Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4123))

Abstract

The results of computer generation of the largest graphs of diameter 2 and maximum degree 6 are presented. The order of such graphs is equal 32. There are exactly 6 graphs of diameter 2 and maximum degree 6 on 32 vertices including one vertex-transitive graph.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dinneen, M.J.: New results for the degree/diameter problem. Networks 24, 359–367 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  2. The degree/diameter problem for graphs, http://maite71.upc.es/grup_de_grafs/grafs/taula_delta_d.html

  3. Hoffman, A.J., Singleton, R.R.: On Moore graphs with diameters 2 and 3. IBM J. Res. Develop. 4, 497–504 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  4. Erdös, P., Fajtlowicz, S., Hoffman, A.J.: Maximum degree in graphs of diameter 2. Networks 10, 87–90 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  5. Elspas, B.: Topological constrains on interconnected-limited logic. In: Proc. 5th Ann Symp. Switching Circuit Theory and Logic Design, pp. 133–147 (1964)

    Google Scholar 

  6. Molodtsov, S.G.: Computer-aided generation of molecular graphs. MATCH 30, 213–224 (1994)

    MATH  Google Scholar 

  7. Faradjev, I.A.: Constructive enumeration of combinatorial objects. In: Problemes Combinatoires et Theorie des Graphes, Colloque Internationale CNRS, vol. 260, pp. 131–135 (1978)

    Google Scholar 

  8. Cambell, L., Carlsson, G.E., Dinneen, M.J., Faber, V., Fellows, M.R., Langston, M.A., Moore, J.W., Mullhaupt, A.P., Sexton, H.B.: Small diameter symmetric networks from linear groups. IEEE Trans. Comput. 41, 218–220 (1992)

    Article  Google Scholar 

  9. McKay, B.D., Miller, M., Širáň, J.: A note on large graphs of diameter two and given maximum degree. J. Combin. Theory Ser. B 74, 110–118 (1998)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Molodtsov, S.G. (2006). Largest Graphs of Diameter 2 and Maximum Degree 6. In: Ahlswede, R., et al. General Theory of Information Transfer and Combinatorics. Lecture Notes in Computer Science, vol 4123. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11889342_54

Download citation

  • DOI: https://doi.org/10.1007/11889342_54

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46244-6

  • Online ISBN: 978-3-540-46245-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics