
Instruction Set Extensions for Efficient AES
Implementation on 32-bit Processors

Stefan Tillich and Johann Großschädl

Graz University of Technology,
Institute for Applied Information Processing and Communications,

Inffeldgasse 16a, A–8010 Graz, Austria
{Stefan.Tillich, Johann.Groszschaedl}@iaik.tugraz.at

Abstract. Secure communication over public networks like the Internet requires
the use of cryptographic algorithms as basic building blocks. Most cryptographic
workloads pose a considerable burden on devices like PDAs, cell phones, and
sensor nodes, which are limited in processing power, memory and energy. In
this paper we present an approach to increase the efficiency of 32-bit processors
for handling symmetric cryptographic algorithms with the help of instruction set
extensions. We propose a number of custom instructions to support the Advanced
Encryption Standard (AES). Using the SPARC V8-compatible Leon2 embedded
processor, we evaluate the effects of the extensions on performance and code size
of AES, as well as on silicon area. With a moderate increase in silicon area, AES
performance can be improved by a factor of nearly 10, while code size is reduced
significantly and implementation flexibility is retained. We also show that our
approach is very beneficial for implementation in superscalar processors and
that it can compete with the performance of previously proposed cryptographic
processors and instruction set extensions.

Keywords: Advanced Encryption Standard, instruction set extensions, embed-
ded RISC processor, SPARC V8 architecture, efficient implementation.

1 Introduction

The increasing need for secure communication and data handling requires more and
more embedded systems to execute cryptographic algorithms. However, this task can
impose a heavy burden on constrained devices like PDAs, cell phones, and sensor nodes
due to their limited resources in terms of computing power, memory, and energy. The
traditional approach to alleviate the computational cost of cryptographic primitives is to
offload this workload from the host processor to a dedicated cryptographic coprocessor.
Optimized hardware implementations of cryptographic primitives can be several orders
of magnitude faster than software implementations on general-purpose processors. On
the other hand, hardware solutions have drawbacks as well: For instance, coprocessors
often lack the flexibility to support different key sizes, modes of operation, and other
parameters of a cryptographic algorithm. Moreover, the integration of a coprocessor can
entail a considerable increase in silicon area, which in turn raises production cost.

An alternative to coprocessors is the integration of custom instructions into general-
purpose processors with the goal to better support cryptographic computations. The

L. Goubin and M. Matsui (Eds.): CHES 2006, LNCS 4249, pp. 270–284, 2006.
c© International Association for Cryptologic Research 2006

Instruction Set Extensions for Efficient AES Implementation 271

concept of instruction set extensions has been employed very successfully in the do-
main of multimedia and digital signal processing. Recent research has also shown the
benefits of instruction set extensions for public-key cryptography. In this paper we
examine support for symmetric cryptography and present our research on instruction
set extensions for one of the most important symmetric cryptographic algorithms—the
Advanced Encryption Standard (AES) [13].

From a system’s perspective, the main aspect to consider is how much faster an
application completes execution, but not the “raw” performance figures of a hardware
accelerator. Recent work which examined the addition of an AES coprocessor to a
SPARC V8 embedded processor has shown that the benefits of a hardware accelerator
can be significantly mitigated through communication overhead, i.e. the transfer of data
to and from the coprocessor [8,16]. For instance, the AES coprocessor used in [8] is
able to encrypt a 128-bit block of data in 11 clock cycles, but loading the data and key
into the coprocessor, performing the AES encryption itself, and returning the result back
to the software routine takes 704 cycles altogether. In light of this result we argue that
tightly-coupled custom instructions can deliver superior performance at lower hardware
cost and with increased implementation flexibility. In any case, we demonstrate in this
paper that instruction set extensions for symmetric cryptography can be an attractive
design option for embedded systems which have a need for security.

The rest of the paper is organized as follows. In Section 2 we discuss some ap-
proaches for the efficient implementation of cryptographic primitives on a general-
purpose processor with emphasis on AES. Section 3 lists previous publications which
deal with architectural support for AES. In Section 4 we describe our approach in gen-
eral and give details for each custom instruction. Impact on silicon area of the extensions
is estimated in Section 5. In Section 6 we give a detailed analysis of performance and
code size of our AES implementations using different sets of custom instructions and
compare our results to related work. Conclusions are drawn in Section 7.

2 Efficient Implementation of Cryptography on General-Purpose
Processors

Software implementations of cryptographic primitives generally offer the highest de-
gree of flexibility, but may yield poor performance in embedded systems which are
limited in terms of processing power, memory, or available energy. The straightforward
way to overcome the inefficiencies of software solutions is the integration of a copro-
cessor to relieve the main processor from the cryptographic workload. Cryptographic
hardware is typically much faster and more energy efficient than software running on
an embedded processor. Depending on the application, a coprocessor may also help
to reduce the memory footprint of a cryptographic algorithm. A third implementation
option is the addition of custom instructions to the processor. Instruction set extensions
for cryptography can lead to a considerable reduction of processing time, which in turn
saves energy. Memory requirements may also be reduced with custom instructions.

Support for secret-key algorithms on programmable processors has mainly been
investigated in the context of application-specific processors (ASIPs) for cryptographic
workloads. The extension of general-purpose processors to better support secret-key

272 S. Tillich and J. Großschädl

algorithms has received relatively little attention. This paper is solely focussed at the
AES algorithm and we will discuss previous work dealing with AES in Section 3.

AES software implementations on 32-bit processors always require memory lookup
tables of a certain size. T-lookup implementations require up to three tables, where
each size can be either 1 KB or 4 KB. The T-lookup approach circumvents the costly
calculation of the MixColumns or InvMixColumns transformation within a normal AES
round with the first table. The second table can be used for the last round, which does
not include the MixColumns and InvMixColumns transformation. The third table is
useful for speeding up the key expansion for AES decryption. The T-lookup approach
increases code size and its performance highly depends on the size and organization
of the cache subsystem. The alternative to T-lookup is to calculate all AES round
transformations on the processor. The substitution using the S-box remains the only
operation too inefficient to calculate and which requires a 256-byte lookup table for
encryption and decryption, respectively. Such AES implementations—which we will
denote as calculating implementations in the rest of this paper—can pack either one
State column or one State row into a 32-bit register. The latter approach, which has been
proposed by Bertoni et al. [1], allows for a more efficient realization of the MixColumns
and especially of the InvMixColumns transformation at the cost of additional transpo-
sitions of the AES State and a slightly more complex key expansion function. In the
following, implementations according to the approach of Bertoni et al. will be denoted
as row-oriented, while conventional calculating implementations will be referred to as
column-oriented.

3 Previous Work on Extensions for AES

This section outlines previous work on the support of AES in application-specific and
general-purpose processors. A comparison of the respective performance figures with
those of our approach is given in Table 4 in Section 6.1.

Burke et al. have developed custom instructions for several AES candidates [3].
They have proposed a 16-bit modular multiplication, bit-permutation support, several
rotate instructions, and an instruction to facilitate address generation for memory table
lookups. In a follow-up work, Wu et al. have designed CryptoManiac, a cryptographic
coprocessor. CryptoManiac is a Very Long Instruction Word (VLIW) processor able to
execute up to four instruction per cycle [20]. Additionally, short latency instructions
(e.g. bitwise logical and arithmetic instructions) can be combined to be executed in a
single cycle. To support this feature, instructions have up to three source operands.

The Cryptonite crypto-processor is a VLIW architecture with two 64-bit datapaths
[14]. It features support for AES through a set of special instructions for performing
byte-permutation, rotation and xor operations. The main part of AES is done with help
of parallel table lookup from dedicated memories.

Fiskiran and Lee have investigated the inclusion of hardware lookup tables as a
measure to accelerate different symmetric ciphers including AES [5]. They propose
inclusion of on-chip scratchpad memory to support parallel table lookup. Examined are
datapath widths of 32, 64 and 128 bit with 4, 8 and 16 tables, respectively, whereby
each table contains 256 32-bit entries (i.e. is 1 KB in size).

Instruction Set Extensions for Efficient AES Implementation 273

Extensions for PLX—a general-purpose RISC architecture—have been proposed by
Irwin and Page [9]. In their work they also examined the usage of the multimedia
extensions of a PLX processor with a 128-bit datapath in order to implement AES with
a minimal number of memory accesses. However, the presented concepts can hardly be
adapted to 32-bit architectures.

Automatic generation of instruction set extensions for cryptographic algorithms (in-
cluding AES) has been investigated by Ravi et al. using the 32-bit Xtensa proces-
sor from Tensilica [15]. Nadehara et al. proposed a single custom instruction which
calculates most of the AES round transformations for a single State byte [12]. Their
approach maps the round lookup (T lookup) of fast AES software implementations on
32-bit platforms into a dedicated functional unit. Bertoni et al. have proposed several
instructions for AES and have recently published implementation details and estimated
performance figures for an Intel StrongARM processor [2].

Schaumont et al. [16] and Hodjat et al. [8] have investigated the addition of an
AES coprocessor to the 32-bit Leon2 embedded processor. Performance for a memory-
mapped approach and a connection through a dedicated coprocessor interface (CPI) has
been reported. An AES operation was one to two orders of magnitude slower in relation
to the mere time required by the coprocessor.

In our previous work we have investigated the use of instruction set extensions for
public-key cryptography for accelerating AES implementations [17]. We have also
focussed on minimizing the memory requirements of AES software implementations
with a single low-cost custom instruction [18]. The work presented in this paper deals
with different custom instructions for AES which can be implemented independently or
in combination, thereby enabling different trade-offs between performance and silicon
area. For example, the focus can be set on low cost (for a moderate speed-up) or high
performance (which is, of course, more costly in terms of area).

4 Proposed Instruction Set Extensions for AES

We designed several custom instructions to increase the performance of AES software
implementations. These instructions have been developed for 32-bit processors with
a RISC-like instruction format with two input operands and one output operand. All
important 32-bit RISC architectures, such as SPARC, MIPS and ARM, adhere to this
three-operand format. Our instructions do not require special architectural features like
dedicated look-up tables or non-standard register files, which makes their integration
into general-purpose RISC architectures relatively easy. An integration into extensible
processors like Tensilica’s Xtensa or the ARC 600/700 family of cores should also be
straightforward. Furthermore, all of our instructions have been designed with the goal
to keep the critical path of a concrete hardware implementation as short as possible.

The custom instructions can be categorized as byte-oriented or word-oriented, de-
pending on whether a single byte or four bytes are processed at a time. All instructions
calculate parts of AES round transformations, yielding either one or four transformed
bytes as result. The targeted AES round transformations are SubBytes, ShiftRows, and
MixColumns, as well as their respective inverses. Moreover, the custom instructions
also support the SubWord-RotWord operation of the key expansion.

274 S. Tillich and J. Großschädl

enc/dec

source byte

rs1 imm

destination byte

rd

S-box/
inv. S-box

Fig. 1. Functionality of the sbox instruction

enc/dec

destination byte

rs1 imm

destination byte

rd

MixColumns/
InvMixColumns

multiplier

Fig. 2. Functionality of the mixcol instruction

4.1 Byte-Oriented AES Extensions (sbox, mixcol)

The byte-oriented instructions have fixed types of source operands. The first source
operand is a register, while the second source operand is always an immediate value.
This immediate value is used to configure the operation of the instruction. The single-
byte result is written to a byte of the destination register, while the other three bytes
retain their previous value. As the second source operand is an immediate value, the
second read port of the register file is not occupied and can be used to load the value
of the destination register. In this way, the old value from the destination register can
be combined with the single-byte result, producing the complete 32-bit result of the
instruction, which is written back to the register file.

The sbox instruction has been proposed in [17] to reduce the memory requirements
of AES implementations. Its functionality is depicted in Figure 1. The sbox instruction
transforms one byte of the source register (rs1) with the AES S-box or inverse S-box and
writes the resulting byte into the destination register (rd). The immediate value (imm)
is used to select the source byte from the source register, the transformation (S-box
or inverse S-box) and the destination byte. With this instruction, both the SubBytes and
the ShiftRows transformation can be implemented very efficiently. The sbox instruction
also accelerates the SubWord-RotWord operation in the AES key expansion.

The mixcol instruction performs a part of the MixColumns or InvMixColumns
transformation. Figure 2 shows the functionality of this instruction. The mixcol in-
struction takes the value in the source register (rs1) as input column and produces a
single byte of the resulting column after the MixColumns operation. In this case, the
immediate value sets the operation (MixColumns or InvMixColumns) as well as the
destination byte. The complete resulting column can, therefore, be acquired with four
executions of the mixcol instruction. As MixColumns and especially InvMixColumns
are relatively costly in software, this instruction can lead to considerable speedups.

4.2 Plain Word-Oriented AES Extensions (mixcol4, sbox4)

The word-oriented instructions always produce a 32-bit result which is stored in the
destination register. The trivial approach is to quadruple the functionality of the byte-
oriented extensions. As our performance evaluation in Section 6 shows, this approach

Instruction Set Extensions for Efficient AES Implementation 275

enc/dec

rs1 imm

rotation distance

rd

4 S-boxes/
inv. S-boxes

byte rotator (>>)

Fig. 3. Functionality of the sbox4 instruction

enc/dec

rs1 imm

rd

4 MixColumns/
InvMixColumns

multipliers

Fig. 4. Functionality of the mixcol4 instruction

yields sub-optimal results. However, a slight modification introduced in Section 4.3 can
deliver very satisfactory support for AES.

The sbox4 instruction simply substitutes all four bytes of the first source register and
places them into the destination register. A byte-wise rotation can optionally be per-
formed on the result. The immediate value selects whether S-box or inverse S-box are
used for substitution and sets the rotation distance for the result. The optional rotation is
useful for row-oriented AES implementations, where ShiftRows can be performed with
no additional cost. Moreover, the SubWord-RotWord operation of the key expansion is
supported with the sbox4 instruction. The operation of sbox4 is shown in Figure 3.

The mixcol4 instruction calculates all four result bytes of the MixColumns or Inv-
MixColumns operations. As illustrated in Figure 4, the input column is taken from
the first source register while the immediate value as second operand just selects the
operation (encryption or decryption).

4.3 Advanced Word-Oriented AES Extensions with Implicit ShiftRows
(sbox4s/isbox4s/sbox4r, mixcol4s/imixcol4s)

The major drawback of the sbox4 and mixcol4 instructions is that they cannot be
combined in a manner to allow an efficient AES implementation. The problem lies with
the ShiftRows transformation, which has now become the performance bottleneck.

In a column-oriented implementation, SubBytes and MixColumns would be done
with the respective custom instruction, while ShiftRows must be done separately. As the
State columns are packed into registers, ShiftRows requires a number of shift and log-
ical operations (about 44 instructions). Another option would be to hold the State rows
in registers to perform SubBytes and ShiftRows with the sbox4 instruction, to map the
State columns into registers prior to MixColumns with mixcol4 and to map then back
to the State rows. However, each mapping would require similar effort as performing
ShiftRows. With two mappings required per round, this approach would be even more
inefficient than the column-oriented implementation with separate ShiftRows.

Luckily, the solution to this problem is quite simple. Assuming a column-oriented
implementation, ShiftRows can be done implicitly with slightly modified sbox4 and
mixcol4 instructions. In order to achieve this, the modified versions have two source
register operands. From each source register, two bytes are extracted and assembled to

276 S. Tillich and J. Großschädl

enc/dec

rs2 instr. opcode

rd

4 S-boxes/
inv. S-boxes

rs1

rotate left 8 (opt.)
rot/no rot

Fig. 5. Functionality of the sbox4s, isbox4s
and sbox4r instructions

enc/dec

rs2 instr. opcode

rd

rs1

4 MixColumns/
InvMixColumns

multipliers

Fig. 6. Functionality of the mixcol4s and
imixcol4s instructions

a new intermediate State column. The respective AES transformation is performed on
this intermediate column and the result is stored in the destination register. By selecting
the registers with the appropriate State columns as first and second source operands
it is possible to perform the ShiftRows transformation implicitly. The same is true for
InvShiftRows in decryption when the inverse equivalent cipher structure is used, i.e.
InvSubBytes, InvShiftRows, and InvMixColumns are subsequent transformations.

As the second operand must now be a register, no intermediate value is available
to configure the operation of the instruction. Therefore, separate instructions are used
for S-box and inverse S-box substitution as well as MixColumns and InvMixColumns.
The modified instructions are denoted with an “s” appended to the original mnemonic
(sbox4s, mixcol4s). To indicate the mnemonic for the respective inverse operation, an
“i” is prepended (isbox4s, imixcol4s).

Figure 5 shows the functionality of the sbox4s and isbox4s instructions. The first
(i.e. most significant) and third byte of the first source register and the second and fourth
(i.e. least significant) byte from the second source register are substituted using the AES
S-box or inverse S-box. The optional rotation to the left by one byte is not used for these
two instructions. The four S-boxes are used to realize a third instruction sbox4r, which
performs S-box substitution followed by rotation to the left by 8 bits. This instruction
implements the SubWord-RotWord operation of the AES key expansion. The byte
rotation by a selectable distance of the sbox4 instruction is not implemented as this
functionality is not useful for column-oriented AES implementations.

The two instructions mixcol4s and imixcol4s perform MixColumns and InvMix-
Columns, respectively. The functionality of these instructions is depicted in Figure 6.
The input column is assembled from the two most significant bytes of the first source
register and the two least significant bytes of the second source registers. Note that an
AES State column contained in a single register can be transformed by indicating the
register as both first and second source operand.

The selection of bytes from the two source registers of the sbox4s/isbox4s and
mixcol4s/imixcol4s instructions allows to perform the ShiftRows and InvShiftRows
transformation implicitly in the sequence of SubBytes, ShiftRows, and MixColumns in
AES encryption and InvSubBytes, InvShiftRows, and InvMixColumns in AES
decryption (using the equivalent inverse cipher structure).

Instruction Set Extensions for Efficient AES Implementation 277

Table 1. Area and delay of functional units for the proposed extensions as well as of the extended
integer unit

Area Delay
Functional unit/Component µ2 Gate equiv. Norm. ns
S-box (Canright) [4] 3,362.69 650 0.05 2.21
S-box (HW LUT) 15,709.25 3,033 0.23 0.64
MixColumns multiplier [19] 2,248.13 435 0.03 0.51
IU without extensions 69,144.19 13,349 1.00 3.93
IU with sbox 73,417.54 14,174 1.06 4.00
IU with sbox4 77,849.86 15,029 1.13 4.00
IU with mixcol 71,865.79 13,874 1.04 3.90
IU with mixcol4 72,372.10 13,972 1.05 3.98
IU with sbox & mixcol 71,753.47 13,853 1.04 4.00
IU with sbox & mixcol4 75,536.06 14,583 1.09 4.00
IU with sbox4s & mixcol4s 84,794.69 16,370 1.23 4.00

5 Hardware Cost

We have integrated the instructions proposed in Section 4 into the SPARC V8-compat-
ible Leon2 processor, which is freely available from Gaisler Research [6]. To estimate
the cost for the additional hardware, we synthesized the new functional units and the
complete Leon2 integer unit (IU)—i.e. the 5-stage processor pipeline—with the AES
extensions using a UMC 0.13 µm standard-cell library. We used all viable combinations
of custom instructions and have evaluated their performance in Section 6.

For the S-box extensions we have synthesized a single hardware S-box using two
different approaches: The design of Canright, which calculates the S-box in hardware
[4] and a hardware lookup table synthesized as an array of logic. The MixColumns
multiplier follows the approach by Wolkerstorfer [19] and produces a single byte of the
resulting column. For synthesis of the integer unit we have chosen a target delay for
the critical path of 4 ns, which conforms to a maximal clock frequency of 250 MHz.
These synthesis results include the complete area overhead of the extensions, e.g. new
functional units, decoding of additional opcodes. The results are given in Table 1. Note
that sbox4s indicates the three instructions sbox4s, isbox4s and sbox4r and that
mixcol4s stands for the instructions mixcol4s and imixcol4s.

The S-box of Canright is about one fifth the size of the synthesized lookup table, but
is also considerably slower. The MixColumns multiplier requires little area and has a
shorter critical path than the S-boxes. The results in Table 1 for the integer unit use the
approach of Canright [4] for S-box extensions. Area overhead is calculated in relation
to an integer unit without extensions and ranges between a factor of 1.04 and 1.23.

We used the minimal configuration (no hardware multiplier and divider, no FPU,
no Ethernet MAC, no PCI controller, no SDRAM controller, no Debug Support Unit),
where the IU accounts for less than half of the area of the Leon2 processor (excluding
register file and cache memories). The size of the register file and caches is configurable
and depends heavily on the particular RAM implementation. For the largest extensions

278 S. Tillich and J. Großschädl

(sbox4s & mixcol4s), the area overhead will therefore be maximally half of the IU
overhead (which is a factor of about 1.12), without taking register file or cache memory
into consideration. In practice, these units will require a large portion of the total area,
so that the overall overhead factor for the area will be much lower.

6 Performance and Code Size

We have implemented AES using different combinations of the proposed custom in-
structions on the modified Leon2. In total, we examined seven different sets of AES
extensions, where one of these sets (just the sbox instruction) has already been investi-
gated in [18]. For comparison, the performance of AES implementations using T lookup
has also been determined on the same platform. Bitsliced implementations of AES are
not expected to be faster than T lookup [10] and have therefore not been considered in
this evaluation. Both AES encryption and decryption with precomputed key schedule
as well as with on-the-fly key expansion have been examined. A pure-software AES
implementation has been used as baseline implementation. It uses no extensions and
calculates all AES round transformations except SubBytes. For all implementations
the number of clock cycles per block encryption/decryption and code size are given.
Moreover, the speedup as well as relative change of code size in comparison to the
baseline implementation are cited. For AES implementations with precomputed key
schedule, the performance of the key expansion is also given.

The Leon2 has been implemented on a GR-PCI-XC2V FPGA board with a cache
size of 16 KB for both instruction and data cache. The number of cycles has been
obtained with the help of a built-in cycle counter of the modified Leon2. For the timing
measurements we have used the code from Gladman’s AES implementation [7], which
times the execution of 9 subsequent operations and of a single AES operation. The time
for one operation is determined as the difference of these measurements divided by 8.
The code size encompasses all functions and memory constants required to perform
the respective AES operation. This includes the encryption/decryption function, the
key expansion function (if required), and necessary lookup tables. The used custom
instructions are indicated in the first column of each table. As before, sbox4s stands for
sbox4s, isbox4s and sbox4r; mixcol4s stands for mixcol4s and imixcol4s.

When a set of extensions is useable for both column-oriented and row-oriented
AES implementations, both of these options have been examined and the faster op-
tion cited in the tables. Most AES implementations are written in C and use inline
assembly to make use of the custom instructions. Implementations marked with ASM
are completely written in assembly. For the implementation which uses the sbox4s and
mixcol4s instructions, an assembly-optimized version with unrolled loops has also
been tested (marked with unrolled). For each T-lookup implementation, the size of the
tables is indicated. The first number indicates the table size for the round lookup, the
second number (if present) is the table size for the last round. For AES decryption,
the third number (if present) indicates the size of the table used for the key expansion
function.

Table 2 summarizes the performance and code size for AES-128 encryption with
a precomputed key schedule. Table 5 in Appendix A gives the respective figures for

Instruction Set Extensions for Efficient AES Implementation 279

Table 2. AES-128 encryption, precomputed key schedule: Performance and code size

Key exp. Encr. perf. Code size
Implementation Cycles Cycles Speedup Bytes Rel. change
No extensions (pure SW) 739 1,637 1.00 2,168 0.0%
sbox 647 1,140 1.44 1,464 -32.5%
sbox4 (C) 739 1,020 1.60 1,656 -23.6%
sbox4 (ASM) 739 718 2.28 1,520 -29.9%
mixcol 498 1,047 1.56 1,262 -41.8%
mixcol4 498 939 1.74 1,224 -43.5%
sbox & mixcol 346 566 2.89 612 -71.8%
sbox & mixcol4 (C) 346 458 3.57 564 -74.0%
sbox & mixcol4 (ASM) 346 337 4.86 480 -77.9%
sbox4s & mixcol4s (C) 316 458 3.57 568 -73.8%
sbox4s & mixcol4s (ASM) 316 219 7.47 412 -81.0%
sbox4s & mixcol4s, unrolled 316 196 8.35 896 -58.7%
T lookup (Gladman), 1 KB 436 1,585 1.03 9,956 +359.2%
T lookup (Gladman), 4 KB 436 1,097 1.49 10,900 +402.8%

decryption. For the proposed extensions, speedups of up to 8.35 for encryption and
9.97 for decryption are achieved. With the fastest extensions, AES-128 encryption and
decryption of a single block can be done in 196 clock cycles. The code size of these
implementations is always reduced, whereby the savings are more significant for the
MixColumns extensions than for the S-box extensions. The T-lookup implementations
from Brian Gladman have been used for comparison [7]. There the speedup is up to 1.5
for encryption and 1.78 for decryption at the cost of quite significant increases in code
size.

The results for AES-128 encryption with on-the-fly key expansion are given in Table
3. For the respective figures for decryption refer to Table 6 in Appendix A. All decryp-
tion implementations are supplied with the last round key. For encryption, speedups up
to 9.91 are achieved while the highest decryption speedup is 9.29. The fastest extensions
allow for encryption in 226 cycles and decryption in 262 cycles. Note that decryption
is slightly slower as it uses the inverse equivalent cipher structure, which requires a
more complex key expansion with additional InvMixColumns transformations. Some
extensions allow quite significant reductions of code size. Implementations which make
use of S-box extensions require no data memory accesses except for the loading of the
input block and key and the storing of the output block. T-lookup implementations for
encryption have speedups up to 1.5. Decryption functions with T lookup are highly
inefficient due to the more complex key expansion.

In order to get an idea of the worst-case execution time (WCET), we have also
measured a single AES-128 encryption (rolled loops) with flushed data and instruction
caches. Under these unfavorable conditions, encryption requires 565 cycles for a pre-
computed key schedule and 420 cycles for on-the-fly key expansion. Any subsequent
encryption requires only little more than the number of cycles given in Tables 2 and
3. For unrolled loops, the first encryption naturally gets more costly with 761 cycles
(precomputed) and 595 cycles (on-the-fly).

280 S. Tillich and J. Großschädl

Table 3. AES-128 encryption, on-the-fly key expansion: Performance and code size

Encr. perf. Code size
Implementation Cycles Speedup Bytes Rel. change
No extensions (pure SW) 2,239 1.00 1,636 0.0%
sbox 1,595 1.40 952 -41.8%
sbox4 1,618 1.38 1,696 -3.7%
mixcol 1,294 1.73 1,260 -23.0%
mixcol4 1,186 1.89 1,212 -25.9%
sbox & mixcol (C) 747 3.00 580 -64.6%
sbox & mixcol (ASM) 505 4.43 396 -75.8%
sbox & mixcol4 (C) 639 3.50 532 -67.5%
sbox & mixcol4 (ASM) 397 5.64 348 -78.7%
sbox4s & mixcol4s (C) 616 3.63 528 -67.7%
sbox4s & mixcol4s (ASM) 255 8.78 260 -84.1%
sbox4s & mixcol4s, unrolled 226 9.91 852 -47.9%
T lookup, 1 KB 2,066 1.08 2,572 +57.2%
T lookup, 4 KB 1,497 1.50 5,420 +231.3%

6.1 Comparison with Related Work

Table 4 cites performance figures for most of the related work listed in Section 3. Note
that it is difficult to compare the different approaches in a concise manner as some
architectures have quite unique features. We categorized the different platforms by the
width of their datapath (DPW), the number of instructions which can be executed per
cycle (issue width, IW), and the number of data memory read ports (DMRP). Most
architectures include dedicated lookup tables which allow parallel lookup. We have
stated the number of lookup tables (LUTs), i.e. the number of possible parallel lookups,
as well as the size of one table in bytes. The last two columns of Table 4 give the number
of cycles required for encryption and decryption of an 128-bit block with AES-128.

The fastest implementation with our proposed extensions is contained in the table
with an indicated issue width of 1. However, all of the proposed extensions are also
beneficial for processors with larger issue width. For high-speed implementations we
have examined the S-box and MixColumns extensions with implicit ShiftRows for
their benefits on processors with an issue width of 4. This allows us to compare our
extensions to existing architectures with superscalar processing and/or a datapath width
above 32. Note that we have not implemented such a 4-way processor and that our
performance figures are estimations based on pseudocode. Our code includes loading
of input block and cipher key from memory, as well as storing of the output block back
to memory. For our estimations we have assumed cache hits (one cycle latency) for
all loaded values. This is an overhead of about 10% compared to AES encryption or
decryption without loading of the input block and storing of the output block.

Except for [15], [2] and our work, all architectures have either a datapath width
greater than 32, an issue width greater than 1 and/or include dedicated parallel lookup
tables. Our single-issue approach is nearly an order of magnitude faster than [15] and
it has about the same performance of the approach in [12], which uses a superscalar

Instruction Set Extensions for Efficient AES Implementation 281

Table 4. AES-128 performance comparison with related work

Platform Reference DPW IW/DMRP LUTs/Size Encr. Decr.
RISC-like Fiskiran [5] 128 1/1 16/1,024 32 32
PLX-128 Irwin [9] 128 1/1 0/0 609 n/a
Alpha (8W+) Burke [3] 64 8/4 4/1,024 99 n/a
Alpha (4W+) Burke [3] 64 4/2 4/1,024 164 n/a
Cryptonite Oliva [14] 64 2/1 16/256 71 83
RISC-like Fiskiran [5] 64 1/1 8/1,024 126 126
CryptoManiac Wu [20] 32 4/1 4/1,024 90 n/a
Leon2 + ISE This work 32 4/1 0/0 51 51
RISC-like Nadehara [12] 32 2/1 0/0 200 200
RISC-like Fiskiran [5] 32 1/1 4/1,024 315 315
Xtensa + ISE Ravi [15] 32 1/1 0/0 1,400 1,400
StrongARM Bertoni [2] 32 1/1 0/0 311 n/a
Leon2 + ISE This work 32 1/1 0/0 196 196
Leon2 + COP (CPI) Hodjat [8] 32 1/1 0/0 704 n/a
Leon2 + COP (MM) Hodjat [8] 32 1/1 0/0 1,228 n/a
Leon2 + COP (MM) Schaumont [16]a 32 1/1 0/0 1,494 n/a
Athlon 64 Matsui [10] 64 3/2 0/0 170 n/a
Pentium 4 Matsui [11] 32 3/1 0/0 251 n/a

a Performance calculated from time for encryption at 50 MHz.

processor with issue width 2. Despite the worse cited performance figures, the approach
of [2] should be faster than our approach, but at the cost of a severe increase of the
critical path and the need for non-standard parallel access to four processor registers.
The CryptoManiac [20] with an issue width of 4 and four dedicated lookup tables of
1 KB each has only half of the cycle count of our single-issue approach, and is slower
than our 4-way issue approach . Only the architecture of [5] with a 128-bit datapath and
16 dedicated lookup tables of 1 KB each and with a subsequent dedicated XOR-tree is
faster than our 4-way issue approach by a factor of about 1.6.

Table 4 also includes the results of a Leon2 with attached AES coprocessor (COP)
[8,16]. Both works have investigated a memory-mapped (MM) solution and Hodjat et
al. have also examined an approach with a dedicated coprocessor interface (CPI) [8].
These works demonstrate impressively that the mere speed of an accelerator is not the
important point to consider from a system’s perspective. Hodjat et al. state in [8] that
the AES encryption itself takes only 11 cycles, but the complete program with loading
the data and key, AES encryption, and returning the result back to the software routine
takes a total of 704 cycles. Our worst-case execution times with flushed caches for
precomputed key schedule (565 cycles with rolled loops, 761 cycles with unrolled
loops) and on-the-fly key expansion (420 cycles with rolled loops, 595 cycles with
unrolled loops) compare very well to the coprocessor performance from [8,16].

For comparison we have also specified the performance of the currently fastest AES
implementations for the Pentium 4 (Northwood core) [11] and the Athlon 64 proces-
sor [10]. A single-issue Leon2 processor with our extensions has an area of about
50k gates altogether and requires less cycles than the Pentium 4 (about 13.5M gates)
and can nearly reach the cycle count of the Athlon 64 (about 17M gates).

282 S. Tillich and J. Großschädl

6.2 A Note on Side-Channel Attacks

The investigation of side-channel attacks has not been in the main focus of the present
work. The extensions for the S-box remove the need for memory accesses for table
lookups and, therefore, completely prevent cache-based side-channel attacks. As data
is manipulated similarly as on a processor without extensions, susceptibility to other
side-channel attacks should not become higher when using the proposed extensions.

Possible side-channel countermeasures encompass all traditional options for mi-
croprocessors, e.g. use of secure logic styles, randomization, software masking. AES
implementations which employ additive masking can also make use of the proposed
extensions. Additive software masking can be directly used with all MixColumns ex-
tensions, as MixColumns is a linear transformation. The custom instructions for S-box
substitution cannot be used in a masked SubBytes transformation, but they can be used
to compute masked S-box tables for conventional memory-based S-box table lookup.

7 Conclusions

In this paper we have presented instruction set extensions for 32-bit processors for the
Advanced Encryption Standard. We have proposed byte-oriented and word-oriented
custom instructions which can be combined in a number of different ways and which
provide support for the most time-consuming transformations of AES. Our extensions
are very flexible and can be used for encryption and decryption as well as with pre-
computed key schedule and on-the-fly key expansion. With hardware costs of about
3k gates, AES-128 encryption and decryption is possible in 196 clock cycles. In rela-
tion to an AES implementation using only SPARC V8 instructions, speedups of up to
9.91 for encryption and 9.97 for decryption are achieved, while code size is reduced
significantly. Furthermore, we have shown that our extensions can be implemented
in a superscalar processor where they can compete very successfully with dedicated
cryptographic processors and previously proposed instructions set extensions.

Acknowledgements. The research described in this paper has been supported by the
Austrian Science Fund (FWF) under grant number P16952-NO4 and, in part, by the
European Commission through the IST Programme under contract IST-2002-507932
ECRYPT. The information in this document reflects only the authors’ views, is provided
as is and no guarantee or warranty is given that the information is fit for any particular
purpose. The user thereof uses the information at its sole risk and liability.

References

1. G. Bertoni, L. Breveglieri, P. Fragneto, M. Macchetti, and S. Marchesin. Efficient Software
Implementation of AES on 32-Bit Platforms. In Cryptographic Hardware and Embedded
Systems — CHES 2002, LNCS 2523, pp. 159–171. Springer Verlag, 2003.

2. G. Bertoni, L. Breveglieri, R. Farina, and F. Regazzoni. Speeding Up AES By Extending a
32-Bit Processor Instruction Set. In Proceedings of the 17th IEEE International Conference
on Application-Specific Systems, Architectures and Processors (ASAP 2006). IEEE CS
Press, Sept. 2006. To be published.

Instruction Set Extensions for Efficient AES Implementation 283

3. J. Burke, J. McDonald, and T. Austin. Architectural support for fast symmetric-key cryptog-
raphy. In Proceedings of the 9th Int. Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS 2000), pp. 178–189. ACM Press, 2000.

4. D. Canright. A very compact S-Box for AES. In Cryptographic Hardware and Embedded
Systems — CHES 2005, LNCS 3659, pp. 441–455. Springer Verlag, 2005.

5. A. M. Fiskiran and R. B. Lee. On-Chip Lookup Tables for Fast Symmetric-Key Encryption.
In Proceedings of the 16th IEEE International Conference on Application-Specific Systems,
Architectures and Processors (ASAP 2005), pp. 356–363. IEEE CS Press, 2005.

6. J. Gaisler. The LEON-2 Processor User’s Manual (Version 1.0.30). Available for download
at http://www.gaisler.com/doc/leon2-1.0.30-xst.pdf , March 2006.

7. B. Gladman. Implementations of AES (Rijndael) in C/C++ and assembler. Available at
http://fp.gladman.plus.com/cryptography technology/rijndael/index.htm.

8. A. Hodjat and I. Verbauwhede. Interfacing a high speed crypto accelerator to an embedded
CPU. In Proceedings of the 38th Asilomar Conference on Signals, Systems, and Computers,
vol. 1, pp. 488–492. IEEE Press, 2004.

9. J. Irwin and D. Page. Using Media Processors for Low-Memory AES Implementation. In
Proceedings of the 14th IEEE International Conference on Application-specific Systems,
Architectures and Processors (ASAP 2003), pp. 144–154. IEEE CS Press, 2003.

10. M. Matsui. How far can we go on the x64 processors? In Fast Software Encryption — FSE
2006, Pre-Proceedings, pp. 488–492, March 2006.

11. M. Matsui and S. Fukuda. How to Maximize Software Performance of Symmetric Primitives
on Pentium III and 4 Processors. In Fast Software Encryption — FSE 2005, LNCS 3557,
pp. 398–412. Springer Verlag, 2005.

12. K. Nadehara, M. Ikekawa, and I. Kuroda. Extended Instructions for the AES Cryptography
and their Efficient Implementation. In Proceedings of the 18th IEEE Workshop on Signal
Processing Systems (SIPS 2004), pp. 152–157. IEEE Press, 2004

13. National Institute of Standards and Technology (NIST). FIPS-197: Advanced Encryption
Standard, November 2001. Available online at http://www.itl.nist.gov/fipspubs/.

14. D. Oliva, R. Buchty, and N. Heintze. AES and the Cryptonite Crypto Processor. In
Proceedings of the 2003 International Conference on Compilers, Architecture and Synthesis
for Embedded Systems (CASES 2003), pp. 198–209. ACM Press, 2003.

15. S. Ravi, A. Raghunathan, N. Potlapally, and M. Sankaradass. System design methodologies
for a wireless security processing platform. In Proceedings of the 39th Design Automation
Conference (DAC 2003), pp. 777–782. ACM Press, 2003.

16. P. Schaumont, K. Sakiyama, A. Hodjat, and I. Verbauwhede. Embedded Software Integra-
tion for Coarse-Grain Reconfigurable Systems. In Proceedings of the 18th International
Parallel and Distributed Processing Symposium (IPDPS 2004), pp. 137–142, IEEE CS
Press, 2004.

17. S. Tillich and J. Großschädl. Accelerating AES Using Instruction Set Extensions for Elliptic
Curve Cryptography. In International Workshop on Information Security & Hiding (ISH 05),
in conjunction with International Conference on Computational Science & Its Applications
(ICCSA 2005), LNCS 3481, pp. 665–675. Springer, 2005.

18. S. Tillich, J. Großschädl, and A. Szekely. An Instruction Set Extension for Fast and Memory-
Efficient AES Implementation. In Communications and Multimedia Security — CMS 2005,
LNCS 3677, pp. 11–21. Springer Verlag, 2005.

19. J. Wolkerstorfer. An ASIC Implementation of the AES-MixColumn operation. In Proceed-
ings of Austrochip 2001, pp. 129–132, 2001. ISBN 3-9501517-0-2.

20. L. Wu, C. Weaver, and T. Austin. Cryptomaniac: A fast flexible architecture for secure
communication. In Proceedings of the 28th Annual International Symposium on Computer
Architecture (ISCA 2001), pp. 110–119. ACM Press, 2001.

http://www.gaisler.com/doc/leon2-1.0.30-xst.pdf
http://fp.gladman.plus.com/cryptography_technology/rijndael/index.htm
http://www.itl.nist.gov/fipspubs/

284 S. Tillich and J. Großschädl

A Performance Figures for AES Decryption

Table 5. AES-128 decryption, precomputed key schedule: Performance and code size

Key exp. Decr. perf. Code size
Implementation Cycles Cycles Speedup Bytes Rel. change
No extensions (pure SW) 739 1,955 1.00 2,520 0.0%
sbox 647 1,555 1.26 1,592 -36.8%
sbox4 (C) 739 1,435 1.36 1,784 -29.1%
sbox4 (ASM) 739 1,061 1.84 1,676 -33.5%
mixcol 498 1,078 1.81 1,548 -38.6%
mixcol4 498 970 2.02 1,244 -50.6%
sbox & mixcol 346 566 3.45 608 -75.9%
sbox & mixcol4 (C) 346 458 4.27 560 -77.8%
sbox & mixcol4 (ASM) 346 330 5.92 484 -80.8%
sbox4s & mixcol4s (C) 316 459 4.26 564 -77.6%
sbox4s & mixcol4s (ASM) 393 218 8.97 456 -81.9%
sbox4s & mixcol4s, unrolled 393 196 9.97 944 -62.5%
T lookup (Gladman), 1 KB 1,517 1,292 1.51 12,816 +408.6%
T lookup (Gladman), 4 KB 1,828 1,262 1.55 14,640 +481.0%
T lookup (Gladman), 4+4+1 KB 1,085 1,099 1.78 18,512 +634.6%
T lookup (Gladman), 4+4+4 KB 885 1,122 1.74 20,500 +713.5%

Table 6. AES-128 decryption, on-the-fly key expansion: Performance and code size

Decr. perf. Code size
Implementation Cycles Speedup Bytes Rel. change
No extensions (pure SW) 2,434 1.00 2,504 0.0%
sbox 1,867 1.30 1,564 -37.5%
sbox4 1,715 1.42 1,748 -30.2%
mixcol 1,605 1.52 1,648 -34.2%
mixcol4 1,497 1.63 1,600 -36.1%
sbox & mixcol (C) 698 3.49 580 -76.8%
sbox & mixcol (ASM) 523 4.65 404 -83.9%
sbox & mixcol4 (C) 590 4.13 532 -78.8%
sbox & mixcol4 (ASM) 415 5.87 356 -85.8%
sbox4s & mixcol4s (C) 557 4.37 520 -79.2%
sbox4s & mixcol4s (ASM) 300 8.11 284 -88.7%
sbox4s & mixcol4s, unrolled 262 9.29 996 -60.2%
T lookup, 1 KB 6,528 0.37 4,504 +79.9%
T lookup, 4 KB 5,939 0.41 7,352 +193.6%
T lookup, 4+4+1 KB 3,257 0.75 11,272 +350.2%
T lookup, 4+4+4 KB 4,113 0.59 14,492 +478.8%

	Introduction
	Efficient Implementation of Cryptography on General-Purpose Processors
	Previous Work on Extensions for AES
	Proposed Instruction Set Extensions for AES
	Byte-Oriented AES Extensions (\tt {sbox, mixcol})
	Plain Word-Oriented AES Extensions (\tt {mixcol4, sbox4})
	Advanced Word-Oriented AES Extensions with Implicit ShiftRows (\tt {sbox4s/isbox4s/sbox4r, mixcol4s/imixcol4s})

	Hardware Cost
	Performance and Code Size
	Comparison with Related Work
	A Note on Side-Channel Attacks

	Conclusions
	Performance Figures for AES Decryption

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

