Skip to main content

Adaptively Incremental Self-organizing Isometric Embedding

  • Conference paper
Book cover Neural Information Processing (ICONIP 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4232))

Included in the following conference series:

Abstract

In this paper, we propose an adaptive incremental nonlinear dimensionality reduction algorithm for data stream in adaptive Self-organizing Isometric Embedding [1][3] framework. Assuming that each sampling point of underlying manifold and its adaptive neighbors [3] can preserve the principal directions of the regions that they reside on, our algorithm need only update the geodesic distances between anchors and all the other points, as well as distances between neighbors of incremental points and all the other points when a new point arrives. Under the above assumption, our algorithms can realize an approximate linear time complexity embedding of incremental points and effectively tradeoff embedding precision and time cost.

This work was supported in part by Sci.-Tech. Development Project of Tianjin (Grant 04310941R) and Applied Basic Research Project of Tianjin (Grant 05YFJMJC11700).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yuexian, H., Zheng, D., Pilian, H.: Self-organizing Isometric Embedding. Journal of Computer Research and Development (2005) (in Chinese)

    Google Scholar 

  2. Law, M.: Nonlinear Manifold Learning For Data Stream. In: Proceedings of SIAM Data Mining (2004)

    Google Scholar 

  3. Yuexian, H., Jingyi, W., Pilian, H.: Locally Adaptive Nonlinear Dimensionality Reduction. Computer applications 3 (2006) (in Chinese)

    Google Scholar 

  4. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290, 2323–2326 (2000)

    Article  Google Scholar 

  5. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)

    Article  Google Scholar 

  6. Tenenbaum, J.B., et al.: A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science 290, 2319–2323 (2000)

    Article  Google Scholar 

  7. Sammon, J.W.: A non-linear mapping for data structure analysis. IEEE Transactions on Computers C18(5), 401–409 (1969)

    Article  Google Scholar 

  8. Kohonen, T.: Self-Organizing Maps, 3rd edn. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  9. Hastie, T., Stuetzle, W.: Principal curves. Journal of the American Statistical Association 84, 502–516 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  10. Tibshirani, R.: Principal curves revisited. Statistics and Computing 2, 183–190 (1992)

    Article  Google Scholar 

  11. SchÄolkopf, B., Smola, A.J., MÄuller, K.-R.: Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation 10, 1299–1319 (1998)

    Article  Google Scholar 

  12. Baldi, P., Hornik, K.: Neural networks and principal component analysis: learning from examples without local minima. Neural Networks 2, 53–58 (1989)

    Article  Google Scholar 

  13. DeMers, D., Cottrell, G.: Non-linear dimensionality reduction. In: Advances in Neural Information Processing Systems, vol. 5, pp. 580–587. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  14. Kaplan, D., Glass, L.: Understanding Nonlinear Dynamics. Springer, Heidelberg (1995)

    MATH  Google Scholar 

  15. Camastra, F., Vinciarelli, A.: Estimating the intrinsic dimension of data with a fractal-based method. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(10) (2002)

    Google Scholar 

  16. Kegl, B.: Intrinsic dimension estimation using packing numbers. In: Becker, S., Thrun, S., Obermayer, K. (eds.) Advances in neural information processing systems 15, pp. 681–688. MIT Press, Cambridge (2003)

    Google Scholar 

  17. Brand, M.: Charting a manifold. In: NIPS 2002 (2002)

    Google Scholar 

  18. Out of Sample Extensions for LLE, Isomap, MDS, Eigenmaps, and Spectral Clustering. In: NIPS 2003 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yuexian, H., Kefei, G., Pilian, H. (2006). Adaptively Incremental Self-organizing Isometric Embedding. In: King, I., Wang, J., Chan, LW., Wang, D. (eds) Neural Information Processing. ICONIP 2006. Lecture Notes in Computer Science, vol 4232. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11893028_109

Download citation

  • DOI: https://doi.org/10.1007/11893028_109

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46479-2

  • Online ISBN: 978-3-540-46480-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics