
Blinded Fault Resistant Exponentiation

Guillaume Fumaroli and David Vigilant

Axalto
6 rue de la Verrerie, F-92190 Meudon, France.

{gfumaroli,dvigilant}@axalto.com

Abstract. As the core operation of many public key cryptosystems,
group exponentiation is central to cryptography. Attacks on its imple-
mentation in embedded device setting is hence of great concern. Re-
cently, implementations resisting both simple side-channel analysis and
fault attacks were proposed. In this paper, we go further and present an
algorithm that also inherently thwarts differential side-channel attacks
in finite abelian groups with only limited time and storage overhead.

1 Introduction

In traditional cryptanalysis, only inputs and outputs of cryptographic algorithms
are available to the attacker. Unfortunately, this assumption is inaccurate when
the hardware implementation is in the hands of the attacker. A new range of
attacks known as implementation attacks is then applicable. Embedded devices
such as smartcards are especially targeted by these implementation attacks, that
may be either passive or active.

Passive attacks are based on side-channel analysis introduced in [1], whose
principle consists in monitoring the device to find correlations between some
physical information leakage and the secret key manipulated by the device. While
simple side-channel analysis refers to a correlation involving a single acquisition,
differential side-channel analysis recovers the secret in several attempts by using
the correlation between different acquisitions and a part of the secret.

Active attacks or fault attacks consist in carefully forcing the cryptographic
device to perform erroneous operations such that the result leaks information
about the secret data involved in the computation.

Group exponentiation is at the basis of many public key cryptosystems such
as RSA, ECC or the Diffie-Hellman key exchange in some group. Cryptosystems
based on exponentiation are particularly sensitive to implementation attacks
both active [2] and passive [3].

In this paper, we present an exponentiation algorithm that resists all fore-
mentionned implementation attacks in finite abelian groups.

Our countermeasure features a novel base point blinding technique, based
on the so-called Montgomery ladder introduced in [4], that requires fewer group
operations than other techniques achieving the same level of protection.

In any finite abelian group whose order is unknown, our technique becomes
the most efficient one requiring no pre-computations. In particular, this is the

case for RSA as the factorization of the modulus and the public exponent are
rarely available to the device. Note that our countermeasure also fully applies to
the ECC setting since the randomization of projective coordinates, introduced
by Coron in [5], was later proven insufficiant by Goubin in [6]. As pointed out
recently by Dupuy and Kuntz-Jacques [7], when the attacker can tamper with
the base element, scalar point multiplications also require randomization of the
computation flow to provide DPA resistance.

In section 2, the history of exponentiation algorithms targetting constrained
embedded devices is reviewed. Section 3 presents our algorithm and analyses its
security and efficiency. Section 4 concludes.

2 A review of previous work

In the sequel, G denotes a multiplicatively-written finite abelian group.

Though more refined algorithms for computing group exponentiations exist
in the litterature, only those based on binary ladders are relevant in constrained
environments such as smartcards.

Square-and-multiply algorithms (Fig. 1) have first been considered for im-
plementation, but they are easily broken by simple side-channel attacks.

Input: x ∈ G, k =
∑t−1

i=0
ki2

i ∈ N

Output: xk ∈ G

R0 ← 1; R1 ← x
for j = t− 1 down to 0 do

R0 ← R0
2

if kj = 1 then R0 ← R0R1

end for

return R0

Fig. 1. Square-and-multiply

Further, square-and-multiply-always algorithms (Fig. 2) introduced by Coron [5]
were designed to prevent simple side-channel attacks by performing dummy op-
erations. However, such algorithms bring specific weaknesses with respect to
so-called safe-error attacks [8].

Montgomery ladder [4] was initially developped for elliptic curve scalar mul-
tiplication. Later, Joye et al. [8] extended it to exponentiation in any abelian
group and pointed out its intrinsic resistance to simple side-channel attacks and
safe-error attacks leveraging a slight modification. Let Lj =

∑t−1

i=j ki2
i−j and

Hj = Lj + 1. As pointed out in [8], the principle of Montgomery ladder is based

Input: x ∈ G, k =
∑t−1

i=0
ki2

i ∈ N

Output: xk ∈ G

R0 ← 1; R2 ← x
for j = t− 1 down to 0 do

R0 ← R0
2

Rk̄j
← Rk̄j

R2

end for

return R0

Fig. 2. Square-and-multiply-always

on the following observation:

(xLj , xHj) =







(

(

xLj+1

)2
, xLj+1xHj+1

)

if kj = 0
(

xLj+1xHj+1 ,
(

xHj+1

)2
)

if kj = 1 .

This formula leads to Fig. 3 algorithm. The registers R0 and R1 contain the
values of xLj and xHj respectively. (R0, R1) is initialized with (xLt , xHt) = (1, x).
After t iterations, (R0, R1) contains (xL0 , xH0) = (xk, xk+1).

Input: x ∈ G, k =
∑t−1

i=0
ki2

i ∈ N

Output: xk ∈ G

R0 ← 1; R1 ← x
for j = t− 1 down to 0 do

Rk̄j
← Rk̄j

Rkj

Rkj
← R2

kj

end for

return R0

Fig. 3. Joye et al. Montgomery ladder

However, Montgomery ladder remains sensitive to differential side-channel
analysis. As for group exponentiations, differential side-channel analysis may be
prevented by randomizing either the group, the exponent or the base element.
Randomization of the group structure was not explored in this paper. Known
techniques targetting the exponent and the base element are presented in more
details in [5, 9]. Blinding the exponent is not well suited for exponentiations in
finite abelian groups. Indeed, the group order is generally unknown and its com-
putation may be difficult. So blinding the base seems to be the most appropriate

countermeasure. Usually, blinding the base element consists in multiplying the
input x ∈ G with a random element r picked at random from G; the value
of xd ∈ G is then obtained as (xr)d × (r−1)d. This countermeasure introduced
in [5] requires two balanced group exponentiations, or a subtle but unpractical
pre-computation trick that may be difficult to handle by the personalization
process.

3 Our algorithm

As in the previous section, Lj =
∑t−1

i=j ki2
i−j and Hj = Lj + 1. Let us consider

Fig. 3 algorithm and suppose (R0, R1) contains ρ(xLj+1 , xHj+1) at the beginning
of some iteration for some ρ ∈ G. Then, (R0, R1) will contain ρ2(xLj , xHj) at
the beginning of the next iteration. This remark leads to Fig. 4 algorithm.

Input: x ∈ G, k =
∑t−1

i=0
ki2

i ∈ N

Output: xk ∈ G

Pick a random r ∈ G

R0 ← r; R1 ← rx; R2 ← r−1

for j = t− 1 down to 0 do

Rk̄j
← Rk̄j

Rkj

Rkj
← R2

kj

R2 ← R2
2

end for

return R2R0

Fig. 4. Side-channel analysis resistant Montgomery ladder

As will be shown in the sequel, the more refined Fig. 5 algorithm will have
to be considered as Fig. 4 algorithm fails to detect some fault attacks.

At initialization, the couple of registers (R0, R1) is multiplicatively blinded by
a secret random element r ∈ G. Throughout the computation, (R0, R1) is then

instrinsically multiplicatively masked by the element r2
t−j

∈ G. The register R2

is initialized with r−1 ∈ G and holds the compensative factor r−2
t−j

∈ G such
that R2(R0, R1) equals (xLj , xHj) ∈ G2. At the end of the computation, the
actual multiplication R2R0 hence evaluates to xk ∈ G.

3.1 Security Analysis

Some masking elements r ∈ G exhibit the undesirable property that r2
j

= 1
for some j ∈ N. For such elements, (R0, R1) is permanently unmasked after j
iterations.

Input: x ∈ G, k =
∑t−1

i=0
ki2

i ∈ N,
CKSref the checksum of k.

Output: xk ∈ G

Pick a random r ∈ G

R0 ← r; R1 ← rx; R2 ← r−1

init(CKS)
for j = t− 1 down to 0 do

Rk̄j
← Rk̄j

Rkj

Rkj
← R2

kj

R2 ← R2
2

update(CKS, kj)
end for

R2 ← R2 ⊕ CKS⊕ CKSref

return R2R0

Fig. 5. Side-channel analysis and fault attacks resistant Montgomery ladder

Definition 1 (Weak mask). Let WG =
⋃

i∈N

{

x ∈ G
∣

∣ x2
i

= 1
}

. Any element

x ∈ WG is called a weak mask.

Theorem 1 (Weak mask probability in finite abelian groups). Let G

be a finite abelian group with |G| = α2β for some odd α. Let Prr←G {r ∈ WG}
denote the probability that r be a weak mask when r is picked randomly uniformly

from G. We have

Pr
r←G

{r ∈ WG} =
1

α
.

Proof. See Appendix A.

In our context, the fraction 1/α where α denotes the greatest odd factor of
|G| is necessarily negligible. Otherwise, |G| would be smooth and the discrete
logarithm in G would be efficiently solved by the Pohlig–Hellman algorithm [10].

Suppose β = 100 and |G| ' 21024. Then, the probability of picking a weak
mask is about 1/2924 < 10−278. This shows that weak masks never happen in
practice.

Simple side-channel analysis and safe-error attacks The square-and-
multiply algorithm (Fig. 1) is sensitive to simple side-channel analysis. Indeed,
it contains a conditional branching on the multiplication that directly depends
on the secret exponent. Then, since the physical leakage of a square can be dis-
tinguished from that of a multiplication, the secret data can be easily retrieved
from just one acquisition.

The square-and-multiply-always algorithm (Fig. 2) perfectly balances the
former conditional branching by adding dummy multiplications. However, it in-
troduces a specific weakness toward safe-error attacks that consist in carefully
injecting a fault during the execution and checking whether it impacts on the
result. In particular, the so-called M-safe-error attack consist in disturbing the
multiplication. The value of the secret exponent can then be retrieved by dis-
tinguishing between required and dummy multiplications, corresponding to an
exponent bit equal to 1 and 0, respectively.

Because of its high regularity, the Montgomery ladder algorithm (Fig. 3) is
intrinsically resistant to simple side-channel attacks. It is also insensitive to safe-
error attacks [8]. If a fault is injected at any time during the computation, the
result is necessarily faulty. As it keeps the same structure, our algorithm (Fig. 4)
clearly remains equivalent to Montgomery ladder in terms of simple side-channel
analysis and fault attack resistance.

Differential side-channel analysis The intermediate variables are masked by
r2

i

at each step i of the computation, and are hence statistically independant
from the input and the output throughout the computation, so they cannot be
exploited by the attacker.

Only those acquisitions for which r is a weak mask may be relevant to an at-
tacker. In this case, the intermediate variables are unmasked after some steps of
our algorithm. Clearly, the expected number of acquisitions to mount a differen-
tial side-channel attack against our algorithm grows inversely proportional with
the probability that r be a weak mask. Since the probability of picking a weak
mask is negligible, differential side-channel attacks are infeasible in practice.

Fault attacks The resistance of our algorithm against fault attacks is based
on the relationship R2(R0, R1) = (xκ, xκ+1) for some κ ∈ N. If an error occurs
on a temporary result or during one of the group operations at any time during
the computation, the mutual coherence of R0, R1, and R2 is definitively lost.
As a consequence, the result of the last multiplication R2R0 is just some perfect
random number to an attacker that cannot be exploited as such, at least if we
assume the input was not blinded with a weak mask. Again, as weak masks are
extremely unlikely in practice, any such error will be caught by our countermea-
sure.

However, as in [11], Fig. 4 algorithm fails to thwart exponent or loop counter
disturbance as it does preserve the former relationship. Such faults hence have
to be handled by other techniques. As pointed out in [12], avoiding conditional
branching is safer since modifying the result of a comparison or the value of a
loop counter by tampering with the associated register is easy. On the contrary,
in order to by-pass an instruction, the attacker would have to increment the
program counter. Such a precise modification is hardly feasible in practice. For
that reason, we propose combining the on-the-fly checksum computation of [11]
with the infective computation technique of [12] (Fig. 5). Let γ = CKS⊕CKSref

be the difference between the re-computed checksum CKS and the reference

checksum value CKSref . The most significant bits of R2 are xored with γ before
the last multiplication. Hence, the final result will be spoiled whenever γ 6= 0
i.e. whenever the exponent or the loop counter has been tampered with.

3.2 Efficiency Analysis

Time Montgomery ladder (Fig. 3) requires t multiplications and t squarings.
Our algorithm (Fig. 4) requires t more squarings for computing the compen-
sative factor. The inversion and the two multiplications involved in the masking
and unmasking process can be neglected with respect to the cost of the overall
computation. Let M denote the cost of a multiplication. The cost of a squaring
can be approximated to 0.8M . Each step of our algorithm costs 2.6M compared
to 1.8M for Montgomery ladder, that is a 44.44% time complexity increase.

Storage Compared to Montgomery ladder, our algorithm requires one more
register R2 for the compensative factor, that is a 50% storage increase.

Note however that many cryptographic co-processors cannot store the result
of some operations – as the modular multiplication or squaring – at the address
of the operands. With such architectures, three registers for the standard Mont-
gomery ladder and four registers for our algorithm are needed, corresponding to
a 33% storage increase.

4 Conclusion

This paper presents an algorithm for computing exponentiations in finite abelian
groups, especially relevant in the RSA and ECC setting, that is intrinsically
resistant to all known simple and differential side-channel analysis and fault
attacks, while requiring roughly at most 50% more time and storage compared
to traditional balanced implementations.

Our countermeasure is especially suited when only the parameters needed
for the computation itself are known, which is extremely valuable as additional
parameters are rarely available to the cryptographic device. In particular, neither
the group order nor the public exponent are required.

Acknowledgment

The authors would like to thank Jean Creignou for many helpful remarks on the
preliminary version of this paper.

A Proof of Theorem 1

Lemma 1 (Cauchy’s Lemma). Any finite group whose order is divisible by a

prime number p contains an element of order p.

Definition 2. Let G be a finite abelian group and p be a prime number. Let

Gp denote the subgroup of all elements of G whose order is a power of p. Any

element x ∈ Gp is called a p-torsion element of G.

Lemma 2. Let G be a finite abelian group. We have

G ∼=
∏

p | |G|

Gp .

Proof. Let |G| =
∏n

i=1
pβi

i where pi,i∈{1,...,n} are prime numbers.
Let us show that the homomorphism ψ defined as

n
∏

i=1

Gpi

ψ
−→ G

(x1, . . . , xn) 7−→

n
∏

i=1

xi

is an isomorphism. First, we show that ψ is a monomorphism.
Let x and y be in the abelian group G. Let |〈x〉| = a be the order of x and

|〈y〉| = b the order of y in G. First, observe that if a and b are coprime, then
xy = 1 ⇒ x = y = 1. This is a consequence of Bézout’s identity. Since a and b
are coprime, there exists integers u and v such that au+ bv = 1. We have

xy = 1⇒ (xy)au = 1 (1)

and as xa = 1, we have (xy)au = xauyau = yau. Then, since yb = 1, we get

(xy)au = yau = yauybv = yau+bv = y . (2)

From (1) and (2), we have y = 1. In the same way, we show xy = 1⇒ x = 1.
Now let us suppose that ψ(x1, . . . , xn) =

∏n

i=1
xi = 1. Clearly the order of x1

and the order of
∏n

i=2
xi are coprime, and as we have shown above, x1×

∏n

i=2
xi =

1 ⇒ x1 = 1 and
∏n
i=2

xi = 1. In particular x1 = 1. Then, by induction on the
relation

∏n

i=2
xi = 1, we get the expected result

ψ(x1, . . . , xn) =

n
∏

i=1

xi = 1⇒ x1 = . . . = xn = 1 .

Now let us show that ψ is an epimorphism.
For all y ∈ G, |〈y〉| divides |G|. Hence, |〈y〉| =

∏n

i=1
pγi

i where γi ≤ βi for
all i ∈ {1, . . . , n}. Let ui =

∏

j 6=i p
γj

j for i ∈ {1, . . . , n}. Then, yui ∈ Gpi
since

|〈yui〉| = pγi

i . Moreover, the ui,i∈{1,...,n} are coprime as there exists no integer
dividing all ui. According to Bézout’s identity, there exists a1, . . . , an such that
∑n

i=1
aiui = 1. Hence, for all y ∈ G, y =

∏n

i=1
xi with xi = yuiai ∈ Gpi

. ut

Lemma 3. Let G be a group with |G| =
∏n

i=1
pβi

i where pi,i=1...n are prime

numbers. Then, |Gpi
| = pβi

i .

Proof. Necessarily, |Gpi
| is a power of pi, say pγi

i . Indeed, from Cauchy’s Lemma,
if |Gpi

| were divisible by some prime number p 6= pi, it would contain an element
of order p, which is contradictory with the definition of Gpi

. Then, since G ∼=
∏

p | |G|Gp, we have
∏

i p
βi

i =
∏

i p
γi

i , so γi = βi for all i. ut

We have WG = G2 and, from lemma 3, |G2| = 2β. Finally,

Pr
r←G

{r ∈ WG} =
|WG|

|G|
=

1

α
.

References

1. Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. In: CRYPTO. Volume 1109 of Lecture Notes in Computer
Science. (1996) 104–113

2. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the Importance of Checking Cryp-
tographic Protocols for Faults. Lecture Notes in Computer Science 1233 (1997)
37–51

3. Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. Lecture Notes in Com-
puter Science 1666 (1999) 388–397

4. Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factorization.
Mathematics of Computation 48(177) (January 1987) 243264

5. Coron, J.S.: Resistance Against Differential Power Analysis for Elliptic Curve
Cryptosystems. In Ç.K. Koç, Paar, C., eds.: Cryptographic Hardware and Embed-
ded Systems — CHES 2002. Volume 1717 of Lecture Notes in Computer Science.
(1999) 292–302

6. Goubin, L.: A refined power analysis attack on elliptic curve cryptosystems. In
Springer-Verlag, ed.: Public Key Cryptography PKC 2003. Volume 2567 of Lecture
Notes in Computer Science. (2003) 199211

7. Dupuy, W., Kunz-Jacques, S.: Resistance of Randomized Projective Coordinates
Against Power Analysis. In B.S. Kaliski Jr., c.K., Paar, C., eds.: Cryptographic
Hardware and Embedded Systems — CHES 2005. Volume 3659 of Lecture Notes
in Computer Science. (2005) 1–12

8. Joye, M., Yen, S.M.: The Montgomery Powering Ladder. In B.S. Kaliski Jr., c.K.,
Paar, C., eds.: Cryptographic Hardware and Embedded Systems — CHES 2002.
Volume 2523 of Lecture Notes in Computer Science. (2002) 291–302

9. Trichina, E., Bellezza, A.: Implementation of elliptic curve cryptography with
built-in counter measures against side channel attacks. In B.S. Kaliski Jr., c.K.,
Paar, C., eds.: Cryptographic Hardware and Embedded Systems — CHES 2002.
Volume 2523 of Lecture Notes in Computer Science. (2002) 98–113

10. Pohlig, S.C., Hellman, M.E.: An improved algorithm for computing logarithms
over GF(p) and its cryptographic significance. IEEE Transactions on Information
Theory 24 (1978) 106–110

11. Giraud, C.: Fault Resistant RSA Implementation. In Breveglieri, L., Koren, I.,
eds.: 2nd Workshop on Fault Diagnosis and Tolerance in Cryptography — FDTC
2005. (2005) 142–151

12. Ciet, M., Joye, M.: Practical Fault Countermeasures for Chinese Remaindering
Based RSA. In Breveglieri, L., Koren, I., eds.: 2nd Workshop on Fault Diagnosis
and Tolerance in Cryptography — FDTC 2005. (2005) 124–131

