
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Smooth Boosting Using an Information-Based
Criterion

Hatano, Kohei
Department of Informatics, Kyushu University

https://hdl.handle.net/2324/1523957

出版情報：Algorithmic Learning Theory (Lecture Notes in Computer Science). 4264, pp.304-318,
2006-11-13. Springer-Verlag Berlin Heidelberg
バージョン：
権利関係：

Smooth Boosting Using an Information-Based

Criterion

Kohei Hatano

Department of Informatics, Kyushu University
hatano@i.kyushu-u.ac.jp

Abstract. Smooth boosting algorithms are variants of boosting meth-
ods which handle only smooth distributions on the data. They are proved
to be noise-tolerant and can be used in the “boosting by filtering” scheme,
which is suitable for learning over huge data. However, current smooth
boosting algorithms have rooms for improvements: Among non-smooth
boosting algorithms, real AdaBoost or InfoBoost, can perform more ef-
ficiently than typical boosting algorithms by using an information-based
criterion for choosing hypotheses. In this paper, we propose a new smooth
boosting algorithm with another information-based criterion based on
Gini index. we show that it inherits the advantages of two approaches,
smooth boosting and information-based approaches.

1 Introduction

In recent years, huge data have become available due to the development of
computers and the Internet. As size of such huge data can reach hundreds of
gigabytes in knowledge discovery and machine learning tasks, it is important
to make knowledge discovery or machine learning algorithms scalable. Sampling
is one of effective techniques to deal with large data. There are many results
on sampling techniques [23, 5] and applications to data mining tasks such as
decision tree learning [7], support vector machine [2], and boosting [5, 6].

Especially, boosting is simple and efficient learning method among machine
learning algorithms. The basic idea of boosting is to learn many slightly accu-
rate hypotheses (or weak hypotheses) with respect to different distributions over
the data, and to combine them into a highly accurate one. Originally, boosting
was invented under the boosting by filtering framework [21, 10] (or the filtering
framework), where the booster can sample examples randomly from the whole
instance space. On the other hand, in the boosting by subsampling framework
[21, 10] (or, the subsampling framework), the booster is given a bunch of exam-
ples in advance. Of course, the subsampling framework is more suitable when the
size of data is relatively small. But, for large data, there are two advantages of
the filtering framework over the subsampling framework. First, the space com-
plexity is reduced as the booster “filters” examples and accepts only necessary
ones (See, e.g., [10]). The second advantage is that the booster can automatically
determine the sufficient sample size. Note that it is not trivial to determine the

sufficient sample size a priori in the subsampling framework. So the boosting by
filtering framework seems to fit learning over huge data. However, early boost-
ing algorithms [21, 10] which work in the filtering framework were not practical,
because they were not “adaptive”, i.e., they need the prior knowledge on the
accuracy of weak hypotheses.

MadaBoost, a modification of AdaBoost [11], is the first adaptive boosting
algorithm which works in the filtering framework [6]. Combining with adaptive
sampling methods [5], MadaBoost is shown to be more efficient than AdaBoost
over huge data, while keeping the prediction accuracy. By its nature of updat-
ing scheme, MadaBoost is categorized as one of ”smooth” boosting algorithms
[12, 25, 14], where the name, smooth boosting, comes from the fact that these
boosting algorithms only deal with smooth distributions over data (In contrast,
for example, AdaBoost might construct exponentially skew distributions over
data). Smoothness of distributions enables boosting algorithms to sample data
efficiently. Also, smooth boosting algorithms have theoretical guarantees for noise
tolerance in the various noisy learning settings, such as statistical query model
[6] malicious noise model [25] and agnostic boosting [14].

However, there seems still room for improvements on smooth boosting. A
non-smooth boosting algorithm, InfoBoost [1] (which is a special form of real
AdaBoost [22]), performs more efficiently than other boosting algorithms in the
boosting by subsampling framework. More precisely, given hypotheses with er-
ror 1/2 − γ/2, typical boosting algorithms take O((1/γ2) log(1/ε)) iterations to
learn a (1− ε)-accurate hypothesis. On the other hand, InfoBoost learns in from
O((1/γ) log(1/ε)) to O((1/γ2) log(1/ε)) iterations by taking advantage of the sit-
uation when weak hypotheses have low false positive error [15, 16]. So InfoBoost
can be more efficient at most by O(1/γ) times.

The main difference between InfoBoost and other boosting algorithms such
as AdaBoost or MadaBoost is the criterion for choosing weak hypotheses. Typ-
ical boosting algorithms are designed to choose hypotheses whose errors are
minimum with respect to given distributions. In contrast, InfoBoost uses an
information-based criterion to choose weak hypotheses. The criterion was previ-
ously proposed by Kearns and Mansour in the context of decision tree learning
[18], and also applied to boosting algorithms using branching programs [19, 26].
But, so far, no smooth algorithm has such the nice property of InfoBoost.

In this paper, we propose a new smooth boosting algorithm, GiniBoost,
which uses another information-based criterion based on Gini index [3]. Gini-
Boost learns in O(1/εΔ) iterations, where we call Δ the “pseudo gain” of weak
hypotheses (that will be defined later). As Δ varies from γ2 to γ, our bound
on iterations is potentially smaller than the O(1/εγ2) bound which are achieved
by previous smooth boosting algorithms [6, 25]. Unfortunately though, we have
not given such a refined analysis as done for InfoBoost yet. Then, we propose an
adaptive sampling procedure to estimate pseudo gains and apply GiniBoost in
the filtering framework. Preliminary experiments show that GiniBoost improves
MadaBoost in the filtering framework over large data.

2 Preliminaries

2.1 Learning Model

We adapt the PAC learning model [27]. Let X be an instance space and let Y =
{−1, +1} be a set of labels. We assume an unknown target function f : X → Y.
Further we assume that f is contained in a known class F of functions from X to
Y. Let D be an unknown distribution over X . The learner has an access to the
example oracle EX(f, D). When given a call from the learner, EX(f, D) returns
an example (x, f(x)) where each instance x is drawn randomly according to D.
Let H be a hypothesis space, or a set of functions from X to Y. We assume
that H ⊃ F . For any distribution D over X , error of hypothesis h ∈ H is
defined as errD(h) def= PrD{h(x) �= f(x)}. Let S be a sample, a set of examples
((x1, f(x1), . . . , (xm, f(xm))). For any sample S, training error of hypothesis
h ∈ H is defined as êrrS(h) def= |{(xi, f(xi) ∈ S | h(xi) �= f(xi)}|/|S|.

We say that learning algorithm A is a strong learner for F if and only if, for
any f ∈ F and any distribution D, given ε, δ (0 < ε, δ < 1), a hypothesis space
H, and access to the example oracle EX(f, D) as inputs, A outputs a hypothesis
h ∈ H such that errD(h) = PrD{h(x) �= f(x)} ≤ ε with probability at least 1−δ.
We also consider a weaker learner. Specifically, we say that learning algorithm
A is a weak leaner 1 for F if and only if, for any f ∈ F , given a hypothesis space
H, and access to the example oracle EX(f, D) as inputs, A outputs a hypothesis
h ∈ H such that errD(h) ≤ 1/2 − γ/2 for a fixed γ (0 < γ < 1). Note that
errD(h) = 1/2 − γ/2 if and only if r =

∑
x∈X f(x)h(x)D(x).

2.2 Boosting Approach

Schapire proved that the strong and weak learnability are equivalent to each
other for the first time [21]. Especially the technique to construct a strong
learner by using a weak learner is called “boosting”. Basic idea of boosting
is the following: First, the booster trains a weak learner with respect to dif-
ferent distributions D1, . . . , DT over the domain X , and gets different “weak”
hypotheses h1, . . . , hT such that errDt(ht) ≤ 1/2 − γt/2 for each t = 1, . . . , T .
Then the booster combines weak hypotheses h1, . . . , hT into a final hypotheses
hfinal satisfying errD(hfinal) ≤ ε.

In the subsampling framework, the booster calls EX(f, D) for a number
of times and obtains a sample S = ((x1, f(x1), . . . , (xm, f(xm))) in advance.
Then the booster constructs the final hypothesis hfinal with its training error
êrrS(hfinal) ≤ ε by training the weak learner over the given sample S. The error
errD(hfinal) can be estimated by using arguments on VC-dimension or margin
(E.g., see [11] or [20], respectively). For example, for typical boosting algorithms,
1 In the original definition of [21], the weak learning algorithm is allowed to output a

hypothesis h with errD(h) > 1/2 − γ/2 with probability at most δ as well. But in
our definition we omit δ to make our discussion simple. Of course, we can use the
original definition, while our analysis becomes slightly more complicated.

errD(hfinal) ≤ êrrS(hfinal)+Õ(
√

T log |W|/m) 2 with high probability, where T
is the size of the final hypotheses, i.e., the number of weak hypotheses combined
in hfinal. So, assuming that |W| is finite, the sample and space complexity are
Õ(1/γ2ε2), respectively.

In the filtering framework, on the other hand, the booster deal with the whole
instance space X through EX(f, D). By using statistics obtained from calls to
EX(f, D), the booster tries to minimize errD(hfinal) directly. Then, it can be
shown that the sample complexity is Õ(1/γ4ε2), but the space complexity is
Õ(1/γ2) (in which the factor log(1/ε) is hidden) by using e.g., [6] and [5].

Smooth boosting algorithms generates only such distributions D1, . . . , Dt

that are “smooth” with respect to the original distribution D. We define the
following measure of smoothness.

Definition 1 Let D and D′ be any distributions over X . We say that D′ is
λ-smooth with respect to D if maxx∈X D′(x)/D(x) ≤ λ.

The smoothness parameter λ has crucial roles in robustness of boosting al-
gorithms [6, 25, 14]. Also, it affects the efficiency of sampling methods.

2.3 Our Assumption and Technical Goal

In the rest of the paper, we assume that the learner is given a finite set W of
hypotheses such that for any distribution D′ over X , there exists a hypothesis
h ∈ W satisfying errD′(h) ≤ 1/2−γ/2. Now our technical goal is to construct an
efficient smooth boosting algorithm which works in both the subsampling and
the filtering framework.

3 Boosting by Subsampling

In this section, we propose our boosting algorithm in the subsampling framework.

3.1 Derivation

First of all, we derive our algorithm. It is well known that many of boosting
algorithms can be viewed as greedy minimizers of loss functions [13]. More pre-
cisely, it can be viewed that they minimize particular loss functions that bound
the training errors. The derivation of our algorithm is also explained simply in
terms of its loss function.

Suppose that the learner is given a sample S = {(x1, f(x1), . . . , (xm, f(xm))},
a set W of hypotheses, and the current final hypothesis Ht(x) =

∑t
j=1 αjhj(x),

where each hj ∈ W and αj ∈ R for j = 1, . . . , t. The training error of Ht(x)
over S is defined by êrr(sign(Ht)) = 1

m

∑m
i=1 I(−f(xi)Ht(xi)), where I(a) = 1

if a > 1 and I(a) = 0, otherwise. We assume a function L : R → [0, +∞)
2 In the Õ(g(n)) notation, we neglect poly(log(n)) terms.

such that I(a) ≤ L(a) for any a ∈ R. Then, by definition, êrr(sign(Ht)) ≤
1
m

∑m
i=1 L(−f(xi)Ht(xi)). If the function L is convex, the upperbound of the

training error have a global minimum. Given a new hypothesis h ∈ W , a typical
boosting algorithm assigns α to h that minimizes a particular loss function. For
example, AdaBoost solves the following minimization problem:

min
α∈R

1
m

m∑
i=1

Lexp(−f(xi){Ht(xi) + αh(xi)}),

where its loss function is given by exponential loss, Lexp(x) = ex. The solu-
tion is given analytically as α = 1

2 ln 1+γ
1−γ , where γ =

∑m
i=1 f(xi)h(xi)Dt(xi),

and Dt(xi) = exp(−f(xi)H(xi))Pm
i=1 exp(−f(xi)H(xi))

. InfoBoost is designed to minimize the same
loss function Lexp as AdaBoost, but it uses a slightly different form of the fi-
nal hypothesis Ht(x) =

∑r
j=1 αj(hj(x))hj(x), where αj(z) = αj [+1] if z ≥ 0,

αj(z) = αj [+1], otherwise (αj [±1] ∈ R). The main difference is that InfoBoost
assigns coefficients for each prediction +1 and −1 of a hypothesis. Then, the
minimization problem of InfoBoost is given as:

min
α[+1],α[−1]∈R

1
m

m∑
i=1

Lexp(−f(x){Ht(x) + α(h(x))h(x)}).

This problem also has the analytical solution: α[±1] = 1
2 ln 1+γ[±1]

1−γ[±1] , γ[±1] =P
i:h(xi)=±1 f(xi)h(xi)Dt(xi)P

i:h(xi)=±1 D(xi)
, and Dt(xi) = exp(−f(xi)Ht(xi))P

m
i=1 exp(−f(xi)Ht(xi))

. Curiously, this

derivation makes InfoBoost choose a hypothesis that maximizes information
gain, where the entropy function is defined not by Shannon’s entropy func-
tion EShannon(p) = −p log p − (1 − p) log(1 − p), but by the entropy func-
tion EKM (p) = 2

√
p(1 − p) proposed by Kearns and Mansour [18] (See [26]

for details). MadaBoost is formulated as the same minimization problem of Ad-
aBoost, except that its loss function is replaced with Lmada(x) = ex, if x ≤ 0,
Lmada(x) = x, otherwise.

Now combining the derivations of InfoBoost and MadaBoost in a straight-
forward way, our boosting algorithm is given by

min
α[+1],α[−1]∈R

1
m

m∑
i=1

Lmada(−f(xi){Ht(xi) + α(h(xi))h(xi)}). (1)

Since the solution cannot be obtained analytically, we minimize an upperbound
of (1). The way of our approximation is a modification of the technique used for
AdaFlat [14]. By using Taylor expansion (see Lemma 3 in Appendix for a proof)
we have Lmada(x + a) ≤ Lmada(a) + L′

mada(a)(x + x2).
Let

�(x) = L′
mada(x) =

{
1, x ≥ 0
ex, x < 0.

Then we get

1

m

mX
i=1

Lmada(−f(xi)Ht(xi)) − 1

m

mX
i=1

Lmada(−f(xi)Ht+1(xi))

≥ 1

m

mX
i=1

˘
f(xi)ht(xi)α[h(xi)]�(−f(xi)Ht(xi)) − α[h(xi)]

2�(−f(xi)Ht(xi))
¯

def
= ΔLt(h).

By solving the equations ∂ΔLt(h)/∂αt[b] = 0 for b = ±1, we see that ΔLt(h)
is maximized if αt[b] = γt[b](h)/2, where

γt[b](h) =

∑
i:h(xi)=b h(xi)f(xi)Dt(xi)∑

i:h(xi)=b Dt(xi)
, and Dt(xi) =

�(−f(xi)Ht(xi))∑m
i=1 �(−f(xi)Ht(xi))

.

By substituting αt[b] = γt[b](h)/2 for b = ±1, we get

ΔLt(h) =
μt

4
{
pt(h)γt[+1](h)2 + (1 − pt(h))γt[−1](h)2

}
(2)

where μt =
Pm

i=1 �(−f(xi)Ht(xi))

m , and pt(h) = PrDt{h(xi) = +1}.
Our derivation implies a new criterion to choose a weak hypothesis. That is,

we choose h ∈ W that maximizes

Δt(h) = pt(h)γt[+1](h)2 + (1 − pt(h))γt[−1](h)2.

We call the quantity pseudo gain of hypothesis h with respect to f and Dt. Now
we motivate the pseudo gain in the following way. Let εt[±1](h) = PrDt{f(xi) =
∓1|h(xi) = ±1}. Note that γt[±1](h) = 1 − 2εt[±1](h). Then

1 − Δt(h)

=pt(h){1 − (1 − 2εt[+1](h))2} + (1 − pt){1 − (1 − 2εt[−1](h))2}
=pt(h) · 4εt[+1](h)(1 − εt[+1](h)) + (1 − pt(h)) · 4εt[−1](h)(1 − εt[−1](h)),

which can be interpreted as the conditional entropy of f given h with respect
to Dt, where the entropy is defined by Gini index EGini(p) = 4p(1 − p) [3] (See
other entropy measures in Figure 1 for comparison). So, maximizing the pseudo
gain is equivalent to maximizing the information gain defined with Gini index.

3.2 Our Algorithm

Based on our derivation we propose GiniBoost. The description of our modifi-
cation is given in Figure 2. To make our notation simple, we denote pt(ht) = pt,
γt[±1](ht) = γt[±1], and Δt(ht) = Δt.

First, we show that the smoothness of distributions Dt.

Proposition 1 During the execution of GiniBoost, each distribution Dt (t ≥ 1)
is 1/ε-smooth with respect to D1, the uniform distribution over S.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p

E
(p
)

KM entropy
Shannon's entropy
Gini index

Fig. 1. Plots of three entropy functions, KM entropy (upper) EKM (p) = 2
p

p(1− p),
Shannon’s entropy (middle) EShannon(p) = −p log p− (1−p) log(1−p), and Gini index
(lower) EGini(p) = 4p(1 − p).

Proof. Note that, during the while-loops, μt ≥ errS(hfinal) > ε. Therefore, for
any i, Dt(i)/D1(i) = �(−f(xi)Ht(xi))/μt < 1/ε.
�
It is already shown that smoothness 1/ε is optimal, i.e., there is no boosting
algorithm that achieves the smoothness less than 1/ε [25, 14].

Next, we prove the time complexity of GiniBoost.

Theorem 2 Suppose that, during the while-loops, errDt(ht) ≤ 1/2 − γt/2 ≤
1/2−γ/2 for some γ > 0. Then, GiniBoost outputs a final hypothesis hfinal satis-
fying êrrS(hfinal) ≤ ε within T = O (1/εΔ) iterations, where Δ = mint=1,...,T Δt

and Δ ≥ γ2.

Proof. By our derivation of GiniBoost, for any T ≥ 1, the training error êrr(HT)
is less than 1−∑T

t=1 ΔLt(ht). As in the proof of Proposition 1, μt ≥ ε. So we have
ΔLt(ht) ≥ εΔ/4 and thus êrrS(hfinal) ≤ ε if T = 4/εΔ. Finally, by Jensen’s
inequality, Δt ≥ ptγt[+1]2+(1−pt)γt[−1]2 ≥ γ2

t ≥ γ2, which proves Δ ≥ γ2.
�
Remark. We discuss the efficiency of other boosting algorithms and GiniBoost.
GiniBoost runs in O(1/εγ2) iterations in the worst case. But, since the pseudo
gain Δ ranges from γ2 to γ, our bound O(1/εΔ) is potentially smaller. Smooth
boosting algorithms MadaBoost [6] and SmoothBoost [25] run in O(1/εγ2) itera-
tions as well. However, the former needs a technical assumption in their analysis
that γt ≥ γt+1 for each iteration t. Also the latter is not adaptive, i.e., it needs
the prior knowledge of γ > 0. On the other hand, GiniBoost is adaptive and
does not need such the technical assumption. AdaFlat [14] is another smooth
boosting algorithm which is adaptive, but it takes O(1/ε2γ2) iterations. Finally,
AdaBoost [11] achieves O(log(1/ε)/γ2) bound and the bound is optimal [10]. But
AdaBoost might construct exponentially skew distributions. It is shown that a
combination of boosting algorithms (“boosting tandems approach” [9, 14]) can
achieve O(log(1/ε)/γ2) with smoothness Õ(1/ε). Yet, it is still open whether a
single adaptive boosting algorithm can learn in O(log(1/ε)/γ2) iterations while
keeping the optimal smoothness 1/ε.

GiniBoost

Given: S = ((x1, f(x1)), ..., (xm, f(xm))), and ε (0 < ε < 1)
1. D1(i) ← 1/m; (i = 1, ..., m) H0(x) ← 0; t ← 1;
2. while cerrS(hfinal) > ε do

a) ht ← arg max
h∈W

Δt(h);

b) αt[±1] ← γt[±1]/2; Let αt(z) = αt[+1] if z > 0, o.w. let αt(z) = αt[−1];
c) Ht+1(x) ← Ht(x) + αt(ht(x))ht(x);
d) Define the next distribution Dt+1 as

Dt+1(i) =
�(−f(xi)Ht+1(xi))Pm

i=1 �(−f(xi)Ht+1(xi))
;

e) t ← t + 1;
end-while

3. Output the final hypothesis hfinal(x) = sign (Ht+1(x)) .

Fig. 2. GiniBoost

4 Boosting by Filtering

In this section, we propose GiniBoostfilt in the filtering framework. Let

Dt(x) =
D(x)�(−f(x)Ht(x))∑

x∈X D(x)�(−f(x)Ht(x))
.

We define μt =
∑

x∈X D(x)�(−f(x)Ht(x)),. We denote â as the empirical esti-
mate of the parameter a given a sample St. The description of GiniBoostfilt is
given in Figure 3.

The following property of FiltEX can be immediately verified.

Proposition 3 Fix any iteration t, (i) FiltEX outputs (x, f(x)), where x is
drawn according to Dt, and (ii) the probability that FiltEX outputs an example
is at least μt ≥ errD(sign(Ht)).

Then, we prove a multiplicative tail bound on the estimate Δ̂t(h) of the
pseudo gain.

Lemma 1 Fix any t ≥ 1. Let Δ̂t(h) = p̂t(h)γ̂t[+1](h)2 + (1 − p̂t(h))γ̂t[−1](h)2

be the empirical estimate of Δt(h) given St. Then it holds for any ε (0 < ε < 1)
that

Pr
Dm

{Δ̂t(h) ≥ (1 + ε)Δt(h)} ≤ b1e
− ε2Δtm

c1 , (3)

and

Pr
Dm

{Δ̂t(h) ≤ (1 − ε)Δt(h)} ≤ b1e
− ε2Δtm

c2 , (4)

where b1 ≤ 8, c1 ≤ 600, and c2 ≤ 64.

GiniBoostfilt(ε, δ,W)

1.Let H1(x) = 0; t ← 1; δ1 ← δ/8;

S′
1 ← 18 log(1/δ1)

ε
random examples drawn by EX(f, D);

2.while cerrS′
t
(sign(Ht)) ≥ 2ε

3
do

(ht, St) ← HSelect(1/2, δt);
(γ̂t[+1], γ̂t[−1]) ← empirical estimates over St;
αt[±1] ← γ̂t[±1]/2;
Ht+1(x) ← Ht(x) + αt(ht(x))ht(x);
t ← t + 1; δt ← δ/(4t(t + 1));

S′
t ← 18 log(1/δt)

ε
random examples drawn by EX(f, D);

end-while
3.Output the final hypothesis hfinal(x) = sign (Ht(x)) ;

FiltEX()

do
(x, f(x)) ← EX(f, D);
r ← uniform random number over [0, 1];
if r < �(−f(x)Ht(x)) then return (x, f(x));

end-do

HSelect(ε, δ)

m ← 0; S ← ∅; i ← 1; Δg ← 1/2; δ′ ← δ/(2|W|);
do
(x, f(x)) ← FiltEX();
S ← S ∪ (x, f(x)); m ← m + 1;

if m =

‰
c1 ln

b1
δ′

ε2Δg

ı
then

Let Δ̂t(h) be the empirical estimate of Δt(h) over S for each h ∈ W;

if ∃h ∈ W, Δ̂t(h) ≥ Δg then return h and S;
else Δg ← Δg/2; i ← i + 1; δ ← δ/(i(i + 1)|W|);

end-if
end-do

Fig. 3. GiniBoostfilt

The proof of Lemma 1 is omitted and given in the technical report version of
our paper [17]. Then, we analyze our adaptive sampling procedure HSelect. Let
Δ∗

t = maxh′∈W Δt(h′). We prove the following lemma. The proof is also given
in [17] .

Lemma 2 Fix any t ≥ 1. Then, with probability at least 1− δ, (i) HSelect(ε, δ)
outputs a hypothesis h ∈ W such that Δt(h) > (1 − ε)Δ∗

t , and (ii) the number
of calls of EX(f, D) is

O

(
log 1

δ + log |W| + log log 1
Δ∗

t

ε2Δ∗
t

)
.

Finally we obtain the following theorem.

Theorem 4 With probability at least 1 − δ,

(i) GiniBoostfilt outputs the final hypothesis hfinal such that errD(hfinal) ≤ ε,
(ii) GiniBoostfilt terminates in T = O (1/εΔ) iterations,
(iii) the number of calls of EX(f, D) is

O

(
log 1

δ + log 1
εΔ + log |W| + log log 1

Δ

ε2Δ2
·
(

log
1
δ

+ log
1

εΔ

))
, and

(iv) the space complexity is

O

(
log 1

δ + log 1
εΔ + log |W| + log log 1

Δ

Δ

)
,

where Δt ≥ Δ ≥ γ2.

Proof. We say that GiniBoost fails at iteration t if one of the following event
occurs: (a) HSelect fails, i.e., it does not meet the conditions (i) or (ii) in Lemma 2
, (b) FiltEX calls EX(f, D) for more than (6/ε)Mt log(1/δt) times at iteration
t, where Mt is denoted as the number of calls for FiltEX, (c) errD(sign(Ht)) > ε
and êrrS′

t
(sign(Ht)) < 2ε/3, or (d) errD(sign(Ht)) < ε/2 and êrrS′

t
(sign(Ht)) >

2ε/3. Note that, by Proposition 3, Lemma 2 and an application of Chernoff
bound, the probability of each event (a), . . . , (d) is at most δt, respectively. So the
probability that GiniBoost fails is at most 4δt at each iteration t. Then, during T
iterations, GiniBoost fails at some iteration is at most

∑T
t=1 4δt = δ−δ/(T +1) <

δ. Now suppose that GiniBoost does not fail during T iterations. Then, we have
errD(hfinal) ≤ 1 −∑T

i=t(1/8)Δ∗
t by using the similar argument in the proof of

Theorem 2, and thus GiniBoost errD(hfinal) ≤ ε/2 in T = 16/(εΔ) iterations.
Then, since GiniBoost does not fail during T iterations, êrrS′

t
(sign(Ht)) < 2ε/3

at iteration T + 1 and GiniBoost outputs hfinal with errD(hfinal) ≤ ε/2 and
terminates. The total number of calls of EX(f, D) in T = O(1/εΔ) iterations is
O(T ·MT (1/ε) log(1/δT)) with probability 1−δ and by combining with Lemma 2,
we complete the proof.
�

5 Improvement on Sampling

While Lemma 1 gives a theoretical guarantee without any assumption, the bound
has the constant factor c1 = 600, which is too large to apply the lemma in prac-
tice. In this section, we derive a practical tail bound on the pseudo gain by using
the central limit theorem. We say that a sequence of random variables {Xi} is
asymptotically normal with mean μi and variance σ2

i (we write Xi is AN(μi, σ
2
i)

for short) if (Xi−μi)/σi converges to N(0, 1) in distribution 3. The central limit
3 Let F1(x), . . . , Fm(x), and F (x) be distribution functions. Let X1, . . . , Xm, and X

be corresponding random variables, respectively. Xm converges to X in distribution
if limm→∞ Fm(x) = F (x).

theorem states that, for independent random variables X1, . . . , Xm from the
same distribution with mean μ and variance σ2,

∑m
i=1 Xi/m is AN(μ, σ2/m).

In particular, we use the multivariate version of the central limit theorem.

Theorem 5 ([24]) Let X1, . . . ,Xm be i.i.d. random vectors with mean µ and
covariance matrix Σ. Then,

∑m
i=1 Xi/m is AN(µ,Σ).

Fix any hypothesis h ∈ W , and distribution Dt over X . Let X ∈ {0, 1} and
Y ∈ {−1, +1} be random variables, induced by an independent random draw
of x ∈ X under Dt, such that X = 1 if h(x) = +1, otherwise X = 0 and
Y = f(x)ht(x), respectively. Then the pseudo gain Δt(h) can be written as
E(X) · {E(XY)/E(X)}2 + E(X̄) · {E(X̄Y)/E(X̄)}2, where X̄ = 1 − X . Our
empirical estimate of the pseudo gain is Z = (

∑m
i=1 XiYi/m)2/(

∑m
i=1 Xi/m) +

(
∑m

i=1 X̄iYi/m)2/(
∑m

i=1 X̄i/m). The following theorem guarantees that a com-
bination of sequences of asymptotically normal random variables is also asymp-
totically normal (Theorem 3.3A in [24]).

Theorem 6 ([24]) Suppose that X = (X(1), . . . , X(k)) is AN(µ, bΣ), with Σ a
covariance matrix and b → 0. Let g(x) = (g1(x), . . . , gn(x)), x = (x1, . . . , xk), be
a vector-valued function for which each component function gi(x) is real-valued
and has a nonzero differential at x = µ. Then, g(X) is AN(g(µ), b2DΣD′),
where

D =
[

∂gi

∂xj

∣∣∣
x=µ

]
n×k

.

By using Theorem 5 and 6 for Xm = (
∑m

i=1 Xi/m,
∑m

i=1 XiYi/m,
∑m

i=1 X̄iYi/m)
and g(u, v, w) = v2/u + w2/(1 − u), we get the following result.

Corollary 7 Z = (Pm
i=1 XiYi/m)2

Pm
i=1 Xi/m + (Pm

i=1 X̄iYi/m)2

P
m
i=1 X̄i/m

is AN(μz, σ
2
z), where μz =

E(XY)2

E(X) + E(X̄Y)2

E(X̄)
, and σ2

z ≤ 4μz/m.

The proof is given in [17]. When the given sample is large enough, we may be
able to use the central limit theorem. Then

Pr
{

Z − μz

σz
≤ ε

}
≈ Φ(ε),

where Φ(x) =
∫ x

−∞(1/
√

2π)e−
1
2 y2

dy. Since 1 − Φ(x) ≤ 1/(x
√

2π)e−
1
2 x2

(see,
e.g.,[8]),

Pr {Z − μz > εμz} = Pr
{

Z − μz

σz
>

εμz

σz

}
� σz

εμz

√
2π

e
− ε2μ2

z
2σ2

z

<
2√

2πε2μzm
e−

ε2μzm
8 . (5)

Substituting

m =
8
(
ln 1

δ
√

2π
− 1

2 ln ln 1
δ
√

2π

)
ε2μz

to inequality (5), we obtain Pr {Z − μz > εμz} < δ. Note that the same argu-
ment holds for Pr{Z ≤ (1 − ε)μz}. Therefore, we can replace the estimate of

sample size m = c1 ln(b1/δ)
ε2Δg

in HSelect with m =
8

“
ln 1

δ
√

2π
− 1

2 ln ln 1
δ
√

2π

”

ε2Δg
and this

modification makes HSelect more practical.

6 Experimental Results

In this section, we show our preliminary experimental results in the filtering
framework. We apply GiniBoost and MadaBoost for text categorization tasks on
a collection of Reuters news (Reuters-21578 4). We use the modified Apte split
which contains about 10, 000 news documents labeled with topics. We choose five
major topics and for each topics, we let boosting algorithms classify whether a
news document belongs to the topic or not. As weak hypotheses, we prepare
about 30, 000 decision stumps corresponding to words.

We evaluate algorithms using cross validation in a random fashion, as done
in [4]. For each topic, we split the data randomly into a training data with
probability 0.7 and a test data with probability 0.3. We prepare 10 pairs of
such training and test data. We train algorithms over the training data until
they sample 1, 000, 000 examples in total, and then we evaluate them over the
test data. The results are averaged over 10 trials and 5 topics. We conduct our
experiments on a computer with a CPU Xeon 3.8GHz using 8 Gb of memory
under Linux.

We consider two versions of GiniBoost in our experiments. The first version
is the original one which we described in Section 3. The second version is a slight
modification of the original one, in which we use αt[±1] = γt[±1]. We call this
version GiniBoost2.

We run GiniBoost with HSelect(ε, δ), where parameter ε = 0.75 and δ = 0.1
are fixed. Also, we run MadaBoost with geometric AdaSelect [5] whose pa-
rameters are s = 2, ε = 0.5 and δ = 0.1. Note that, in this setting, we de-
mand both HSelect and AdaSelect to output a weak hypothesis ht with γ2

t ≥
(1/4)maxh′∈W γt(h′)2. In the following experiments, we use the approximation
based on the central limit theorem, described in Section 5.

The results are shown in Table 1 and Figure 4, As indicated, GiniBoost and
GiniBoost2 improve the performance of MadaBoost. We also run AdaBoost
(without sampling) for 100 iterations, where AdaBoost processes about 1,000,000
examples. Then, GiniBoost is about three times faster than AdaBoost, while
improving the accuracy. The main reason why filtering-based algorithms save
time would be that they use rejection sampling. By using rejection sampling,
4 http://www.daviddlewis.com/resources/testcollections/reuters21578.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

5

6

7

8

9

10

11

12

13

14

15

of sampled examples
A
ve
ra
ge
 te
st
 e
rr
or
 (
%
)

Mada.
Gini.
Gini2.

Fig. 4. Test errors (%) of boosting algorithms for Reuters-21578 data. The test errors
are averaged over topics.

filtering-based algorithms keep only accepted examples in hand. Since the num-
ber of accepted example is much smaller than that of the whole given sample,
we can find weak hypotheses faster over accepted examples than over the given
sample.

In particular, GiniBoost uses fewer accepted examples than MadaBoost.
mainly because they use different criteria. Roughly speaking, MadaBoost takes
Õ(1/γ2

t) accepted examples in order to estimate γt. On the other hand, in order
to estimate Δt, GiniBoost takes Õ(1/Δt) accepted examples, which is smaller
than Õ(1/γ2

t). This consideration would explain why GiniBoost is faster than
MadaBoost.

7 Summary and Future Work

In this paper, we propose a smooth boosting algorithm that uses an information-
based criterion based on Gini index for choosing hypotheses. Our preliminary
experiments show that our algorithm performs well in the filtering framework.
As future work, we further investigate the connections between boosting and
information-based criteria. Also, we will conduct experiments over much huge
data in the filtering framework.

Acknowledgments

I would like to thank Prof. Masayuki Takeda of Kyushu University for his var-
ious support. I thank Prof. Osamu Wannabe and Prof. Eiji Takimoto for their
discussion. I also thank anonymous referees for their helpful comments. This
work is supported in part by the 21st century COE program at Graduate School
of Information Science and Electrical Engineering in Kyushu University.

of sampled examples # of accepted examples time (sec.) test error (%)

Ada. N/A N/A 1349 5.6
Mada. 1,032,219 157,320 493 6.7
Gini. 1,039,943 156,856 408 5.8
Gini2. 1,027,874 140,916 359 5.5

Table 1. Summary of experiments over Reuters-2158.

References

1. J. A. Aslam. Improving algorithms for boosting. In Proc. 13th Annu. Conference
on Comput. Learning Theory, pages 200–207, 2000.

2. Jose L. Balcazar, Yang Dai, and Osamu Watanabe. Provably fast training algo-
rithms for support vector machines. In Proceedings of IEEE International Confer-
ence on Data Mining (ICDM’01), pages 43–50, 2001.

3. L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and
Regression Trees. Wadsworth International Group, 1984.

4. Sanjoy Dasgupta and Philip M. Long. Boosting with diverse base classifers. In
Proceedings of the 16th Annual Conference on Learning Theory and 7th Kernel
Workshop, pages 273–287, 2003.

5. C. Domingo, R. Gavaldà, and O. Watanabe. Adaptive sampling methods for scal-
ing up knowledge discovery algorithms. Data Mining and Knowledge Discovery,
6(2):131–152, 2002.

6. C. Domingo and O. Watanabe. MadaBoost: A modification of AdaBoost. In
Proceedings of 13th Annual Conference on Computational Learning Theory, pages
180–189, 2000.

7. P. Domingos and G. Hulten. Mining high-speed data streams. In Proceedings of the
Sixth ACM International Conference on Knowledge Discovery and Data Mining,
pages 71–80, 2000.

8. W. Feller. An introduction to probability theory and its applications. Wiley, 1950.

9. Y. Freund. An improved boosting algorithm and its implications on learning com-
plexity. In Proc. 5th Annual ACM Workshop on Computational Learning Theory,
pages 391–398. ACM Press, New York, NY, 1992.

10. Y. Freund. Boosting a weak learning algorithm by majority. Information and
Computation, 121(2):256–285, 1995.

11. Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learn-
ing and an application to boosting. Journal of Computer and System Sciences,
55(1):119–139, 1997.

12. Yoav Freund. An adaptive version of the boost by majority algorithm. In COLT
’99: Proceedings of the twelfth annual conference on Computational learning theory,
pages 102–113, 1999.

13. J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a statistical
view of boosting. Annals of Statisitics, 2:337–374, 2000.

14. D. Gavinsky. Optimally-smooth adaptive boosting and application to agnostic
learning. Journal of Machine Learning Research, 2003.

15. K. Hatano and M. K. Warmuth. Boosting versus covering. In Advances in Neural
Information Processing Systems 16, 2003.

16. K. Hatano and O. Watanabe. Learning r-of-k functions by boosting. In Proceedings
of the 15th International Conference on Algorithmic Learning Theory, pages 114–
126, 2004.

17. Kohei Hatano. Smooth boosting using an information-based criterion. Technical
Report DOI-TR-225, Department of Informatics, Kyushu University, 2006.

18. M. Kearns and Y. Mansour. On the boosting ability of top-down decision tree
learning algorithms. Journal of Computer and System Sciences, 58(1):109–128,
1999.

19. Yishay Mansour and David A. McAllester. Boosting using branching programs.
Journal of Computer and System Sciences, 64(1):103–112, 2002.

20. R. E. Schapire, Y. Freund, P. Bartlett, and W. S. Lee. Boosting the margin: a
new explanation for the effectiveness of voting methods. The Annals of Statistics,
26(5):1651–1686, 1998.

21. Robert E. Schapire. The strength of weak learnability. Machine Learning, 5(2):197–
227, 1990.

22. Robert E. Schapire and Yoram Singer. Improved boosting algorithms using
confidence-rated predictions. Machine Learning, 37(3):297–336, 1999.

23. Tobias Scheffer and Stefan Wrobel. Finding the most interesting patterns in a
database quickly by using sequential sampling. Journal of Machine Learning Re-
search, 3:833–862, 2003.

24. R. J. Serfling. Approximation theorems of mathematical statistics. Wiley, 1980.
25. R. A. Servedio. Smooth boosting and learning with malicious noise. In 14th Annual

Conference on Computational Learning Theory, pages 473–489, 2001.
26. Eiji Takimoto, Syuhei Koya, and Akira Maruoka. Boosting based on divide and

merge. In Proceedings of the 15th International Conference on Algorithmic Learn-
ing Theory, pages 127–141, 2004.

27. L. G. Valiant. A theory of the learnable. Communications of the ACM,
27(11):1134–1142, 1984.

Appendix

Lemma 3 Let L(x) = x + 1, if x > 0 and ex, otherwise. Then it holds for any
a ∈ R and any x ∈ [−1, +1] that

L(x + a) ≤ L(a) + L′(a)x + L′(a)x2.

Proof. For any x ∈ [−1, 1], let gx(a) = L(a)+L′(a)(x+x2)−L(x+a). We consider
the following cases. (Case 1: x+a, a ≤ 0) We have gx(a) = ea(1+x+x2−ex) ≥ 0,
as ex ≤ 1 + x + x2 for x ∈ [−1, 1]. (Case 2: x + a, a ≥ 0) It is immediate to
see that gx(a) = x2 ≥ 0. (Case 3: x + a < 0, and a > 0) It holds that gx(a) =
1+a+x+x2−ex+a ≥ 0 since g′x(a) = 1−ex+a > 0 and gx(0) = 1+x+x2−ex ≥ 0.
(Case 4: x+a > 0, and a < 0) By using the fact that 1+x+x2 ≥ ex for x ∈ [−1, 1],
we have gx(a) = ea(1 + x + x2) − (x + a + 1) ≥ ex+a − (1 + x + a) ≥ 0.
�

