Skip to main content

How Many Query Superpositions Are Needed to Learn?

  • Conference paper
Algorithmic Learning Theory (ALT 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4264))

Included in the following conference series:

Abstract

This paper introduces a framework for quantum exact learning via queries, the so-called quantum protocol. It is shown that usual protocols in the classical learning setting have quantum counterparts. A combinatorial notion, the general halving dimension, is also introduced. Given a quantum protocol and a target concept class, the general halving dimension provides lower and upper bounds on the number of queries that a quantum algorithm needs to learn. For usual protocols, the lower bound is also valid even if only involution oracle teachers are considered. Under some protocols, the quantum upper bound improves the classical one. The general halving dimension also approximates the query complexity of ordinary randomized learners. From these bounds we conclude that quantum devices can allow moderate improvements on the query complexity. However, any quantum polynomially query learnable concept class must be also polynomially learnable in the classical setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ambainis, A.: Quantum lower bounds by quantum arguments. J. Comput. Syst. Sci. 64(4), 750–767 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ambainis, A., Iwama, K., Kawachi, A., Masuda, H., Putra, R.H., Yamashita, S.: Quantum identification of boolean oracles. In: Diekert, V., Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp. 105–116. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  3. Angluin, D.: Queries and concept learning. Machine Learning 2, 319–342 (1988)

    Google Scholar 

  4. Atici, A., Servedio, R.A.: Improved bounds on quantum learning algorithms. Quantum Information Processing 4(5), 355–386 (2005)

    Article  MathSciNet  Google Scholar 

  5. Balcázar, J.L., Castro, J., Guijarro, D.: A general dimension for exact learning. In: Helmbold, D.P., Williamson, B. (eds.) COLT 2001 and EuroCOLT 2001. LNCS (LNAI), vol. 2111, pp. 354–367. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  6. Balcázar, J.L., Castro, J., Guijarro, D.: A new abstract combinatorial dimension for exact learning via queries. J. Comput. Syst. Sci. 64(1), 2–21 (2002)

    Article  MATH  Google Scholar 

  7. Beals, R., Buhrman, H., Cleve, R., Mosca, M., de Wolf, R.: Quantum lower bounds by polynomials. J. ACM 48(4), 778–797 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bennett, C.H.: Logical reversibility of computation. IBM Journal of Research and Development 17, 525–532 (1973)

    Article  MATH  Google Scholar 

  9. Bennett, C.H., Bernstein, E., Brassard, G., Vazirani, U.V.: Strengths and weaknesses of quantum computing. SIAM J. Comput. 26(5), 1510–1523 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bernstein, E., Vazirani, U.V.: Quantum complexity theory. SIAM J. Comput. 26(5), 1411–1473 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  11. Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quantum searching. Fortschritte der Physik 46(4-5), 493–505 (1998)

    Article  Google Scholar 

  12. Bshouty, N.H., Jackson, J.C.: Learning DNF over the uniform distribution using a quantum example oracle. SIAM Journal on Computing 28(3), 1136–1153 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  13. Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum computation. Proc. Roy. Soc. Lond. A 439, 553–558 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  14. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: STOC, pp. 212–219 (1996)

    Google Scholar 

  15. Hellerstein, L., Pillaipakkamnatt, K., Raghavan, V., Wilkins, D.: How many queries are needed to learn? Journal of the ACM 43(5), 840–862 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hunziker, M., Meyer, D.A., Park, J., Pommersheim, J., Rothstein, M.: The geometry of quantum learning. arXiv:quant-ph/0309059 (to appear in Quantum Information Processing, 2003)

    Google Scholar 

  17. Servedio, R.A., Gortler, S.J.: Equivalences and separations between quantum and classical learnability. SIAM J. Comput. 33(5), 1067–1092 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  18. Simon, D.R.: On the power of quantum computation. SIAM J. Comput. 26(5), 1474–1483 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  19. Simon, H.U.: How many queries are needed to learn one bit of information? Annals of Mathematics and Artificial Intelligence 39, 333–343 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Castro, J. (2006). How Many Query Superpositions Are Needed to Learn?. In: Balcázar, J.L., Long, P.M., Stephan, F. (eds) Algorithmic Learning Theory. ALT 2006. Lecture Notes in Computer Science(), vol 4264. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11894841_10

Download citation

  • DOI: https://doi.org/10.1007/11894841_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46649-9

  • Online ISBN: 978-3-540-46650-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics