
Query Translation for XPath-based Security
Views

Roel Vercammen?, Jan Hidders, and Jan Paredaens

University of Antwerp

Abstract. Since XML is used as a storage format in an increasing num-
ber of applications, security has become an important issue in XML
databases. One aspect of security is restricting access to data by cer-
tain users. This can, for example, be achieved by means of access rules
or XML security views, which define projections over XML documents.
The usage of security views avoids information leakage that may occur
when we use certain access rules. XML views can be implemented by ma-
terialized views, but materialization and maintenance of views may cause
considerable overhead. Therefore, we study translations from queries on
views to equivalent queries on the original XML documents, assuming
both the security views and the queries are specified by XPath expres-
sions. Especially, we investigate which XPath fragments are closed under
the composition of a view and a query.

1 Introduction

Access control mechanisms are essential for database systems used to store and
share sensitive information. XML is used in an increasing number of applications,
including those handling confidential information. As a consequence, some stan-
dards for XML access control have already emerged, such as XACL [11] and
XACML [9]. Furthermore, several approaches for XML access control mecha-
nisms have been proposed in the literature [6, 13, 4]. In most of these approaches,
the policies are specified at the DTD level. Fundulaki and Marx developed a
framework to compare XML access control mechanisms in terms of XPath [8].
Query answering that incorporates these access control policies can, for example,
be performed by computing some (materialized) security view [14, 12] and then
evaluating the query against this security view. This ensures that no informa-
tion is exposed that is not supposed to be seen by the user, since the query is
evaluated against an XML tree that contains exactly the information the user
is allowed to see. However, the materialization of views causes an overhead that
might be avoided if we can translate queries on the view to equivalent queries
on the original data, without leaking information on “hidden” nodes [6, 2].

In this paper, we will not introduce a new XML access control mechanism,
but instead we assume that security views are defined by path expressions p such
? Roel Vercammen is supported by IWT – Institute for the Encouragement of Inno-

vation by Science and Technology Flanders, grant number 33581.

that access to a node is never granted, except when it is the root node or in the
result of p. The obtained XML security views are similar to those of [6] and [12],
but we specify them by means of path expressions instead of annotated DTDs.
We investigate how to translate queriesst on views to equivalent queries on the
original data. Since it is known that some XPath fragments can be evaluated
very efficiently [10], we look at a number of XPath fragments to see which of
these fragments are closed under the composition of a view and a query.

The rest of the paper is structured as follows. In Section 2 we introduce
our XPath-based security views and some preliminary notions. In Section 3 we
study the problem of translating queries on XML views to queries on the original
(XML) data. We then use these results in Section 4 to examine which XPath
fragments are closed under the composition of a view and a query. Finally, we
compare our approach to existing query translation mechanisms for queries on
XML views in Section 5 and conclude the paper in Section 6.

2 Preliminaries

In this section we introduce some preliminary notions that are used in the rest of
our paper. First, we define the data model and the query language that we use
in the theoretical exploration of this paper. Next, we introduce our XPath-based
security views. Finally, we define the fragments that we investigate.

2.1 Data Model

Our data model is a simplification and abstraction of the full XML data model [7]
and restricts itself to the element nodes. First of all, we postulate an infinite set
of tag names Σ and an infinite set of nodes N .

Definition 1 (XML Tree). An XML tree is a tuple T = (N,C, r, λ,≺) such
that (N,C, r) is a rooted tree where N ⊂ N is a finite set of nodes, C is the
parent-child relationship, r is the root, λ : N → Σ labels nodes with their tag
name and ≺ is a strict total order1 over N that represents the document order
and defines a pre-order tree-walk, i.e., (1) every child is smaller than its parent,
and (2) if two nodes are siblings then all descendants of the smaller sibling are
smaller than the larger sibling

In the following we let B denote the inverse relation of C, C+ and B+ the
transitive closure of resp. C and B, and C∗ and B∗ the transitive and reflexive
closure of resp. C and B. The set of all XML trees is denoted by T .

2.2 XPath Queries

We now define the set of XPath expressions we consider. We use a syntax in
the style of [1] that abstracts from the official syntax [3] and is more suitable

1 A strict total order is a binary relation that is irreflexive, transitive and total.

for formal presentations. The largest fragment of XPath that we study in this
paper, called P, is defined by the following abstract grammar:

p ::= ε | ⇑ | l | ↓ | ↑ | ↓∗ | ↓+ | ↑∗ | ↑+ | ←+ | →+ |� |� |
p/p | p[p] | p ∩ p | p ∪ p | p− p

where ε represents the empty path expression or self axis, l ∈ Σ denotes a label
test, ↑ and ↓ represent the parent and child axis, ↑∗, ↑+, ↓∗ and ↓+ represent the
ancestor-or-self, ancestor, descendant-or-self and descendant axis, ←+ and →+

represent the preceding-sibling and following-sibling axis, � and � represent the
following and preceding axis, ⇑ represents the document root, p1/p2 represents
the concatenation of p1 and p2, p1[p2] represents a path p1 with a predicate p2

and finally ∩, ∪ and − represent the set intersection, set union and set difference.
For disambiguation, parentheses are added and the concatenation is assumed to
have the highest precedence. The label tests of the form l ∈ Σ behave as if they
follow the self axis. This means that a/b corresponds to the conventional XPath
expression self::a/self::b and not to the expression child::a/child::b as
is the case for the so-called abbreviated XPath syntax. Based on [5] and similar
to [1] we define the semantics as follows:

Definition 2 (XPath Semantics). Given an XML tree T = (N,C, r, λ,≺) we
define the semantics of a path expression p, [[p]]T ⊆ N ×N as follows:

[[⇑]]T = {(n, n′)|n′ = r}
[[↑]]T = B [[↓]]T = C
[[↑∗]]T = B∗ [[↓∗]]T = C∗

[[↑+]]T = B+ [[↓+]]T = C+

[[�]]T =� −B+ [[�]]T =≺ −C+

[[←+]]T =� ∩(B ◦C) [[→+]]T =≺ ∩(B ◦C)
[[ε]]T = {(n, n′)|n = n′} [[l]]T = {(n, n′)|n = n′ ∧ λ(n) = l}
[[p1/p2]]T = [[p1]]T ◦ [[p2]]T [[p1 ∩ p2]]T = [[p1]]T ∩ [[p2]]T
[[p1 ∪ p2]]T = [[p1]]T ∪ [[p2]]T [[p1 − p2]]T = [[p1]]T − [[p2]]T
[[p1[p2]]]T = {(n, n′)|(n, n′) ∈ [[p1]]T ∧ ∃n′′ : (n′, n′′) ∈ [[p2]]T }

Note that “◦” denotes the concatenation of binary relations (and therefore
also functions), i.e., (x, y) ∈ (f ◦ g) ⇔ ∃z : (x, z) ∈ f ∧ (z, y) ∈ g. This is the
reverse of the usual semantics. The length of a path expression p is denoted by |p|
and equals the size of the abstract syntax tree of p. Let p be a path expression.
We define pk as the concatenation of k times p, i.e., p0 = ε and pn+1 = pn/p.

Definition 3 (Query). Let p be a path expression. The query Q[p] is a function
T → 2N , defined as follows: ∀T = (N,C, r, λ,≺) : (n ∈ Q[p](T)⇔ (r, n) ∈ [[p]]T)

Note that ∀T ∈ T : [[p1]]T = [[p2]]T implies Q[p1] = Q[p2], but the reverse
does not necessarily hold. For example, we know that Q[↓/↑+] = Q[ε[↓]], but for
many XML trees T , [[↓/↑+]]T 6= [[ε[↓]]]T .

2.3 XPath-based Security Views

The XPath-based security views that we consider are similar to the XML security
views of [6, 12]. However, we define security views by means of path expressions

instead of annotating the DTD. Informally, a view defined by a path expression
p maps an XML tree, called input tree, to an XML tree, called view tree, such
that the view tree is the projection of the input tree on the nodes selected by p
and the root of the input tree. We always include the root of the input tree in
order to ensure that the projection yields a valid XML tree instead of a forest.

Definition 4 (View). Let p be a path expression. The view V[p] is a function
T → T , defined as follows: ∀T1 = (N1,C1, r1, λ1,≺1), T2 = (N2,C2, r2, λ2,≺2) :
V[p](T1) = T2 ⇔

– N2 = {n|(n = r1) ∨ ((r1, n) ∈ [[p]]T1)}
– C2 = {(m,n)|(m,n ∈ N2)∧ (m C+

1 n)∧ (6 ∃n′ ∈ N2 : (m C+
1 n′)∧ (n′ C+

1 n))}
– r2 = r1

– λ2 = {(n, s)|(n ∈ N2) ∧ (λ1(n) = s)}
– ≺2= {(m,n)|(m,n ∈ N2) ∧ (m ≺1 n)}2

Example 1. A governmental organization has to check hospitals and the treat-
ments that are performed by their doctors. For privacy reasons, hospitals are
not allowed to transfer any information on their patients to this institute. The
doctors of this hospital, however, have internally organized the information on
treatments by collecting them per patient. Suppose the hospital database is the
left tree in Fig. 1 and the government wants the data in the form of the right
tree in this figure. We can obtain the right tree using an XPath-based security
view, more precisely the view V[↓/Doctor/(ε ∪ ↓+/Treatment/↓∗)] transforms
input trees of the left form to view trees of the right form.

Doctors

Doctor Doctor

Patient Patient Patient

Treatment Treatment Treatment Treatment Treatment Treatment

a b a c a c

Doctors

Doctor Doctor

Treatment Treatment Treatment Treatment Treatment Treatment

a b a c a c

Fig. 1. Input and View Tree of Example 1

Note that the semantics of path expressions on the view tree in terms of the
input tree differs from the semantics of the same path expression on the input
tree. For example, in Fig. 1 a ‘Treatment’ node is a child of a ‘Doctor’ node in the
view, while this is not true in the input tree. However, for some axes a it holds
that they are “robust under view definition”, i.e., [[a]]V[p](T) ⊆ [[a]]T . The robust
axes are ε, ↑∗, ↑+, ↓∗, ↓+,�, and �. As we show in Section 3, these axes can
easily be translated. Moreover, we can express all other axes in terms of these
2 This defines a pre-order tree-walk, since ≺1 is a strict total order and C+

2 ⊆ C+
1 .

axes as follows: [[↓]]T = [[↓+−↓+/↓+]]T , [[↑]]T = [[↑+−↑+/↑+]]T , [[→+]]T = [[(↑+−
↑+/↑+)/(↓+−↓+/↓+)∩�]]T , and [[←+]]T = [[(↑+−↑+/↑+)/(↓+−↓+/↓+)∩�]]T .
In some query translations, we first transform path expressions to equivalent
expressions only containing robust axes. Since none of our fragments contain
the following and preceding axes, we afterwards remove them using following
equalities: [[�]]T = [[↑∗/→+/↓∗]]T and [[�]]T = [[↑∗/←+/↓∗]]T .

2.4 XPath Fragments

We now define the XPath fragments that we study in this paper and discuss some
of their properties. These fragments are inspired by the fragments introduced
in [1], but we have added sibling axes, intersection, union and set difference.
Furthermore, their label tests l correspond to ↓/l in our XPath model. Our
fragments are defined by the axes that can occur in path expressions and the
different operations we can use to combine two path expressions to a new path
expression. We consider two groups of fragments. One is defined by a base frag-
ment X and loosely corresponds to the fragments introduced in [1]; the other is
defined by a base fragment A which is based on the abbreviated syntax [3].
The fragment X is defined as

p ::= ε | ⇑ | l | ↓ | p/p.

We can extend this fragment by adding the parent axis (↑), adding the sibling
axes (←+ and →+), and adding the transitive and reflexive closure of axes (i.e.,
adding ↓∗ and if ↑ is in the fragment then also ↑∗). The three possible extensions
can be combined arbitrarily and are respectively denoted by superscripts ↑, ↔,
and r.
The fragment A is defined as

p ::= ε | ⇑ | ↓ | ↓/l | ↓∗ | ↑ | p/p.

All previous fragments can be extended with predicates ([]), set intersection
(∩), set union (∪), and set difference (−). The addition of these extensions is
denoted by subscripts.

Some fragments F contain path expressions that are equivalent to path ex-
pressions that are not in F . If the addition of a certain operation o to a fragment
F does not increase the expressive power of path expressions defined in F then
we say that o can be expressed in F . Furthermore, for some fragments F it holds
that we cannot in general express an operation o in F , but we can express o if
we assume that all path expressions are evaluated against the root. We then say
that o can be expressed in queries of F . We now give some expressibility results
for the XPath fragments that we have just defined.

Lemma 1. The following expressibility properties hold for queries, i.e., path
expressions evaluated against the root of a tree:

1. The union of two path expressions can be expressed in all fragments that can
express the set difference and the descendant-or-self axis.

2. The intersection of two path expressions can be expressed in all fragments
that can express the set difference.

3. Predicates can be expressed in all fragments that can express intersection.
4. Parent, ancestor and ancestor-or-self axes can be expressed in all fragments

that can express intersection and descendant-or-self axes.

The first two properties also hold for path expressions in general.

Proof. (Sketch)

1. This follows from [[p1 ∪ p2]]T = [[(⇑/↓∗)− ((⇑/↓∗)− p1 − p2)]]T .
2. This follows from [[p1 ∩ p2]]T = [[p1 − (p1 − p2)]]T .
3. We can define a function e : P × P → P such that Q[pc/p] = Q[pc/e(p, pc)]

and its result does not contain predicates if the second argument does not
contain predicates. For predicate operations the mapping is defined by
e(p1[p2], pc) = e(p1, pc)/(ε ∩ e(p2, pc/e(p1, pc))/⇑/pc/e(p1, pc)). For all other
operations the definition is straightforward, e.g., e(p1 ∪ p2, pc) = e(p1, pc) ∪
e(p2, pc), and e(p1/p2, pc) = e(p1, pc)/e(p2, pc/e(p1, pc)).

4. Similar to the previous part of this proof, we can define a function e : P×P →
P such that Q[pc/p] = Q[pc/e(p, pc)] and e(p, pc) does not contain ↑, ↑+ or
↑∗ if the second argument does not contain these axes. The mapping for
↑∗ is defined by e(↑∗, pc) = ⇑/↓∗[↓∗ ∩ ⇑/pc] and similar mappings can be
defined for ↑ and ↑+. The mapping of predicate operations differs from part 3:
e(p1[p2], pc) = e(p1, pc)[e(p2, pc/e(p1, pc)]. Since predicates can be expressed
using intersection, we only need ∩ and ↓∗ axes to express ↑, ↑+, and ↑∗.

ut

From the previous lemma follows that P has the same expressive power as
X r,↔
− . We conclude this section by showing that for some queries Q[p] we know

that all nodes in Q[p](T) are on the same depth in T .

Lemma 2. For all path expressions p ∈ X ↑,↔[],∩,− it holds that for all XML trees
T all nodes in the result of Q[p](T) are on the same level d(p, 0), inductively
defined as follows:

d(⇑, n) = 0 d(ε, n) = n d(l, n) = n
d(↓, n) = n + 1 d(↑, n) = n− 1 d(p1/p2, n) = d(p2, d(p1, n))
d(←+, n) = n d(→+, n) = n d(p1[p2], n) = d(p1, n)
d(p1 ∩ p2, n) = d(p1, n) d(p1 − p2, n) = d(p1, n)

Proof. (Sketch) For all p ∈ X ↑,↔[],∩,− it can be shown by induction on the length
of p that if n1 is a node in T at depth n and (n1, n2) ∈ [[p]]T then n2 is a node
at depth d(p, n) in T . ut

3 Composing Views and Queries

In this section we study the problem of composing a view and a query to a new
query on the input tree that is equivalent to the query on the view tree. We

propose two translations, one that can be used to translate path expressions on
view trees to path expressions on input trees and one that can only be used to
translate queries on view trees to queries on input trees.

The first translaction assumes that all axes in path expressions are robust,
such that after each step we can restrict the result of the axis step to the nodes
that are in the view tree.

Definition 5. Let p be a path expression. The function τp : P → P is defined
as follows:

τp(⇑) = ⇑ τp(ε) = ε
τp(l) = l τp(q1/q2) = τp(q1)/τp(q2)
τp(q1[q2]) = τp(q1)[τp(q2)] τp(q1 ∩ q2) = τp(q1) ∩ τp(q2)
τp(q1 ∪ q2) = τp(q1) ∪ τp(q2) τp(q1 − q2) = τp(q1)− τp(q2)
τp(↓∗) = ↓∗ ∩ ⇑/(p ∪ ε) τp(↑∗) = ↑∗ ∩ ⇑/(p ∪ ε)
τp(�) = � ∩ ⇑/(p ∪ ε) τp(�) = � ∩ ⇑/(p ∪ ε)

We now show that this definition can be used to translate path expressions
on view trees to path expressions on input trees.

Lemma 3. Let p, q be path expressions. For all XML trees T = (N,C, r, λ,≺)
and T ′ = (N ′,C′, r, λ′,≺′) it holds that if V[p](T) = T ′ then [[τp(q)]]T∩(N ′×N) =
[[q]]T ′ and therefore V[p] ◦ Q[q] = Q[τp(q)]. Furthermore, |τp(q)| = O(|p| × |q|)

Proof. (Sketch) This lemma can be shown by induction on |q|. Note that since
↑∗, ↓∗,� and � are robust axes, they can be translated by following the same
axis and restricting the result nodes to nodes in T ′, which are the result nodes
of ⇑/(p∪ ε). Finally, |τp(q)| = O(|p|× |q|), since each of the |q| steps is translated
into a path expression of size O(|p|). ut

The following example illustrates this translation.

Example 2. Consider the view defined in Example 1. Suppose the government
wants to have a list of doctors who have performed “operation b”. The query on
the view can then be written as Q[↓/Doctor[↓/Treatment/↓/b]]. Intuitively, this
expression can be translated to Q[↓/Doctor[↓+/Treatment/↓/b]], but according
to the translation of Definition 5, we obtain the following query3:
Q[(((↓∗ ∩ ⇑/((↓/Doctor/(ε ∪ ↓+/Treatment/↓∗)) ∪ ε))− ε)−

(((↓∗ ∩ ⇑/(((↓+ − (↓+/↓+))/Doctor/(ε ∪ ↓+/Treatment/↓∗)) ∪ ε))− ε)/
((↓∗ ∩ ⇑/((↓/Doctor/(ε ∪ ↓+/Treatment/↓∗)) ∪ ε))− ε)

))/
Doctor[(((↓∗ ∩ ⇑/((↓/Doctor/(ε ∪ ↓+/Treatment/↓∗)) ∪ ε))− ε)−

(((↓∗ ∩ ⇑/((↓/Doctor/(ε ∪ ↓+/Treatment/↓∗)) ∪ ε))− ε)/
((↓∗ ∩ ⇑/((↓/Doctor/(ε ∪ ↓+/Treatment/↓∗)) ∪ ε))− ε)

))/Treatment/
(((↓∗ ∩ ⇑/((↓/Doctor/(ε ∪ ↓+/Treatment/↓∗)) ∪ ε))− ε)−

3 Note that in order to use τp, we have to rewrite the path expression in the query
such that it only contains robust axes.

(((↓∗ ∩ ⇑/((↓/Doctor/(ε ∪ ↓+/Treatment/↓∗)) ∪ ε))− ε)/
((↓∗ ∩ ⇑/((↓/Doctor/(ε ∪ ↓+/Treatment/↓∗)) ∪ ε))− ε)

))/b]
]

Using the previous result, we can translate q to τp(q) such that q evaluated
against a node n in the view tree and τp(q) evaluated against a node n′ in the
input tree always return the same result when n′ = n. This property might be too
strong, since for some fragments it can be impossible to find such a translation,
but we can find a translation for path expressions evaluated against the root.
Therefore, we introduce a second translation, which can only be used if we know
that all nodes are on the same level.

Definition 6. Let p, q be path expressions in X ↑,↔[],∩,−. The function ρp : P×N→
P is defined as follows:

ρp(q, n) = q (if n ∈ {0, 1} and q ∈ {⇑, ε} ∪Σ)
ρp(↓, 0) = p (if d(p, 0) > 0)
ρp(↑, 1) = ⇑ (if d(p, 0) > 0)

ρp(←+, n) = ⇑/p ∩ (
Sd(p,0)

l=0 ↑l/←+/↓l) ρp(→+, n) = ⇑/p ∩ (
Sd(p,0)

l=0 ↑l/→+/↓l)
ρp(q1/q2, n) = ρp(q1, n)/ρp(q2, d(q1, n)) ρp(q1[q2], n) = ρp(q1, n)[ρp(q2, d(q1, n))]
ρp(q1 ∩ q2, n) = ρp(q1, n) ∩ ρp(q2, n) ρp(q1 − q2, n) = ρp(q1, n)− ρp(q2, n)

In the cases not covered by the above equations, ρp(q, n) = p∅, where p∅ is a
shorthand for a path expression that is not satisfiable, e.g., a/b with a, b ∈ Σ
and a 6= b.

Lemma 4. If p, q ∈ X ↑,↔[],∩,− then Q[ρp(q, 0)] = V[p] ◦ Q[q]. Furthermore,
|ρp(q, 0)| = O(|p|2 × |q|).

Proof. (Sketch) We show by induction on |q| that for all p, q ∈ X ↑,↔[],∩,− it holds
that if n1 is a node at depth n in V[p](T) then (n1, n2) ∈ [[q]]V[p](T) iff (n1, n2) ∈
[[ρp(q, n)]]T . Afterwards, it clearly holds that Q[ρp(q, 0)] = V[p] ◦ Q[q], since a
query is always evaluated from the root node. From Lemma 2 we know that
all nodes selected by p are on the same level and hence the view tree does not
contain nodes at depth 2 or more. Consequently, we can sometimes determine
statically whether a certain operation jumps out of the view tree, yielding an
empty result set. If d(p, 0) > 0 then the set of nodes on level 1 in the view tree is
Q[p](T). Hence following ↓ from level 0 in the view tree corresponds to evaluating
p against the root in the input tree and following ↑ from level 1 corresponds to
⇑. The evaluation of →+ in the view tree corresponds to getting all following
nodes on level d(p, 0) in the input tree and checking whether they are in Q[p](T).
The translation of ←+ is similar and the translation for the other operations is
straightforward and similar to τp.

Finally, |ρp(q, 0)| = O(|p|2×|q|), since each of the |q| steps is translated into a
path expression of size O(|p|2) (and O(|p|) if q does not contain sibling axes). ut

4 Closure of XPath Fragments under View Composition

In the previous section, we defined two translations, τp and ρp, but as was
shown in Example 2, the resulting path expressions can be large4. Moreover,
the translation introduced set difference, which makes query answering more
complex. Therefore, we will investigate in this section for each XPath fragment
F , defined in Subsection 2.4, whether it is closed under view composition, i.e.,
∀p1, p2 ∈ F : ∃p3 ∈ F : V[p1] ◦ Q[p2] = Q[p3]. Note that the purpose of this
paper is to establish whether it is feasible to find translations within the same
fragment. Whether an efficient translation exists, is left for further research.

4.1 View Composition for Positive XPath Fragments

The following table summarizes which positive fragments are closed under view
composition. Each cell in this table denotes one fragment, i.e., the fragment that
can be obtained by adding the operations in the column head to the fragment
that is in the row head. If a “◦” is in a certain cell then this fragment is not closed
under view composition, otherwise there is a “•” to denote that the fragment
is closed under view composition. Next to each “•” and “◦” symbol there is a
number that refers to the theorem that shows the result for this fragment.

[] ∩ ∪ [],∩ [],∪ ∩,∪ [],∩,∪
X •1 •1 •1 ◦2 •1 ◦2 ◦2 ◦2
X ↑ •1 •1 •1 ◦2 •1 ◦2 ◦2 ◦2
X↔ ◦4 ◦4 ◦4 ◦2 ◦4 ◦2 ◦2 ◦2
X r ◦3 ◦3 ◦3 ◦2 ◦3 ◦2 ◦2 ◦2
X ↑,↔ ◦4 ◦4 ◦4 ◦2 ◦4 ◦2 ◦2 ◦2
X↔,r ◦3 ◦3 ◦3 ◦2 ◦3 ◦2 ◦2 ◦2
X ↑,r ◦3 ◦3 ◦3 ◦2 ◦3 ◦2 ◦2 ◦2
X ↑,↔,r ◦3 ◦3 ◦3 ◦2 ◦3 ◦2 ◦2 ◦2
A ◦3 ◦3 ◦3 ◦3 ◦3 ◦3 ◦3 ◦3

Theorem 1. All fragments from X to X ↑[],∩ are closed under view composition.

Proof. (Sketch) From Lemma 4 we know that if p, q in X ↑[],∩ then Q[ρp(q, 0)] =
V[p] ◦ Q[q]. Note that in ρp parent axes, predicates and intersection only occur
in the resulting path expression iff they occur in q or p. ut

The following lemma introduces a monotonicity property of path expressions
that do not contain set difference. As we will see in the two following theorems,
many composed queries do not have this property and hence they cannot be ex-
pressed by a query defined by a positive XPath expression, i.e., a path expression
without set difference.

Lemma 5. Let p ∈ X ↑,↔,r
[],∩,∪ and T an XML tree. If T ′ is T where some nodes

are renamed to a new node name that does not occur in p, then [[p]]T ′ ⊆ [[p]]T .
4 The size of the translated path expression is in this case still linear to the product

of the sizes of the path expressions of the view and the query.

Proof. (Sketch) We prove this lemma by induction on |p|. The semantics of axes
in T and T ′ are the same. The semantics of label tests changes, but for all label
tests l that occur in p it holds that [[l]]T ′ ⊆ [[l]]T . Finally, if [[p1]]T ′ ⊆ [[p1]]T and
[[p2]]T ′ ⊆ [[p2]]T , then for path expressions p of the form p1[p2], p1 ∩ p2 or p1 ∪ p2

it clearly holds that [[p]]T ′ ⊆ [[p]]T . ut

n0

n1

n2

n0

n1

n2 n3

n4

n5 n6

n0

n2 n3 n5 n6

T0 T1 T2

Fig. 2. Counter examples for proofs of Theorems 2, 3, and 4

Theorem 2. All fragments from X∪ to X ↑,↔,r
[],∩,∪ are not closed under view com-

position.

Proof. (Sketch) Suppose p ∈ X ↑,↔,r
[],∩,∪and Q[p] = V[(↓/a) ∪ (↓/↓)] ◦ Q[↓]. Let T

be the tree T0 shown in Fig. 2 with λ(n1) = “a” and T ′ be the same XML tree
as T except that n1 has a label which is different from “a” and all labels for
which a test occurs in p. From Lemma 5 it follows that [[p]]T ′ ⊆ [[p]]T . However,
Q[p](T) = {n1} and Q[p](T ′) = {n2}. ut

Theorem 3. All fragments from X r to X ↑,↔,r
[],∩,∪ and from A to A[],∩,∪ are not

closed under view composition.

Proof. (Sketch) Suppose p ∈ X ↑,↔,r
[],∩,∪ and Q[p] = V[↓∗/↓/a] ◦ Q[↓]. Let T be the

tree T0 shown in Fig. 2 with λ(n1) = λ(n2) = “a” and T ′ be the same XML
tree as T except that n1 has a label which is different from “a” and all labels for
which a test occurs in p. From Lemma 5 it follows that [[p]]T ′ ⊆ [[p]]T . However,
Q[p](T) = {n1} and Q[p](T ′) = {n2}. ut

Finally, we show that positive XPath fragments with sibling axes and without
set union or recursive axes are also not closed under view composition.

Theorem 4. All fragments from X↔ to X ↑,↔[],∩ are not closed under view com-
position.

Proof. (Sketch) Suppose p ∈ X ↑,↔∩ and Q[p] = V[↓/↓]◦Q[↓/→+]. Since both the
view and the query do not contain label tests, we may assume that p does not
contain label tests. Let T1 be a tree of the form shown in Fig. 2. The tree T2 in this
figure is obviously V[↓/↓](T1) and henceQ[p](T1) = Q[↓/→+](T2) = {n3, n5, n6}.

From Lemma 2 we know Q[p](T1) only contains nodes at depth d(p, 0) in T1. We
can encode Q[p](T1) as a string of 0′s and 1′s, where a 0 at position i denotes
the absence of, and a 1 the presence of the ith node at level d(p, 0) in Q[p](T).
For example, Q[p](T1), which is {n3, n5, n6}, is encoded by 0111.

We show by induction on |p| that Q[p](T1) cannot be encoded by 0111. Since
queries start from the root, the result of ε is encoded by 1. The following diagram
shows all possible “state transitions” of ↑, ↓,←+, and →+. Note that we omit
transitions to empty results, since these states are sink states.

1

1 1

0 11 0

1 1 1 1

0 1 0 11 0 1 0

0 0 1 1

0 0 0 10 0 1 0

1 1 0 0

0 1 0 01 0 0 0

Finally, the intersection combines two of the states in the previous diagram
and, as can easily be verified, goes again to one of the states in this diagram.
Hence, the encodings for all possible results of path expressions on T1 in X ↑,↔∩
(without node tests) are listed in this diagram, which does not contain 0111, so
p cannot be expressed in X ↑,↔∩ and by Lemma 1 also not in X ↑,↔[],∩. ut

4.2 View Composition for Fragments with Set Difference

The following table summarizes shows that all fragments with set difference are
closed (•) under view composition and next to each “•” symbol there is a number
that refers to the theorem that shows the result for this fragment.

- [],− ∩,− ∪,− [],∩,− [],∪,− ∩,∪,− [],∩,∪,−
X •5 •5 •5 •7 •5 •7 •7 •7
X ↑ •5 •5 •5 •7 •5 •7 •7 •7
X↔ •5 •5 •5 •7 •5 •7 •7 •7
X r •6 •6 •6 •6 •6 •6 •6 •6
X ↑,↔ •5 •5 •5 •7 •5 •7 •7 •7
X ↑,r •6 •6 •6 •6 •6 •6 •6 •6
X↔,r •6 •6 •6 •6 •6 •6 •6 •6
X ↑,↔,r •6 •6 •6 •6 •6 •6 •6 •6
A •6 •6 •6 •6 •6 •6 •6 •6

Theorem 5. All fragments from X− to X ↑,↔[],∩,− are closed under view composi-
tion.

Proof. (Sketch) Let p, q ∈ X ↑,↔[],∩. Using ρp we can create a query Q[ρp(q, 0)] =
V[p] ◦ Q[q]. Note that predicates only occur in ρp(q, 0) iff they occur in q or p.
Since we have set difference, by Lemma 1 we can express intersection and hence
predicates. We also can express a parent axis in X−, which can be shown by
changing e(↑, pc) of part 4 of the proof of Lemma 1 to ⇑/(↓)d(pc,0)−1[↓ ∩ ⇑/pc],
because all “candidate parents” are at depth d(pc, 0)−1. Finally, the translation
of the sibling axes can be expressed in X−. For example, [[ρp(←+, n)]]T = [[⇑/p−
(⇑/p−←+ − ↑/←+/↓ − . . .− (↑)d(p,0)/←+/(↓)d(p,0))]]T as can be verified. ut

Theorem 6. All fragments from X r
− to X ↑,↔,r

[],∩,∪,−, and from A− to A[],∩,∪,−
are closed under view composition.

Proof. (Sketch) We use τp, for which we know that τp(q) does not contain sibling
axes if they do not occur in p and q. Moreover, from Lemma 1 we know that ↑∗,
∪, ∩ and predicates can be expressed using set difference and ↓∗. ut

Theorem 7. All fragments from X∪,− to X ↑,↔[],∩,∪,− are closed under view com-
position.

Proof. (Sketch) We use τp to prove this theorem. Since we can express inter-
section and predicates using set difference, we can eliminate these operations in
τp(q). No recursive axes (↓∗, ↑∗) are allowed in p and hence there is a depth k
such that all nodes deeper than k cannot influence the result of q, since they
can simply never be in the view. Hence, we can simulate the ↓∗ axes in τp(q) by⋃k

i=0 ↓
i for some k of which the value depends on p. From part 4 of Lemma 1

then follows that we also can simulate the ↑∗ axes. Finally, τp(q) does not contain
sibling axes if they do not occur in p and q. ut

4.3 Summary of Results

All fragments with recursive axes, sibling axes, or set union and without set
difference are not closed under view composition, while all other fragments are
closed. It can easily be verified that for all fragments that are closed under view
composition the size of translated queries for V[p] ◦ Q[q] is O(|p| × |q|), except
for (1) fragments containing sibling axes and no recursive axes, where the size
of the translated query is O(|p|2 × |q|), due to the translation of sibling axes in
ρp, and (2) fragments containing set union and set difference, and no recursive
axis steps, where the size of the translated query is also O(|p|2 × |q|) (see proof
of Theorem 7).

5 Related Work

We briefly discuss two existing approaches for translating queries on XML views
to queries on the original (XML) data and compare them to our approach.

Fan, Chan, and Garofalakis introduce the notion of XML security views in [6],
where they specify views in terms of normalized DTDs. They present a query

translation mechanism for their XPath fragment, which more or less corresponds
to our fragment X r

[],∪, augmented with predicates containing boolean operators
(∧,∨,¬) and comparisons of the contents of a node with constant values. They
also look at the optimization of the obtained path expressions and their work
is mainly geared towards finding efficient translations for path expressions in
general, i.e., the translation can use all XPath features, whereas our work mainly
focuses on the closure properties of XPath fragments under view composition,
to see whether the composed query still has the same characteristics of the view
and query.

Benedikt and Fundulaki investigate the specification and composition of
XML subtree queries [2]. A subtree query is specified by a path expression and
is, just like our XPath-based security views, a projection of nodes from an input
tree. While in our views intermediate nodes can be hidden, subtree queries show
also all descendants and ancestors. It is for example true that if one node in a
view is a child of another node in the same view then the former is also a child of
the latter in the input tree, which is not necessarily true in our notion of views.
More fragments are closed under the composition of subtree queries than under
the composition of our XPath-based views and queries. Note that our notion
of views can also be used to express subtree queries: if p is a path expression
that specifies a subtree query then this subtree query is equivalent to the view
specified by p/↓∗/↑∗.

6 Conclusion and Future Work

In this paper we introduce XPath-based security views that define a projection of
a tree that only contains the root and the nodes that are selected by an XPath
expression. We investigate how to translate XPath queries on such views to
XPath queries on the original trees. More specifically, we show which fragments
are closed under such a composition of a view and a query. In future work we
plan to investigate the translation of path expressions that start from arbitrary
nodes in the view. We also plan to include extra knowledge that we can obtain
from DTDs. Moreover, we want to see whether a DTD for the view tree can
automatically be derived from the DTD of the input tree and the view definition.

References

1. M. Benedikt, W. Fan, and G. M. Kuper. Structural properties of XPath fragments.
In ICDT 2003, pages 79–95, 2003.

2. M. Benedikt and I. Fundulaki. XML subtree queries: Specification and composi-
tion. In DBPL 2005, pages 138–153, 2005.

3. A. Berglund, S. Boag, D. Chamberlin, M. Fernández, M. Kay, J. Robie, and
J. Siméon. XML path language (XPath) 2.0, W3C working draft, 2005. http:

//www.w3.org/TR/xpath20.
4. E. Bertino and E. Ferrari. Secure and selective dissemination of XML documents.

ACM Trans. Inf. Syst. Secur., 5(3):290–331, 2002.

5. D. Draper, P. Frankhauser, M. Fernández, A. Malhotra, K. Rose, M. Rys,
J. Siméon, and P. Wadler. XQuery 1.0 and XPath 2.0 formal semantics. W3C
Working Draft, 2005.

6. W. Fan, C. Y. Chan, and M. N. Garofalakis. Secure XML querying with security
views. In SIGMOD Conference, pages 587–598, 2004.

7. M. Fernández, A. Malhotra, J. Marsh, M. Nagy, and N. Walsh. XQuery 1.0 and
XPath 2.0 data model (XDM), 2005. http://www.w3.org/TR/xpath-datamodel/.

8. I. Fundulaki and M. Marx. Specifying access control policies for XML documents
with XPath. In SACMAT 2004, pages 61–69, 2004.

9. S. Godik and T. Moses, editors. eXtensible Access Control Markup Language
(XACML) Version 1.0. February 2003.

10. G. Gottlob, C. Koch, and R. Pichler. The complexity of XPath query evaluation.
In PODS 2003, pages 179–190, San Diego, California, 2003.

11. M. Kudo and S. Hada. XML access control. http://www.trl.ibm.com/projects/
xml/xacl/.

12. G. Kuper, M. Fabio, and R. Nataliya. Generalized XML security views. In SAC-
MAT 2005, pages 77–84, 2005.

13. M. Murata, A. Tozawa, M. Kudo, and S. Hada. XML access control using static
analysis. In CCS, pages 73–84, 2003.

14. A. Stoica and C. Farkas. Secure XML views. In E. Gudes and S. Shenoi, editors,
DBSec, volume 256 of IFIP Conference Proceedings, pages 133–146. Kluwer, 2002.

