Skip to main content

Automatic Reconstruction of Dendrite Morphology from Optical Section Stacks

  • Conference paper
Computer Vision Approaches to Medical Image Analysis (CVAMIA 2006)

Abstract

The function of the human brain arises from computations that occur within and among billions of nerve cells known as neurons. A neuron is composed primarily of a cell body (soma) from which emanates a collection of branching structures (dendrites). How neuronal signals are processed is dependent on the dendrites’ specific morphology and distribution of voltage-gated ion channels. To understand this processing, it is necessary to acquire an accurate structural analysis of the cell. Toward this end, we present an automated reconstruction system which extracts the morphology of neurons imaged from confocal and multi-photon microscopes. As we place emphasis on this being a rapid (and therefore automated) process, we have developed several techniques that provide high-quality reconstructions with minimal human interaction. In addition to generating a tree of connected cylinders representing the reconstructed neuron, a computational model is also created for purposes of performing functional simulations. We present visual and statistical results from reconstructions performed both on real image volumes and on noised synthetic data from the Duke-Southampton archive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Urban, S.: Automatic reconstruction of dendrite morphologies from optical sections of living fluorescently-labeled neurons. Master’s thesis, Univ. of Houston (2005)

    Google Scholar 

  2. NEURON (2005), http://www.neuron.yale.edu/neuron

  3. Al-Kofahi, K., Lasek, S., Szarowski, D., Pace, C., Nagy, G.: Rapid automated three-dimensional tracing of neurons from confocal image stacks. IEEE T. Inf. Technol. B 6, 171–187 (2002)

    Article  Google Scholar 

  4. Dima, A., Scholz, M., Obermayer, K.: Automatic segmentation and skeletonization of neurons from confocal microscopy images based on the 3-D wavelet transform. IEEE T Image Process. 11, 790–801 (2002)

    Article  Google Scholar 

  5. Uehara, C., Colbert, C., Saggau, P., Kakadiaris, I.: Towards automatic reconstruction of dendrite morphology from live neurons. In: Proc. IEEE EMBS (2004)

    Google Scholar 

  6. Byrd, R., Lu, P., Nocedal, J.: A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Stat. Comp. 16, 1190–1208 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  7. Zhu, C., Byrd, R., Nocedal, J.: Algorithm 778: L-BFGS-B, FORTRAN subroutines for large scale bound constrained optimization. ACM T. Math. Software 23, 550–560 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  8. Byrd, R.H., Nocedal, J., Schnabel, R.B.: Representation of quasi-Newton matrices and their use in limited memory methods. Math. Program 63, 129–156 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  9. Konstantinidis, I., Santamaría-Pang, A., Kakadiaris, I.A.: Frames-based denoising in 3D confocal microscopy imaging. In: Proc. IEEE EMBS (2005)

    Google Scholar 

  10. Santamaría-Pang, A., Bildea, T.S., Konstantinidis, I., Kakadiaris, I.A.: Adaptive frames-based denoising of confocal microscopy data. In: Proc. IEEE Intl. Conf. Acoust Speech (ICASSP) (2006)

    Google Scholar 

  11. Otsu, N.: A threshold selection method from gray-level histograms. IEEE T. Syst. Man. Cyb. 9, 62–66 (1979)

    Article  Google Scholar 

  12. Bitter, I., Kaufman, A., Sato, M.: Penalized-distance volumetric skeleton algorithm. IEEE T. Vis. Comput. Gr. 7, 195–206 (2001)

    Article  Google Scholar 

  13. Famiglietti, E.: New metrics for analysis of dendritic branching patterns demonstrating similarities and differences in ON and ON-OFF directionally selective retinal ganglion cells. J. Comp. Neurol. 324, 295–321 (1992)

    Article  Google Scholar 

  14. Rall, W.: Core conductor theory and cable properties of neurons. In: Handbook of Physiology: The Nervous System, vol. 1, pp. 39–98. Williams and Wilkins (1977)

    Google Scholar 

  15. Cannon, R.C., Turner, D.A., Pyapali, G.K., Wheal, H.V.: An on-line archive of reconstructed hippocampal neurons. J. Neurosci. Meth. 84, 49–54 (1998)

    Article  Google Scholar 

  16. Duke-Southampton Archive (2005), http://neuron.duke.edu/cells/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Urban, S. et al. (2006). Automatic Reconstruction of Dendrite Morphology from Optical Section Stacks. In: Beichel, R.R., Sonka, M. (eds) Computer Vision Approaches to Medical Image Analysis. CVAMIA 2006. Lecture Notes in Computer Science, vol 4241. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11889762_17

Download citation

  • DOI: https://doi.org/10.1007/11889762_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46257-6

  • Online ISBN: 978-3-540-46258-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics