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Abstract. Understanding data is usually done extracting fuzzy or crisp logical 
rules using neurofuzzy systems, decision trees and other approaches. Prototype-
based rules are an interesting alternative providing in many cases simpler, more 
accurate and more comprehensible description of the data. Algorithm for 
generation of threshold prototype-based rules are described and a comparison 
with neurofuzzy systems on a number of datasets provided. Results show that 
systems for data understanding generating prototypes deserve at least the same 
attention as that enjoyed by the neurofuzzy systems. 

1   Introduction 

Data mining and knowledge discovery algorithms are focused on understanding of 
data structures, still one of most important challenges facing computational 
intelligence. Data understanding requires extraction of crisp or fuzzy logical rules. For 
some datasets surprisingly accurate and simple logical rules may be generated [1], but 
in some cases sets of logical rules may be too large or too complicated to be useful. 
Crisp rules partition the input space into hyperboxes and thus even relatively simple 
tasks that require oblique decision borders may lead to complicated sets of rules. All 
major data mining software suits use as their important component decision trees for 
crisp logical rule extraction. C4.5 [3] and CART [4] are the most popular algorithms 
used in many packages, but there are many others, for example SSV trees [5] used in 
the Ghostminer package [6]. Inductive machine learning algorithms are rarely used in 
data mining systems. Fuzzy rules (F-rules) are more flexible and have been used in 
many successful real word applications reported in literature [7]. Unfortunately this 
group of methods is also limited; usually they are less transparent then crisp logical 
rules (C-rules) and may be difficult to understand, therefore they are rarely found in 
data mining software suits. F-rules work well with continuous numerical attributes but 
the real word applications often require analysis of mixed data, including symbolic or 
nominal attributes, which are not supported directly by fuzzy rules.  

An alternative approach to data understanding, based on similarity [8] rather than 
logic, extracts rules based on prototypes (P-rules). People making decisions rarely use 
logic, but most often use their memory to recall similar cases and outcomes of 
previous decisions. In similarity-based learning framework (SBL) two major types of 
P-rules have been defined [9]: nearest neighbor rules, where classification decisions 



 Prototype-Based Threshold Rules 1029 

are based on rules assigning query vectors to the same class that majority of the 
closest prototypes belong to, and the threshold rules, where each prototype has an 
associated distance threshold which defines subspace around the prototype with 
associated class label.  

One way to define prototypes threshold rules is by using heterogeneous decision 
trees (HDT) [10], a classical decision tree algorithm that is extended to use new 
attributes based on distances between training vectors. This algorithm has found some 
of the most accurate and simplest descriptions of several datasets. Another approach 
to threshold rules is based on a Prototype Threshold Decision List (PTDL), where 
linear list of ordered rules is created. In this paper the PTDL algorithm is introduced 
and compared with HDT. The next section describes how P-rules support different 
types of attributes, the third section presents threshold rules decision list algorithm, in 
the fourth section results of numerical experiments are presented, and the last section 
contains conclusions and discussion. 

2   Heterogeneous Distance Functions 

Real word datasets often contain different types of features, creating serious 
difficulties for large group of computational intelligence algorithms, including most 
methods based on fuzzy rules [7][11][13]. P-rules solve the problem of combination 
of continuous, discrete, symbolic and nominal attributes using heterogeneous distance 
function (HDF). 

HDFs introduced by Wilson and Martinez [14] allow for calculation of distance for 
all types of attributes. Several types of HDF have been introduced, based on an 
assumption that distances are additive: 
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calculated for a single dimension. In the SBL framework [8] HDF allow for treating 
different types of features in a natural way. For real-valued or ordered discrete 
features Minkovski’s distances (2) are used and for symbolic features probabilistic 
distance functions (3) are used, for example:  
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where x and r are respectively data and reference vectors, n is the number of features, 
C is the number of classes, and α is the value of exponent (α=2 for Euclidean 

functions). ( )|j ip c x  and ( )|j ip c r  are calculated as 
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where Nxi is the number of instances in the training set that have value x for attribute 
i, and Nxij is the some as Nxi but for class j. 

This types of distance functions are additive, so the overall distance function can 
be calculated as a sum of contributions from both types of distance measures, 
depending on the attribute types (4): 
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where xa and ra are subsets of continuous attributes of vectors x and r, and xb and rb 
are subsets of their symbolic features. Features should be normalized to assure that 
each distance component has the some or comparable influence.  

In P-rules α parameter have significant influence on the shape of decision borders. 
Changing α value from 1 to ∞ different shapes of hypersurfaces of constant value are 
obtained. For α equal 1 rhomboidal shape is obtained, for α=2 spherical, higher α 
values lead to rectangular shapes, and for α=∞ lines of constant distance reach a 
square shape. This aspect of P-rules can allow for smooth transition to crisp logical 
rules if it is necessary. Also fuzzy rules can be extracted from datasets in this way, as 
discussed in [15].  

3   Threshold Rules 

P-rules based on distances from prototypes create tessellation of the input space, with 
most distance functions leading to convex polytope cells with hyperplane faces. Some 
cells are infinite, and the use of only two prototypes r1, r2 is equivalent to the linear 
discrimination, defining single hyperplane perpendicular to the line that joins them. 
Threshold based rules are not based on competition for the closest prototype, but 
simply assign all vectors x with D(x,r)<θ to the same class as the prototype r. The 
effect is somehow similar to the use of basis expansion networks with localized 
functions, such as RBFs with Gaussian functions. However, the emphasis here is not 
on approximation but on data understanding, generation of a small number of simple 
rules with distance functions based only on relevant features. 

A constructive algorithm is recommended, creating first quite general P-rules, and 
then more detailed rules and possible exceptions until the whole input space is 
covered. Two strategies to solve the problem of adding new rules developed so far are 
based on: 

− Heterogeneous Decision Trees; 
− ordered prototype threshold decision list. 

3.1   Heterogeneous Decision Trees 

Standard decision trees, such as the C4.5 [3], CART [4] or SSV trees [5], use only 
one type of test to split the data, T(xi < θ), dividing the range of feature values xi into 
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two or more branches. Heterogeneous decision trees (HDT), introduced in [10] use at 
least two qualitatively different types of tests. Adding the second test T(D(x,rk) < θk) 
based on similarity to prototypes provides localized decision borders to the 
hyperplanes contributed by the standard tests. In the simplest case all training vectors 
are initially taken as prototypes, using the square [N x N] distance matrix D(ri,rj), 
where N is the number of input vectors. Then prototype vectors are consecutively 
removed and accuracy checked, until a small number of prototypes is left and 
accuracy starts to degrade. Similarities may be calculated either using Euclidean 
distances or Gaussian kernel functions.  

Combination of hyperplanes obtained from binary splits of features with spherical 
decision borders from distance based threshold tests is quite powerful and may lead to 
interesting rules, although the search for the prototype by elimination of the training 
vectors is a rather costly procedure, with complexity of O(N2). This approach applied 
to the Wisconsin Breast Cancer data generated a single distance based P-rule with 
97.3% accuracy, providing the simplest and most accurate description of this data 
found so far [10]. 

3.2   Prototype Threshold Decision List Algorithm 

Heterogeneous classification trees used for extraction of prototype threshold rules 
create hierarchical sets of rules. An alternative is given by a covering algorithm that 
creates ordered list of rules that may overlap, called here Prototype Threshold 
Decision List (PTDL). This algorithm is based on similar criteria like HDT 
algorithms, however individual rules are stored in an ordered list, starting from the 
most general rule to the most detailed. Because they are overlapping this list of rules 
should be applied in an order, beginning from the most specific (and least reliable), 
and if its conditions are not fulfilled the next more general rule should be checked. In 
the end if none of the rules may be applied, the output label is assigned to the else 
condition, covering all the remaining vectors (Fig. 1). 

PTDL searches among all training vectors for a prototype that maximizes 
appropriate decision tree criterion, like separability (SSV), the Gini index (CART) or 
Information Gain (C4.5). Each prototype and threshold define particular rule, splitting 
the data into vectors in the subspace covered by this prototype with selected threshold 
(vectors that fall inside of the rule borders), and the remaining vectors that fall outside 
of this subspace (outside of the rule). For multiclass problems these two types of 
prototype threshold rules should be explicitly distinguished: inside rules with D(x,rk) 
< θk, and outside rules with D(x,rk) ≥ θk, where each rule is defined for one particular 
class. In the first case prototype rk belong to the subspace, and in the second case it 
does not belong to the subspace defined by the prototype and threshold. For two class 
problems distinguishing between these two types of rules is not important, however 
for the multiclass problems it has significant meaning, increasing generalization and 
model simplicity.  

The sketch of the PTDL code is presented in Fig. 2, where for simplicity two class 
problem is described. In the first step CreateList function calculates distances or 
similarities between all training vectors, storing them in the square matrix D of size  
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NxN where N is the number of training vectors. Then search for all possible splits of 
each training vector that may increase criterion value is performed (for loop). Only 
splits between pairs of neighboring vectors in each column of matrix D belonging to 
different classes are considered, because only such situation guarantees maximization 
of the criterion function. The middle points between these pairs of vectors are taken as 
thresholds. All parameters: the criterion value (C_Crit), threshold (C_Threshol) , 
and rule consequence – class labels are calculated by the function CalcCriterion, 
which returns column vectors with appropriate parameter values for currently 
analyzed i-th training vector . 

 

Fig. 1. Example of threshold rules: Rule 1 – most general; Rule 2 – more accurate; and Else 
area in the remaining subspace 

The best among N training vectors with appropriate threshold maximizing 
particular criterion function is stored in the rule set list. When a new rule is accepted 
all training vectors are classified with the current set of rules to mark all vectors that 
are incorrectly classified and should be used to search for further rules. The PTDL 
algorithm stops if the maximum number of rules is reached, or when all vectors are 
correctly classified.  

This straightforward covering algorithm does not assure good generalization. To 
remedy its weakness optimal number of rules is found using internal crossvalidation 
on the training data (as it is done in the SSV trees [5][10]). Using k-fold 
crossvalidation test for each fold a new decision list is created. In the end at each level 
of the list appropriate criterion is checked (Gini has been used here, but information 
gain, balanced accuracy, separability or other criteria may be optimized), and the 
optimal number of rules that maximize the desired criterion is selected. Rule 
extraction algorithms frequently generate quite different sets of rules, suffering from 
high variance of solutions. To avoid such situation the difference between accuracy 
and standard deviation in crossvalidation calculations is optimized, selecting highly 
accurate low variance solutions.  
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function [P,PLab,TH] = CreateList(T,TLab,MaxRules) 
1. input: 
 T – training set 
 TLab – labels of training vectors 
 MaxRules – maximum number of rules 

2. output: 
 P – set of prototypes 
 PLab–set of labels associated with each prototype P 
 TH – set of thresholds for appropriate prototypes 

3. var 
 N – Number of training vectors 
 D – distance matrix NxN  
 RulN – number of created rules 
 splits – list of possible splits where evaluation 
 of the criterion is calculated 
 C_Crit - vector of criterion values calculated for 
        each split 
 C_Threshold – appropriate threshold for each split 
 C_PLab – class label for current split 
 CurLab – Class labels predicted by set of rules,  
      initially all vectors are wrong classified 
 MXcrit – maximum criterion value for i-th prototype 
 idx – index of best split  

begin 
4. D = dist(T,T);// distances between training vectors; 
5. RulN=1; 
6. while (RulN < MaxRuls) or ErrorsN == 0 
7.     for I = 1:N  // considered each training vector

         as prototype 
8.     splits = FindPossibleSplits(D,Lab); //find all 

           possible thresholds 
9.    [C_Crit,C_Threshold,C_PLab]=   

 CalcCriterion(Dat,LabT,splits,CurLab); //For each 
 threshold calculate criterion value 

10.    [MXcrit,idx]=max(C_Crit);//Find max. criterion value 
11.       if MXcrit > bestCrit 
12.         bestCrit = MXcrit; 
13.         P(RulN) = T(i); 
14.          TH(RulN) = C_Threshold(idx); 
15.      PLab = C_PLab(idx); 
16.         RulN = RulN+1; 
17.       end; 
18.     end 
19.   CurLab = ApplyRules(D,Lab,P,PLab,TH);  
20.   endwhile; 
21. end; 

Fig. 2. The PTDL algorithm code 

4   Experiments with Real Datasets 

To compare results obtained with PTDL, HDT and other well established methods 
WEKA software was used with two popular rule extraction methods: C4.5 decision 
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tree and the Decision Table algorithm, as implemented in WEKA [19]. Results 
obtained with the neurofuzzy rule extraction system NefClass [12][17] are also given 
for comparison. The NefClass calculations were carefully optimized changing the 
number and the type of membership functions to obtain the best solution (the 
difference between accuracy and standard deviation). 

4.1   Datasets 

For tests six different datasets were used, all from the UCI machine learning database 
repository [16], except for Lancet data obtained from the authors of [16]. Each data 
represents a two class problem with mixed type of attributes. A summary of these 
datasets follows: 

Appendicitis – small dataset with 7 attributes and 106 cases, 85 from the first class 
and 21 from the second class. From this dataset 2 most relevant features were selected 
using SSV tree and all tests were performed for these two features. 

Cleveland Heart Disease (Cleveland) – 5 continuous attributes and 8 discrete, 303 
vectors describing healthy and sick persons; 6 cases with missing values were 
removed, leaving 297 vectors. 

Ionosphere – two different types of radar signals reflected from ionosphere; 351 
vectors with 34 attributes.  

Lancet dataset – 692 breast cancer cases, 235 malignant, 457 benign, characterized 
by age plus 10 binary indicators obtained from fine-needle aspirates of breast lumps, 
with the final diagnosis confirmed by biopsy. 

Pima Indians Diabetes (Diabetes) – 768 cases describing results of tests for 
diabetes, with 500 healthy and 268 cases sick people, 8 features.   

Wisconsin Breast Cancer (Wisconsin) – well known breast cancer data from a 
Wisconsin hospital, with 241 cases of malignant, and 458 of benign tumors, each case 
described by 9 discrete features. 

4.2   Classification Results 

10-fold stratified crossvalidation calculations on each dataset were performed using 5 
algorithms that generate crisp and fuzzy rules, providing estimates of their 
generalization. Mean accuracy obtained on test partitions is presented in Table 1. The 
best results obtained for each dataset are marked as bold.  

From Table 1 it is evident that the accuracy of the PTDL algorithm is almost 
always among the best among algorithms tested, creating a small number of rules and 
achieving in most cases best results. The Appendicitis dataset is very small and 
although NefClass has produced slightly better result it has used much larger number 
of fuzzy rules. For the Cleveland dataset only three P-rules were created by PTDL, 
reaching significantly higher accuracy than other systems. In the diabetes case all 
rule-based results are relatively poor, while MLP or SVM results on this dataset reach 
77.5±2.5%, close to the simple linear discrimination analysis (LDA) reported in [20]. 
Therefore a single P-rule based on the shortest distance to two prototypes is sufficient 
in this case instead of the threshold based rules. PTDL did surprisingly well on the 
Ionosphere data, but HDT has an advantage here, achieving almost the same accuracy 
with only 3 rules. Insignificant differences are found on the Lancet data, with an 
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exception of C4.5 rules that are less accurate, with PTDL using just 3 P-rules and 
NefClass 85 F-rules. Also on the Wisconsin dataset only two P-rules were used to 
reach the highest accuracy with the lowest standard deviation.   

Table 1. Classification results, accuracy (Acc) and standard deviation (Std) in %, the number of 
rules estimates the complexity of the model 

 C4.5 
Decision 

Table 
NefClass 

PTDL 
(Gini) 

HDT 
(Gini) 

10 x CV Acc Std Rules Acc Std Rules Acc Std Rules Acc Std Rules Acc Std Rules 

Appendicitis 85.82 8,51 3 82,00 11,65 2 87.73 8.6 33 85.77 8.6 5 83.78 9,0 3 

Cleveland  76.77 7,17 17 82.09 9,14 8 82.82 6.8 6 84.21 5.1 3 80.83 6,1 5 

Diabetes 74,48 4,42 20 74,87 5,16 32 73.83 2,3 5 70.43 3.5 8 71.74 4.1 2 

Ionosphere 94.94 2.5 9 93,06 3,66 23 72,67 6.7 9 93.45 3.1 15 93.15 2,9 3 

Lancet 92,29 4,62 18 90,33 4,42 22 94.51 2.6 85 93,94 2,5 3 94,51 2,1 4 

Wisconsin  94,58 2,87 11 95.75 1,65 20 94.86 2,6 6 97.66 1.4 2 96.93 1.85 1 

5   Conclusions and Future Works 

The prototype threshold decision list (PTDL) rule extraction algorithm presented in 
this paper is a simple method that creates a small number of accurate P-rules. Results 
obtained on several benchmark datasets are quite encouraging, even though only one 
criterion (Gini) has been considered so far and the simplest heterogeneous distance 
functions have been used. In a few cases these results are significantly better 
comparing to crisp rules obtained with C4.5 decision trees or decision table, or F-rules 
generated by the NefClass, a leading neurofuzzy algorithm. In some cases P-rules 
based on nearest neighbors rather than thresholds should lead to better results. As 
show in [15] prototype-based rules may be converted directly into fuzzy rules, 
therefore algorithms generating P-rules provide and interesting and little explored 
alternative to the neurofuzzy approaches.  

The PTDL algorithm has the following advantages: 

− it supports all attribute types; 
− different types of rules may be generated, depending on the desired requirements: 

C-rules, P-rules or F-rules; 
− it is simple to program and provides flexible decision borders; 
− various distance functions may be used to improve generalization; 
− small number of accurate and comprehensible rules are generated. 

These properties make PTDL algorithm a very interesting and promising tool for 
data analysis. It can be further extended by adding various feature selection 
techniques. In PTDL the output of each rule is binary and each rule may operate on a 
different, independent, locally relevant subset of attributes. This is not quite true for 
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the nearest neighbor type of P-rules where common feature space is required for pairs 
of prototypes, although different pairs may operate in different subspaces. 

Unfortunately the PTDL algorithm has some limitations. Its computational 
complexity is relatively high, requiring O(N2) operations for N training vectors to 
calculate all distances between the training vectors. All distance-based algorithms 
have O(N2) complexity and are thus much slower than simple decision trees and 
therefore quite costly to use on datasets with very large number of vectors. However, 
initial clusterization or a similar technique will significantly reduce the effort [21]. 
For example, joint information obtained from the whole dataset and clustered 
prototypes may be used, in the first step selecting best prototypes from all those 
obtained after clusterization, and then making a local search among training vectors 
close to the selected prototype to tune the rules. A combination of P-rules in both 
threshold and the nearest neighbor style may lead to the best of both worlds: localized 
decision regions combined with the hyperplanes, that sometimes are necessary for 
high accuracy (as in the case of Pima Indian Diabetes data). If a small number of 
features is used to evaluate similarity P-rules have simpler interpretation (the case is 
more similar to a given prototype than to any other) than combinations of features 
used in definition of hyperplanes.  

These and other improvements of the PTDL algorithm will be explored in the near 
future. However, it is already clear that P-rules deserve at least as much attention as 
that enjoyed by the neurofuzzy systems.  
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