Skip to main content

A Hybrid Algorithm to Infer Genetic Networks

  • Conference paper
  • 1317 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4233))

Abstract

A pattern recognition approach, based on shape feature extraction, is proposed to infer genetic networks from time course microarray data. The proposed algorithm learns patterns from known genetic interactions, such as RT-PCR confirmed gene pairs, and tunes the parameters using particle swarm optimization algorithm. This work also incorporates a score function to separate significant predictions from non-significant ones. The prediction accuracy of the proposed method applied to data sets in Spellman et al. (1998) is as high as 91%, and true-positive rate and false-negative rate are about 61% and 1%, respectively. Therefore, the proposed algorithm may be useful for inferring genetic interactions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chuang, C.L., Chen, C.M., Shieh, G.S.: A pattern recognition approach to infer genetic networks. Technical Report C2005-05, Institute of Statistical Science, Academia Sinica, Taiwan (2005)

    Google Scholar 

  2. de la Fuente, A., Bing, N., Hoeschele, I., Mendes, P.: Discovery of meaningful associations in genomic data using partial correlation coefficients. Bioinformatics 20, 3565–3574 (2004)

    Article  Google Scholar 

  3. Eberhart, R.C., Kennedy, J.: A new optimizer using particle swarm theory. In: Proc. 6th Int. Symp. Micro Machine and Human Science, pp. 39–43 (1995)

    Google Scholar 

  4. Friedman, N., Linial, M., Nachman, I., Pe’er, D.: Using Bayesian network to analyze expression data. In: Proc. of the Fourth Annual Conf. on Research in Computational Molecular Biology, pp. 127–135 (2000)

    Google Scholar 

  5. Hughes, T.R., Marton, M.J., Jones, A.R., Roberts, C.J., Stoughton, R., et al.: A Functional discovery via a compendium of expression profiles. Cell 102, 109–126 (2000)

    Article  Google Scholar 

  6. Kafri, R.A., Rar-Even, Pilpel, Y.: Transcription control reprogramming in genetic backup circuits. Nat. Genet. 37, 295–299 (2005)

    Article  Google Scholar 

  7. Kass, M., Witkin, A., Terzopoulos, D.: Snake: Snake energy models. Int. J. Comput. Vision, 321–331 (1988)

    Google Scholar 

  8. Kyoda, A., Baba, K., Onami, S., Kitano, H.: DBRF–MEGN method: an algorithm for deducing minimum equivalent gene networks from large-scale gene expression profiles of gene deletion mutants. Bioinformatics 20, 2662–2675 (2004)

    Article  Google Scholar 

  9. Lesage, G., Sdicu, A.M., Manard, P., Shapiro, J., Hussein, S., et al.: Analysis of beta-1,3-glucan assembly in Saccharomyces cerevisiae using a synthetic interaction network and altered sensitivity to caspofungin. Genetics 167, 35–49 (2004)

    Article  Google Scholar 

  10. Schäfer, J., Strimmer, K.: An empirical Bayes approach to inferring large-scale gene association networks. Bioinformatics 21, 754–764 (2005)

    Article  Google Scholar 

  11. Shieh, G.S., Jiang, Y.C., Hung, Y.C., Wang, T.F.: A Regression Approach to Reconstruct Gene Networks. In: Proc. of 2004 Taipei Symp. on Statistical Genome, pp. 357–370 (2004)

    Google Scholar 

  12. Shieh, G.S., Chen, C.M., Yu, C.Y., Huang, J., Wang, W.F.: A stepwise structural equation modeling algorithm to reconstruct genetic networks. Technical Report C2005-04, Institute of Statistical Science, Academia Sinica, Taiwan (2005)

    Google Scholar 

  13. Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders, K., Eisen, M.B., Brown, P.O., Botstein, D., Futcher, B.: Comprehensive identification of cell cycle-regulated genes of the yeast Sarcharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell 9, 3273–3297 (1998)

    Google Scholar 

  14. Tong, A.H., et al.: Systematic genetic analysis with ordered arrays of Yeast deletion mutants. Science 294, 2364–2366 (2001)

    Article  Google Scholar 

  15. Tong, A.H., et al.: Global mapping of the Yeast genetic interaction network. Science 303, 808–813 (2004)

    Article  Google Scholar 

  16. Wong, S.L., Roth, F.P.: Transcriptional compensation for gene loss. Genetics (2005) (published online, July 5, 2005), 10.1534/genetics.105. 046060

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chuang, CL., Chen, CM., Shieh, G.S. (2006). A Hybrid Algorithm to Infer Genetic Networks. In: King, I., Wang, J., Chan, LW., Wang, D. (eds) Neural Information Processing. ICONIP 2006. Lecture Notes in Computer Science, vol 4233. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11893257_118

Download citation

  • DOI: https://doi.org/10.1007/11893257_118

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46481-5

  • Online ISBN: 978-3-540-46482-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics