aleatory argument; but
by restricting himself to it, he cut himself off from one half of what statistics ought to be.

Incidentally, the above explanation can perhaps throw new light on the dispute between
Neyman and Fisher around and about the invention of confidence intervals. At first, Fisher
seemed to believe that Neyman’s intervals are essentially the same as his fiducial intervals
(apart from the point of uniqueness and efficiency related to sufficiency etc.). But a
short time later, he “mysteriously” seemed to change his mind and claimed that the two
methods were very different, after all, without giving reasons. My guess and interpretation
is that Fisher, more or less consciously, always included the epistemic interpretation with
his intervals and in the beginning naively thought that Neyman did the same (given the
formal similarity of what they wrote, and the lack of formalism for the epistemic aspect),
until he suddenly (or perhaps creepingly) discovered that Neyman’s view was in fact much
more primitive.

6 From lower probabilities to fiducial probabilities

As said before, with discrete models we have to use lower probabilities to describe suc-
cessful bets. Moreover, even if ideally we have a model with a fiducial proper probability,
in reality (e.g., with a digital computer) the data are always discretized. But when the
discretization gets finer and finer, the lower probabilities of an event and its complement
converge to proper probabilities adding to one.

A simple example is the following [14]. Let X be uniformly distributed on [θ, θ + 1] (θ
real), and let (for every n) Yn be X rounded upwards to the nearest multiple of 1/n. Then
for every c between 0 and 1, and all θ, Pθ(Yn ≤ θ+c) ≤ c, and Pθ(Yn > θ+c) ≤ 1−c+1/n,
hence we can bet with epistemic lower probability 1 − c on [θ < yn − c], and with odds
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(c− 1/n) : (1− c+1/n) on [θ ≥ yn− c]. The sum of the lower probabilities is 1− 1/n → 1
as n →∞.

Thus, fiducial probabilities are just a limiting case of lower probabilities, though in-
teresting in their own right because they allow fair (pairs of) bets (with a frequentist
interpretation!). Hence they produce something similar to the Bayesian omelette, after
all, without breaking the Bayesian eggs.
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