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Abstract. To the best of our knowledge, this paper is the first attempt to for-
malise a pragmatic logic of scientific discovery in a manner such that it ean b
realised by scientists assisted by machines. Using Institution Agents, we defi
dialectic process to manage contradiction. This allows autoepistemic Institution
Agents to learn from a supervised teaching process. We presentustrinbap-
plication in the field of Drug Discovery, applying our system in the prediction o
pharmaco-kinetic properties (ADME-T) and adverse side effectseshpieutic
drug molecules.

1 Introduction

Scientific discovery is a collective process made possiptadtracability of judgment,
positive and negative results, theories and conjectucaitfir their publication and eval-
uation within a community. Without this tracability, sctéit results will not last long
enough to influence others, and there would be no sciencs.tidtability is the key
to localise points of debate between members of a communitypen new research
fields, to put forward problems and paradoxes that needdurtivestigation and the
establishment of a consensual frame of reference. Thisatolé process leads to a so-
cial organisation in which some members specialise in phbig, refuting, or proving
results, and have gained credit which defines them as a nefene the community.
The logic of scientific discovery presented by Popper [1] akadtos [2], and dis-
cussed by the Vienna Circle puts forward the elaboratioroofis and the break-points
taking place during the formation of scientific theorieswéwer, to formalise scien-
tific discovery, one has to define logically notions such aagex, postulate, result and
conjecture, which was not possible whithout using a logigatem allowing to reason
non trivially in presence of contradictions. Moreover, fitecess of scientific discovery
is a collective process that can only be formalized by takitgraction into account in
a constructive way, as in multi-agent theories. Finallyestific discovery is an inter-
active adaptive process, and it is only very recently thagldim’s works on machine
learning theory gave a formal basis to the convergence sisaly such a process. To



the best of our knowledge, this paper is the first attempt tgenthese three domains
in order to formulate a pragmatic logic of scientific discgve

In section 2, we propose a cubic model to express judgmentt statements in the
context of scientific discovery. We then show that the seud§jnents is closed when
the underlying logic is a paraconsistent logic C1. In secfio we assume that this
logic is applied independently by different institutiomsd we present their properties
fixed by their interaction protocol: the respect of a hiengrehe pair evaluation, and
finally the auto evaluation. This enables to tune thesetinigns in order to match a
specific context on knowledge construction and repredentdn section 4, we assess
the learnability of scientific theories by scientists agsidy learning machines during
an interaction following this protocol, and we present asustrial application in the
field of Drug Discovery, applying our system in the prediotiof pharmaco-kinetic
properties (ADME-T) and adverse side effects of therapedrtig molecules.

2 Logical expectations: Cube of judgments

We assume that the form of reasoning used in science is the fearavery institution
and every scientist. This form is given by a modality attrézlito a statement beyond
the following: paradox, proof, refutation, result, corijge, postulate, contingent, and
possible. This set of modalities is assumed complete argkdlby negation. In this
section, we define with these modalities the cube of judgsnantl we have to work
with paraconsistent logic.

2.1 Square of modalities

The figure 1 expresses Aristotlessiuare of modalitiesAristotle’s logic is said to be
ontic since every modality is expressed from a single modalitgnd negation~ and
the square of oppositions is closed by doubling this negafib = ——[. The top
modalities (Necessary, Impossible) are used to expresensal statements whereas
the lower modalities (Possible, Contingent) are used toesgparticular statements.

Necessary = OA Impossible = (0-A
| > |
Possible = -[0-A Contingent = -JA

Fig. 1. Aristotle’s square of modalities

We can make a parallel with Scientific Discovery and the thebproof and refu-
tation as follow:

— " Ais necessary” =4 is proven:]A
— " Aisimpossible” =" A is refuted”: 0-A

— ™ Ais possible™ =" A has not been refuted™[1-A



— "™ Ais contingent™ =™ A has not been proven™[JA

To link these modalities, epistemic logic uses axioms: tiera D describes the
vertical relations between necessary and possible, amebatimpossible and contin-
gent”. By following two different paths on the square of opjiens, we can reach the
same point, and we define consistency constraints by caimgjdiat these two paths
lead to the same result:

— What is necessary is possible and therefore is not impossible
— What is impossible is contingent and therefore is not necgssa

In intuitionistic logic, the negation of a conceptis not a concept but an application
from this concept into aontradiction which is a statement both true and falge\— A).
In the same way, a paradox is a statement which is both praxéreduted. For instance,
a bike withoutwheel vV frame vV handlebar would be contradictory. Classical logic
becomes trivial in the presence of a single contradictiolipwing the principle of
contradictiongiven two contradictory propositions, one being the negatf the other,
only one of them is fals€n the opposite, paraconsistent logic allows reasonirgy in
non trivial way in the presence of contradictions [3] [4].[5]

2.2 Paraconsistent logic

Paradoxes have often been at the source of scientific disesyand have often lead
to new approaches and revisions of the frame of referends.oftly happened when
the whole theory used to explain the concerned domain diccowipletely collapse

under the weight of its contradictions, and that is why wednieuse paraconsistent
logic to formalise a logic of scientific discovery. Paradstent logic uses different

negations associated with different levels of contradictio allow reasoning in the

presence of contradictions as in classical logic with ndrealictory statement. Given a
theoryT', we call formal antinomyany meta-theoretical result showing tiats trivial.

A *formal paradoxis the derivation of two contradictory results @t Paraconsistent

logic can be paradoxical without being antinomiciafiormal paradoxs an acceptable

argument for which premises are acceptable (they seem argg)ment is acceptable
(valid), and the conclusion unacceptable (seems false).

To achieve our goal of producing a complete judgment systakmg into account
contradictions, we need to complete the set of modalitigh thiose of paradox and
conjecture, hypothesis and result. The square of oppositieen becomes a cube of
judgments for which the square is a diagonal plane as shofigures 2 and 3.

Definition 1. The cube of judgmentsCube = (O, ) is the set of ontic modalities
derivable from a modalit{] and a negation-.

Property 1 In a paraconsistent logic C1, this cube of judgments is cetef@nd closed
by negation.

This property, highlighted by the diagonal planes of theecoib figure 2 is given by
the following two principles of abstraction that caracteriC1 logic [6], from which a
paraconsistent interpretation of the Morgan'’s laws candriied:



Parador =0AN0O- ———01

D OvO- = Result

Postulate = O A == == D
\ \

-0 ——— -0V =0~ = Conjecture

Fig. 2. Square of deontic judgments as a diagonal plane ofthk:

The weak principle of abstraction: If two propositions are not contradictory, then
none of the logical relations between them is contradictory

— What is not a non contradictory postulate igault
- -OA-O- — OV O
— What is not a non contradictory paradox is@jecture
—:OAO- — =0V -O-

The strong principle of abstraction: Out of two propositions, if one is not contradic-
tory, then none of the logical relations between them israalittory:

— What is not a nhon contradictory conjecture iparadox
- -0V -Od-— OA O
— What is not a non contradictory result ipastulate

-:0vO-— =0OA =0

Refuted = O— < = oAO- c
D Ovio- \LCD 0 = Proven
Contingent = —DC z =0 A =0O- C D
\ \

-0V -0~ <——-—— ~U~Possible

Fig. 3. Square of oppositions resulting from C1 logic, as a diagonal plane af'tihe

This cube of judgments expresses a set of modalities clogetdation that can
judge any statement, object, or situation, formulated el#mguage upon which this
logic is applied.



3 The Institution Agent social game

Section 2 presented the properties of a closed system propucigments and taking
into account contradiction. Such a system can be used tolIntoelelecision process
of an agent holding incomplete knowledge, and we call sucagamt arfInstitution
Agent” (1A).

Definition 2 (IA). An I A is an agent using th€'ube to judge statements.

We assume that the logic used during this decision proceeisame for every
1A, and we focus on the adaptation and the interaction of IAdrstna vocabulary and
trying to build a common language or frame of reference with tocabulary.

Three logical properties are needed to qualify this intéwagrotocol and to add a
logical control to the adaptation process:

— deontic: anl A must be able to attribute credits to anotliet, to interact, and to
teach anothef A,

— defeasible: Lowel As must be able to adapt their behavior to the norms imposed
by the higher ones,

— autoepistemic: a A can be seen as composed by at least two interaétizgand
can therefore learn its own hierarchy of norms and autotadap

In this section, we suppose that edch can be represented by a particular norma-
tive system resulting from its own experience and adaptatioing an interaction with
otherl As.

Definition 3. We call aNormative System (NShe couple [, Cube) formed by:

— L: alanguage formed by a hierarchy of concepts and the ratatizetween them
— C'ube: a cube of judgments

3.1 Deontic logic

Often used in multi-agent systems to constrain an agentiasieur, annotable deontic
logic uses modalities expressing obligation, interdittiadvice, and warning. Accord-
ing to Frege’s definition, these statements express a judieethe recognition of the
type of truth of the statement [7]. Imputations (gains os&ss risk estimation) are used
to estimate the risk incurred in a given situation to decidataction to take or what
behaviour to adopt. A modality and an imputation have to legltis express statements
of the following form: "The obligation to respect the spegdit is attached to a impu-
tation ofz”. A credit value can also be associated to 1As, ordering therarchically,
to define which one is the most qualified to rule in a given cdanti®r example by
defining a social organisation as a government with a paeigna senate, . ...
Scientific discovery is a collective process, and needsdnt®n between researchers
to exchange their points of view and judgments. That's howilteract: by exchang-
ing judgments about statements. More exactly, by askinghendA if it agrees with a
particular judgment: "this statement is a conjecture, i®it?”, to which the answer is
"yes” or "no, it is a result”. Exchanging judgments creates hegation in the common



Fig. 5. Exchanging judgments

Fig. 4.1A’s credit

frame of reference (language), and the revision of the ntivenaystem associated with
one IA or the other. Two judgments are especially importatging one’s conjecture
as being a paradaxandjudging one’s postulate as already being a resslEM”?
presented in section 4.2, illustrates this control by ardigeover thel A assisting him.

3.2 Defeasible logic

It is possible to link twaV S by respecting a defeasible logic to take into account a hi-
erarchy of Institution Agents. The resulting hierarchy & lhas to be brought together
with the transitivity axiom, that stands as follows: "Whatniscessary in a normative
system of proof and refutation is also necessary in a lowanative system”. In other
words, no one should be unaware of the law, no one should gosagesuperior law. [8]
gives a concrete usage of defeasible logic, that allows aeder rules and to supervise
an A, for example with another higher 1A, as illustrated ayufie 6.

O, =04 I =01 Higherl A
=
Oz =02 C C1 =01 Iy =0~C A =-0,
| =)
Co = —0z— Az = LowerI A

Fig. 6. Normative system hierarchy

— Every Obligation of a lower IA belongs to the superior IAsvixe.
— Every Interdiction of a lower 1A belongs to the superior IN&rnings.

The middle line shows the conditions according to which arcéf be supervised by
another one. The violation of this constrainly(= O, € I; = Oy~ or Iy = o= C
0O = [0y) can put forward contradictions between the two IA's nolimgasystem. We



present in section 4 how IAs can learn and adapt their novenatistems. Finding a
contradiction, and trying to eliminate it, leads to theiatibn of a transaction between
the two IAs, during which they adapt their normative syst&ien no contradiction

remains, a new IA can be created, formed by the associatitredivo precedent IAs,

and this process ensures the tracability of all the eveatling to an IA's creation.

3.3 Autoepistemic logic

Aristotle distinguishes endophasy as an inner dialog. Bhésconstructive manner to
build an intelligent agent as the result of an auto-adaptafihe inner/ As can be
interpreted as managing believes, desires or intentioD$) (Br example. By applying
the dialectic and deontic interaction presented in se@®idnan IA is able to acquire
its own N S, which prepares an efficient learning, and even enable eaihing from
examples.

Fig. 7. Autoepistemic dialog Fio. 8. IA f i
ig. 8. IA formation

In this section, we presented how an interaction processdmnerarchical control
can be used to build an agent able to adapt its defeasibldideom autoepistemic
Normative System.

4 Learnability

To estimate the complexity of an IA's creation, we embracehmree learning theories,
and we discuss the learnability of a normative system by atitiition Agent. We il-
lustrate various learning methods as decision trees oiovespaces, then we show that
this system is related to Angluin’s theories on learning otonous functions by query-
ing, and learning from different teachers [9] [10] [11]. &lly, we present an industrial
application dedicated to Drug Discovery.

4.1 Learning a scientific theory

Definition 4. A scientific theoryis an application :F' : L. — (2 such that(L, F'(L))
is a normative system, associating to every statemert L a scientific judgment
F(z) € £2.



Definition 5. We callT“**¢ the lattice obtained by "forgetting” the negation links cem
ing from the weak and strong principles of abstraction (&ec®.2).7° (figure 9 is the
truth lattice underlying a classical logicl™t and T2 (respectively in bold and italic
characters on figure 10)are the lower and upper sub-lattifeE e,

truth

Conjecture
T A//////// l \\\\\\\\\
/ \ Contingent Result Possible
° | > >
\ / Refutation Postulate Proof
1 \\\\\\\\\\& l j{////////
. 0. . 5
Fig.9. T": the lattice underly Paradox

ing classic logic

info

Fig. 10.7°%*¢: the lattice underlying the cube’s logic

Definition 6. A scientific theory learned by an IAs an application :Fr4 : L —
TCvbe such that(L, Fy4(L)) is a normative system, associating to every statement
z € L a scientific judgmenty 4 (z) € Teube,

Remark 1.If we assume that paradox(bottom of the lattice) is more informative than
a conjecture(top of the lattice) and that proof (right) is more true than arefutation
(left), this lattice can be oriented following a verticalisxepresenting the information
level and an horizontal axis representing the truth level.

Remark 2.7 represents the modalities used by the teacher during Ariglpiotocol
[11]. The interactive process used in the following caseanisnteraction using only
membership queries. The furtherance of science can newhelresult of an isolated
scientist who cannot verify the interest of his theory. Refiee theories of machine
learning use as well Equivalence Querig§s, which should compare two scientific
theoriesFr 4., and Fy 4., . The protocol defined in section 3, depends on the use of
EQs in which case putting forward a contradiction answeredrap: an interaction
between two hierarchicaly ordered 1As allows the confriiateof two non comparable
theories through the confrontation of their hypothesescamjectures on the one hand,
with paradoxes and results on the other.

Property 2 SinceT“*¢ is a modular lattice, a scientific theo; 4 is learnable in a
polynomial time using membership queries.



The following cases show the generality of this approach.

Case 1Given a setl of boolean and real variables, scientific theory learned by a
decision treds an applicationfpr : L — T° such that(L, Fp7(L)) is a normative
system.

Case 2 Given a setL of boolean variables, acientific theory learned by a version
spaceis an applicationfy s : L — T such that(L, Fy-s(L)) is a normative system.

Case 3Given a setlL of boolean variables, @cientific theory learned by a galois
lattice is an application :Fgr, : L — T such that(L, Fz1(L)) is a normative
system.

Case 4 Given a setL of boolean and real variables, given a set of results coming
from a decision tree method,scientific theory learned by)T'/G L is an application :
Fprjcr : L — T%? such that(L, Fpr ;¢ (L)) is a normative system.

All these cases of scientific theories are monotonous fanstand are therefore
learnable. However, only cases 3 and 4, which take into attcialectical aspects
required to manage the norms and the ruptures in scientdfaodery, are learnable by
anIA. The following section develops the case 4.

4.2 Dialectic protocol and application in drug design

A real application of learning in scientific discovery, isfin collaboration with Ariana
Pharmaceuticals in Drug design [12].

KEMTM can suggest specific molecular modifications to achieveiphelobjec-
tives, after analysing a multi-parametric database. Datangn is performed with an
Institution Agent usingDT/GL to learn. KEMM is an Institution Agent resulting
from the interaction of ad Apr /¢ and a expert scientist, who has in mind his own
normative system. To teach KEW how to learn his normative system, the expert
scientist describes each example by way of a set of non pecadoesults. KEM ™M
learns from these examples a scientific theory, and the titielses(z, Fipr/qr(x))
as a rational mirror of his own normative system. In a diatesny, KEM™™ evolves
and adapts to create a new IA from the learning process.

To assist the learning process, KEM selects an hypothesis that is not a paradox
and, more specifically, KEM selects a conjecture within this hypothesis that is not
a result. Then the scientist admits new examples to elimitreg conjecture as a result
or modifies his own normative system to eliminate the hypsithas a paradox. Such a
method has been tried and succesfully tested in a legahxdomtere the "learners” are
humans, to build efficient normative systems [13] [14].

Designing novel therapeutic molecules is a challenging &hsce one needs not
only to select an active molecule, the molecule needs albe tbsorbed, needs to be
stable within the body (i.e. not metabolized too rapidly) &inally it needs to have low
toxicity and side effects. This is called improving the ADMEprofile (Absorption,
Distribution, Metabolism, Excretion and Toxicity).



In this example we focus on the prediction of Absorption, g issue in drug de-
sign since this is one of the important and early causes lofréain the drug discovery
process. Indeed molecules need to be absorbed before thgyedarm any desired
activity. Absorption is a complex process involving bottsgise (diffusion) and ac-
tive (through transporter proteins) accross cellular nrambs. For passive transport,
molecules need to be soluble (hydrophilic) in water and atstime time they need to
be greacy (hydrophobic) to penetrate cellular membrarestie formed of lipids. This
contradicting requirement is modulated by active transpenere molecules need to
be recognized (i.e. complementarity of shape and charga)mpther molecule (trans-
porter) that helps them through membranes.

Although no one can for sure predict the absorption of a neleaute, a number of
empirical rules are known. This is an interesting conter&foplying our IA since our
key requirement is to capture knowledge from the experiaietdta and then evolve
and improve this model in a consistent manner.

To illustrate our approach we focus on a set of 169 molecuesvhich the ab-
sorption in man has been experimentally evaluated (4 daSseot absorbed, 3 highly
absorbed). These molecules are described using a set dEplyysemical properties
such as molecular radius, different calculated measurédseaftotal polar surface ac-
cessible to waterTPSAand VSA PO, their hydrophobicity 8LOGBH, presence of
halogens etc.

— 9

@ = O

- =

" FAPredicted i " FAPredicted

FA Experimental
FA Experimental

Fig. 11.PredictionsA and B

Initially, the system learns from the dataset a set of rutdgrig the structure of the
molecule to the absorption. The quality of the predictiotested in a subsequent stage
on a novel set of molecules. The results are shown on predidtin figure 11. Ideally
the predictions should be on the diagonal. An error of ongsakatolerated. However, it
is clear that for one molecule, the error is larger (ie experital : class 1 vs predicted
class 3).

Figure 12 shows that the molecule (Ranitidine) has beenigisetwith fraction
absorbed in man Re. highly absorbed. However, if the user fordexction absorbed
in man 3to be false, the system shows that this contradicts a leathe®SA pol 2—
fraction absorbed in man.3\t this stage the user realises that indeed this rule was tru
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for the learning set, however this is not generally true dar@hmn be eliminated. Once
this rule has been eliminated, the user goes back to pregiotice more the test set
and results are shown in Figure 11, predictiBnAs expected, the results have been
improved. The important point is that the improvement hasnbdone in a controlled
way under the user’s supervision.

In scientific discovery, there are in general no Oracles warosay a priori whether
a prediction is correct or not. Experimentalists design potiyesis that is consistent
with existing empirical data and then set about to test it.Bateive that the key for
a computational system is to adhere to the same processiilé.up an explanation
/ reasons for suggesting for predicting an outcome. If tratesy is able to provide
enough arguments, the user will "trust” it and try the expece.

KEMTM s an Institution Agent resulting from a process combinimghbhuman
and machine learning. It is very interesting to log the vasiadaptations of the learned
normative system coming from the addition of examples omative theories and to
analyse process of the formation of such an IA. This methed give a compliance
record of the various processes chosen or rejected in theaf@n of the resulting 1A.



5 Conclusion

We propose a pragmatic logic to manage scientific judgmenis Jet of judgments is
closed by negation when using paraconsistent logic C1.dJsistitution Agents, we
define a dialectic process to manage contradiction. Thag/alhutoepistemic Institution
Agents to learn from a supervised teaching process. Thisadetogy is now tried and
tested in various domains: in drug design, in Law[14], anehem mathematical games
[15].
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