
I. King et al. (Eds.): ICONIP 2006, Part III, LNCS 4234, pp. 1028 – 1037, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Prototype-Based Threshold Rules

Marcin Blachnik1 and Włodzisław Duch2,3

1 Division of Computer Methods, Department of Electrotechnology and Metallurgy, The
Silesian University of Technology, Krasińskiego 8, 40-019 Katowice, Poland

marcin.blachnik@polsl.pl
2 Department of Informatics, Nicolaus Copernicus University, Grudziądzka 5, Toruń, Poland

3 School of Computer Engineering, Nanyang Technological University, Singapore
Google: Duch

Abstract. Understanding data is usually done extracting fuzzy or crisp logical
rules using neurofuzzy systems, decision trees and other approaches. Prototype-
based rules are an interesting alternative providing in many cases simpler, more
accurate and more comprehensible description of the data. Algorithm for
generation of threshold prototype-based rules are described and a comparison
with neurofuzzy systems on a number of datasets provided. Results show that
systems for data understanding generating prototypes deserve at least the same
attention as that enjoyed by the neurofuzzy systems.

1 Introduction

Data mining and knowledge discovery algorithms are focused on understanding of
data structures, still one of most important challenges facing computational
intelligence. Data understanding requires extraction of crisp or fuzzy logical rules. For
some datasets surprisingly accurate and simple logical rules may be generated [1], but
in some cases sets of logical rules may be too large or too complicated to be useful.
Crisp rules partition the input space into hyperboxes and thus even relatively simple
tasks that require oblique decision borders may lead to complicated sets of rules. All
major data mining software suits use as their important component decision trees for
crisp logical rule extraction. C4.5 [3] and CART [4] are the most popular algorithms
used in many packages, but there are many others, for example SSV trees [5] used in
the Ghostminer package [6]. Inductive machine learning algorithms are rarely used in
data mining systems. Fuzzy rules (F-rules) are more flexible and have been used in
many successful real word applications reported in literature [7]. Unfortunately this
group of methods is also limited; usually they are less transparent then crisp logical
rules (C-rules) and may be difficult to understand, therefore they are rarely found in
data mining software suits. F-rules work well with continuous numerical attributes but
the real word applications often require analysis of mixed data, including symbolic or
nominal attributes, which are not supported directly by fuzzy rules.

An alternative approach to data understanding, based on similarity [8] rather than
logic, extracts rules based on prototypes (P-rules). People making decisions rarely use
logic, but most often use their memory to recall similar cases and outcomes of
previous decisions. In similarity-based learning framework (SBL) two major types of
P-rules have been defined [9]: nearest neighbor rules, where classification decisions

 Prototype-Based Threshold Rules 1029

are based on rules assigning query vectors to the same class that majority of the
closest prototypes belong to, and the threshold rules, where each prototype has an
associated distance threshold which defines subspace around the prototype with
associated class label.

One way to define prototypes threshold rules is by using heterogeneous decision
trees (HDT) [10], a classical decision tree algorithm that is extended to use new
attributes based on distances between training vectors. This algorithm has found some
of the most accurate and simplest descriptions of several datasets. Another approach
to threshold rules is based on a Prototype Threshold Decision List (PTDL), where
linear list of ordered rules is created. In this paper the PTDL algorithm is introduced
and compared with HDT. The next section describes how P-rules support different
types of attributes, the third section presents threshold rules decision list algorithm, in
the fourth section results of numerical experiments are presented, and the last section
contains conclusions and discussion.

2 Heterogeneous Distance Functions

Real word datasets often contain different types of features, creating serious
difficulties for large group of computational intelligence algorithms, including most
methods based on fuzzy rules [7][11][13]. P-rules solve the problem of combination
of continuous, discrete, symbolic and nominal attributes using heterogeneous distance
function (HDF).

HDFs introduced by Wilson and Martinez [14] allow for calculation of distance for
all types of attributes. Several types of HDF have been introduced, based on an
assumption that distances are additive:

() ()
1

, ,
n

i i
i

D d x r
α α

=
=∑x r (1)

where ()rx,D is the distance between two vectors and ()ii rxd , is the distance

calculated for a single dimension. In the SBL framework [8] HDF allow for treating
different types of features in a natural way. For real-valued or ordered discrete
features Minkovski’s distances (2) are used and for symbolic features probabilistic
distance functions (3) are used, for example:

()
1

,
n

Mink i i
i

D x r
αα

=
= −∑x r (2)

() () ()
1 1

, | |
n C

VMD j i j i
i j

D p c x p c r
αα

= =

= −∑∑x r (3)

where x and r are respectively data and reference vectors, n is the number of features,
C is the number of classes, and α is the value of exponent (α=2 for Euclidean

functions). ()|j ip c x and ()|j ip c r are calculated as

1030 M. Blachnik and W. Duch

()|
Nxij

p c xj i
Nxi

= (4)

where Nxi is the number of instances in the training set that have value x for attribute
i, and Nxij is the some as Nxi but for class j.

This types of distance functions are additive, so the overall distance function can
be calculated as a sum of contributions from both types of distance measures,
depending on the attribute types (4):

() () ()ααα
bbaa rxrxrx ,,, VDMMink DDD += (5)

where xa and ra are subsets of continuous attributes of vectors x and r, and xb and rb
are subsets of their symbolic features. Features should be normalized to assure that
each distance component has the some or comparable influence.

In P-rules α parameter have significant influence on the shape of decision borders.
Changing α value from 1 to ∞ different shapes of hypersurfaces of constant value are
obtained. For α equal 1 rhomboidal shape is obtained, for α=2 spherical, higher α
values lead to rectangular shapes, and for α=∞ lines of constant distance reach a
square shape. This aspect of P-rules can allow for smooth transition to crisp logical
rules if it is necessary. Also fuzzy rules can be extracted from datasets in this way, as
discussed in [15].

3 Threshold Rules

P-rules based on distances from prototypes create tessellation of the input space, with
most distance functions leading to convex polytope cells with hyperplane faces. Some
cells are infinite, and the use of only two prototypes r1, r2 is equivalent to the linear
discrimination, defining single hyperplane perpendicular to the line that joins them.
Threshold based rules are not based on competition for the closest prototype, but
simply assign all vectors x with D(x,r)<θ to the same class as the prototype r. The
effect is somehow similar to the use of basis expansion networks with localized
functions, such as RBFs with Gaussian functions. However, the emphasis here is not
on approximation but on data understanding, generation of a small number of simple
rules with distance functions based only on relevant features.

A constructive algorithm is recommended, creating first quite general P-rules, and
then more detailed rules and possible exceptions until the whole input space is
covered. Two strategies to solve the problem of adding new rules developed so far are
based on:

− Heterogeneous Decision Trees;
− ordered prototype threshold decision list.

3.1 Heterogeneous Decision Trees

Standard decision trees, such as the C4.5 [3], CART [4] or SSV trees [5], use only
one type of test to split the data, T(xi < θ), dividing the range of feature values xi into

 Prototype-Based Threshold Rules 1031

two or more branches. Heterogeneous decision trees (HDT), introduced in [10] use at
least two qualitatively different types of tests. Adding the second test T(D(x,rk) < θk)
based on similarity to prototypes provides localized decision borders to the
hyperplanes contributed by the standard tests. In the simplest case all training vectors
are initially taken as prototypes, using the square [N x N] distance matrix D(ri,rj),
where N is the number of input vectors. Then prototype vectors are consecutively
removed and accuracy checked, until a small number of prototypes is left and
accuracy starts to degrade. Similarities may be calculated either using Euclidean
distances or Gaussian kernel functions.

Combination of hyperplanes obtained from binary splits of features with spherical
decision borders from distance based threshold tests is quite powerful and may lead to
interesting rules, although the search for the prototype by elimination of the training
vectors is a rather costly procedure, with complexity of O(N2). This approach applied
to the Wisconsin Breast Cancer data generated a single distance based P-rule with
97.3% accuracy, providing the simplest and most accurate description of this data
found so far [10].

3.2 Prototype Threshold Decision List Algorithm

Heterogeneous classification trees used for extraction of prototype threshold rules
create hierarchical sets of rules. An alternative is given by a covering algorithm that
creates ordered list of rules that may overlap, called here Prototype Threshold
Decision List (PTDL). This algorithm is based on similar criteria like HDT
algorithms, however individual rules are stored in an ordered list, starting from the
most general rule to the most detailed. Because they are overlapping this list of rules
should be applied in an order, beginning from the most specific (and least reliable),
and if its conditions are not fulfilled the next more general rule should be checked. In
the end if none of the rules may be applied, the output label is assigned to the else
condition, covering all the remaining vectors (Fig. 1).

PTDL searches among all training vectors for a prototype that maximizes
appropriate decision tree criterion, like separability (SSV), the Gini index (CART) or
Information Gain (C4.5). Each prototype and threshold define particular rule, splitting
the data into vectors in the subspace covered by this prototype with selected threshold
(vectors that fall inside of the rule borders), and the remaining vectors that fall outside
of this subspace (outside of the rule). For multiclass problems these two types of
prototype threshold rules should be explicitly distinguished: inside rules with D(x,rk)
< θk, and outside rules with D(x,rk) ≥ θk, where each rule is defined for one particular
class. In the first case prototype rk belong to the subspace, and in the second case it
does not belong to the subspace defined by the prototype and threshold. For two class
problems distinguishing between these two types of rules is not important, however
for the multiclass problems it has significant meaning, increasing generalization and
model simplicity.

The sketch of the PTDL code is presented in Fig. 2, where for simplicity two class
problem is described. In the first step CreateList function calculates distances or
similarities between all training vectors, storing them in the square matrix D of size

1032 M. Blachnik and W. Duch

NxN where N is the number of training vectors. Then search for all possible splits of
each training vector that may increase criterion value is performed (for loop). Only
splits between pairs of neighboring vectors in each column of matrix D belonging to
different classes are considered, because only such situation guarantees maximization
of the criterion function. The middle points between these pairs of vectors are taken as
thresholds. All parameters: the criterion value (C_Crit), threshold (C_Threshol) ,
and rule consequence – class labels are calculated by the function CalcCriterion,
which returns column vectors with appropriate parameter values for currently
analyzed i-th training vector .

Fig. 1. Example of threshold rules: Rule 1 – most general; Rule 2 – more accurate; and Else
area in the remaining subspace

The best among N training vectors with appropriate threshold maximizing
particular criterion function is stored in the rule set list. When a new rule is accepted
all training vectors are classified with the current set of rules to mark all vectors that
are incorrectly classified and should be used to search for further rules. The PTDL
algorithm stops if the maximum number of rules is reached, or when all vectors are
correctly classified.

This straightforward covering algorithm does not assure good generalization. To
remedy its weakness optimal number of rules is found using internal crossvalidation
on the training data (as it is done in the SSV trees [5][10]). Using k-fold
crossvalidation test for each fold a new decision list is created. In the end at each level
of the list appropriate criterion is checked (Gini has been used here, but information
gain, balanced accuracy, separability or other criteria may be optimized), and the
optimal number of rules that maximize the desired criterion is selected. Rule
extraction algorithms frequently generate quite different sets of rules, suffering from
high variance of solutions. To avoid such situation the difference between accuracy
and standard deviation in crossvalidation calculations is optimized, selecting highly
accurate low variance solutions.

 Prototype-Based Threshold Rules 1033

function [P,PLab,TH] = CreateList(T,TLab,MaxRules)
1. input:
 T – training set
 TLab – labels of training vectors
 MaxRules – maximum number of rules

2. output:
 P – set of prototypes
 PLab–set of labels associated with each prototype P
 TH – set of thresholds for appropriate prototypes

3. var
 N – Number of training vectors
 D – distance matrix NxN
 RulN – number of created rules
 splits – list of possible splits where evaluation
 of the criterion is calculated
 C_Crit - vector of criterion values calculated for
 each split
 C_Threshold – appropriate threshold for each split
 C_PLab – class label for current split
 CurLab – Class labels predicted by set of rules,
 initially all vectors are wrong classified
 MXcrit – maximum criterion value for i-th prototype
 idx – index of best split

begin
4. D = dist(T,T);// distances between training vectors;
5. RulN=1;
6. while (RulN < MaxRuls) or ErrorsN == 0
7. for I = 1:N // considered each training vector

 as prototype
8. splits = FindPossibleSplits(D,Lab); //find all

 possible thresholds
9. [C_Crit,C_Threshold,C_PLab]=

 CalcCriterion(Dat,LabT,splits,CurLab); //For each
 threshold calculate criterion value

10. [MXcrit,idx]=max(C_Crit);//Find max. criterion value
11. if MXcrit > bestCrit
12. bestCrit = MXcrit;
13. P(RulN) = T(i);
14. TH(RulN) = C_Threshold(idx);
15. PLab = C_PLab(idx);
16. RulN = RulN+1;
17. end;
18. end
19. CurLab = ApplyRules(D,Lab,P,PLab,TH);
20. endwhile;
21. end;

Fig. 2. The PTDL algorithm code

4 Experiments with Real Datasets

To compare results obtained with PTDL, HDT and other well established methods
WEKA software was used with two popular rule extraction methods: C4.5 decision

1034 M. Blachnik and W. Duch

tree and the Decision Table algorithm, as implemented in WEKA [19]. Results
obtained with the neurofuzzy rule extraction system NefClass [12][17] are also given
for comparison. The NefClass calculations were carefully optimized changing the
number and the type of membership functions to obtain the best solution (the
difference between accuracy and standard deviation).

4.1 Datasets

For tests six different datasets were used, all from the UCI machine learning database
repository [16], except for Lancet data obtained from the authors of [16]. Each data
represents a two class problem with mixed type of attributes. A summary of these
datasets follows:

Appendicitis – small dataset with 7 attributes and 106 cases, 85 from the first class
and 21 from the second class. From this dataset 2 most relevant features were selected
using SSV tree and all tests were performed for these two features.

Cleveland Heart Disease (Cleveland) – 5 continuous attributes and 8 discrete, 303
vectors describing healthy and sick persons; 6 cases with missing values were
removed, leaving 297 vectors.

Ionosphere – two different types of radar signals reflected from ionosphere; 351
vectors with 34 attributes.

Lancet dataset – 692 breast cancer cases, 235 malignant, 457 benign, characterized
by age plus 10 binary indicators obtained from fine-needle aspirates of breast lumps,
with the final diagnosis confirmed by biopsy.

Pima Indians Diabetes (Diabetes) – 768 cases describing results of tests for
diabetes, with 500 healthy and 268 cases sick people, 8 features.

Wisconsin Breast Cancer (Wisconsin) – well known breast cancer data from a
Wisconsin hospital, with 241 cases of malignant, and 458 of benign tumors, each case
described by 9 discrete features.

4.2 Classification Results

10-fold stratified crossvalidation calculations on each dataset were performed using 5
algorithms that generate crisp and fuzzy rules, providing estimates of their
generalization. Mean accuracy obtained on test partitions is presented in Table 1. The
best results obtained for each dataset are marked as bold.

From Table 1 it is evident that the accuracy of the PTDL algorithm is almost
always among the best among algorithms tested, creating a small number of rules and
achieving in most cases best results. The Appendicitis dataset is very small and
although NefClass has produced slightly better result it has used much larger number
of fuzzy rules. For the Cleveland dataset only three P-rules were created by PTDL,
reaching significantly higher accuracy than other systems. In the diabetes case all
rule-based results are relatively poor, while MLP or SVM results on this dataset reach
77.5±2.5%, close to the simple linear discrimination analysis (LDA) reported in [20].
Therefore a single P-rule based on the shortest distance to two prototypes is sufficient
in this case instead of the threshold based rules. PTDL did surprisingly well on the
Ionosphere data, but HDT has an advantage here, achieving almost the same accuracy
with only 3 rules. Insignificant differences are found on the Lancet data, with an

 Prototype-Based Threshold Rules 1035

exception of C4.5 rules that are less accurate, with PTDL using just 3 P-rules and
NefClass 85 F-rules. Also on the Wisconsin dataset only two P-rules were used to
reach the highest accuracy with the lowest standard deviation.

Table 1. Classification results, accuracy (Acc) and standard deviation (Std) in %, the number of
rules estimates the complexity of the model

 C4.5
Decision

Table
NefClass

PTDL
(Gini)

HDT
(Gini)

10 x CV Acc Std Rules Acc Std Rules Acc Std Rules Acc Std Rules Acc Std Rules

Appendicitis 85.82 8,51 3 82,00 11,65 2 87.73 8.6 33 85.77 8.6 5 83.78 9,0 3

Cleveland 76.77 7,17 17 82.09 9,14 8 82.82 6.8 6 84.21 5.1 3 80.83 6,1 5

Diabetes 74,48 4,42 20 74,87 5,16 32 73.83 2,3 5 70.43 3.5 8 71.74 4.1 2

Ionosphere 94.94 2.5 9 93,06 3,66 23 72,67 6.7 9 93.45 3.1 15 93.15 2,9 3

Lancet 92,29 4,62 18 90,33 4,42 22 94.51 2.6 85 93,94 2,5 3 94,51 2,1 4

Wisconsin 94,58 2,87 11 95.75 1,65 20 94.86 2,6 6 97.66 1.4 2 96.93 1.85 1

5 Conclusions and Future Works

The prototype threshold decision list (PTDL) rule extraction algorithm presented in
this paper is a simple method that creates a small number of accurate P-rules. Results
obtained on several benchmark datasets are quite encouraging, even though only one
criterion (Gini) has been considered so far and the simplest heterogeneous distance
functions have been used. In a few cases these results are significantly better
comparing to crisp rules obtained with C4.5 decision trees or decision table, or F-rules
generated by the NefClass, a leading neurofuzzy algorithm. In some cases P-rules
based on nearest neighbors rather than thresholds should lead to better results. As
show in [15] prototype-based rules may be converted directly into fuzzy rules,
therefore algorithms generating P-rules provide and interesting and little explored
alternative to the neurofuzzy approaches.

The PTDL algorithm has the following advantages:

− it supports all attribute types;
− different types of rules may be generated, depending on the desired requirements:

C-rules, P-rules or F-rules;
− it is simple to program and provides flexible decision borders;
− various distance functions may be used to improve generalization;
− small number of accurate and comprehensible rules are generated.

These properties make PTDL algorithm a very interesting and promising tool for
data analysis. It can be further extended by adding various feature selection
techniques. In PTDL the output of each rule is binary and each rule may operate on a
different, independent, locally relevant subset of attributes. This is not quite true for

1036 M. Blachnik and W. Duch

the nearest neighbor type of P-rules where common feature space is required for pairs
of prototypes, although different pairs may operate in different subspaces.

Unfortunately the PTDL algorithm has some limitations. Its computational
complexity is relatively high, requiring O(N2) operations for N training vectors to
calculate all distances between the training vectors. All distance-based algorithms
have O(N2) complexity and are thus much slower than simple decision trees and
therefore quite costly to use on datasets with very large number of vectors. However,
initial clusterization or a similar technique will significantly reduce the effort [21].
For example, joint information obtained from the whole dataset and clustered
prototypes may be used, in the first step selecting best prototypes from all those
obtained after clusterization, and then making a local search among training vectors
close to the selected prototype to tune the rules. A combination of P-rules in both
threshold and the nearest neighbor style may lead to the best of both worlds: localized
decision regions combined with the hyperplanes, that sometimes are necessary for
high accuracy (as in the case of Pima Indian Diabetes data). If a small number of
features is used to evaluate similarity P-rules have simpler interpretation (the case is
more similar to a given prototype than to any other) than combinations of features
used in definition of hyperplanes.

These and other improvements of the PTDL algorithm will be explored in the near
future. However, it is already clear that P-rules deserve at least as much attention as
that enjoyed by the neurofuzzy systems.

Acknowledgement. Both authors are grateful for the support by the Polish
Committee for Scientific Research, research grant 2005-2007.

References

[1] W. Duch, R. Setiono, J.M. Zurada, Computational intelligence methods for
understanding of data. Proc. of the IEEE ,Vol. 92(5), pp. 771-805, 2004.

[2] The handbook of data mining, Ed. Nong Ye, Lawrence Erlbaum Associates, London
2003.

[3] J.R. Quinlan, C4.5: Programs for machine learning. Morgan Kaufman, CA, 1993.
[4] L. Breiman, J.H. Friedman, R.A. Oslhen, and C.J. Stone, Classification and Regression

Trees. Belmont, CA: Wadsworth International Group, 1984.
[5] K. Grąbczewski and W. Duch, The separability of split value criterion. 5th Conference on

Neural Network and Soft Computing, Polish Neural Network Society, Zakopane, Poland,
2000, pp. 201-208.

[6] N. Jankowski, K. Grąbczewski, W. Duch, A. Naud and R. Adamczak, Ghostminer data
mining software, http://www.fqspl.com.pl/ghostminer/

[7] W. Pedrycz, Fuzzy set technology in knowledge discovery, Fuzzy Sets and Systems Vol.
98, pp. 279-290, 1998.

[8] W. Duch, Similarity based methods: a general framework for classification,
approximation and association. Control and Cybernetics Vol. 29(4), pp. 937-968, 2000.

[9] W. Duch and K. Grudziński, Prototype based rules - a new way to understand the data.
Proc. of the International Joint Conference on Neural Networks (IJCNN) 2001,
Washington D.C, USA, pp. 1858-1863.

 Prototype-Based Threshold Rules 1037

[10] K. Grąbczewski and W. Duch, Heterogenous forests of decision trees. Springer Lecture
Notes in Comp. Science, Vol. 2415, pp. 504-509, 2002.

[11] B. Kosko, Neural Networks and Fuzzy Systems. Prentice Hall, 1992.
[12] D. Nauck, F. Klawonn and R. Kruse, Foundations on Neuro-Fuzzy Systems. J. Wiley,

New York, 1997.
[13] S.K. Pal and S. Mitra, Neuro-Fuzzy Pattern Recognition. J. Wiley, New York, 1999.
[14] D.R. Wilson, T.R. Martinez, Improved Heterogeneous Distance Functions, Journal of

Artificial Intelligence Research, Vol. 6, pp. 1-34, 1997.
[15] W. Duch and M. Blachnik, Fuzzy rule-based system derived from similarity to

prototypes, Lecture Notes in Computer Science, Vol. 3316, pp. 912-917, 2004.
[16] C.J. Mertz and P.M. Murphy, UCI repository of machine learning databases,

http://www.ics.uci.edu/pub/machine-learning-databases.
[17] D. Nauck and U. Nauck, http://fuzzy.cs.uni-magdeburg.de/nefclass/nefclass.html
[18] A.J. Walker, S.S. Cross, and R.F. Harrison, Visualization of biomedical datasets by use

of growing cell structure networks: a novel diagnostic classification technique. Lancet,
Vol. 354, pp. 1518-1522, 1999.

[19] I.H. Witten and E. Frank, Data Mining: Practical machine learning tools and techniques,
2nd Ed, Morgan Kaufmann, San Francisco, 2005.

[20] D. Michie, D.J. Spiegelhalter, and C.C. Taylor (eds), Machine Learning, Neural and
Statistical Classification. Ellis Horwood, 1994.

[21] G. Shakhnarovish, T. Darrell, P. Indyk (eds), Nearest-Neighbor Methods in Learning and
Vision, MIT Press, 2005.

	Introduction
	Heterogeneous Distance Functions
	Threshold Rules
	Heterogeneous Decision Trees
	Prototype Threshold Decision List Algorithm

	Experiments with Real Datasets
	Datasets
	Classification Results

	Conclusions and Future Works
	References

