
A Foundation for the Replacement of

Pipelined Physical Join Operators in

Adaptive Query Processing

Kwanchai Eurviriyanukul, Alvaro A.A. Fernandes, and Norman W. Paton

University of Manchester, Manchester M1 9PL, United Kingdom
{eurvirik,alvaro,norm}@cs.man.ac.uk

Abstract. Adaptive query processors make decisions as to the most
effective evaluation strategy for a query based on feedback received while
the query is being evaluated. In essence, any of the decisions made by
the optimizer (e.g., on operator order or on which operators to use)
may be revisited in an adaptive query processor. This paper focuses on
changes to physical operators (e.g., the specific join operators used, such
as hash-join or merge-join) in pipelined query evaluators. In so doing,
the paper characterizes the runtime properties of pipelined operators in
a way that makes explicit when specific operators may be replaced, and
that allows the validity of operator replacements to be proved. This is
illustrated with reference to the substitution of join operators during
their evaluation.

1 Introduction

The execution plan of a query describes how the query is to be evaluated. The
plan makes explicit the decisions made by the query optimizer, e.g., with respect
to the order of evaluation of operators, the algorithms and auxiliary data struc-
tures to be used, the allocation of plan fragments to resources, and the level of
partitioned parallelism. An adaptive query processor (e.g., [5]) may revise any
of these different kinds of decision at query runtime.

Many proposals have been made for adaptive query processing techniques
(see [2] for a recent survey). However, few of the proposals provide a formal
characterization of the adaptations undertaken, and thus the validity of the
runtime changes proposed is rarely addressed in a rigorous manner. We cannot
point to any cases in which published adaptive strategies have subsequently been
shown to produce incorrect results, but contend that certain forms of adaptation
may benefit from a more formal approach. We observe that adaptive strategies
may be associated with complex protocols for halting, revising and resuming
execution plans (e.g., [14]), and that certain categories of runtime change may
only be fully explored when the safety net of a formal foundation is in place. One
such category, which is the focus of this paper, is the replacement of operators
in pipelined query plans.

In pipelined plans, which have been shown to be effective for increasing re-
source usage and reducing response times in parallel and distributed settings,

many operators may be being evaluated simultaneously. As such, if a particular
operator is ineffective in a specific context, the replacement of that operator
without disrupting its suppliers or consumers may provide effective and focused
adaptation. However, during evaluation an operator may maintain internal data
structures, and at any point in time may have partially processed some of its in-
puts. This paper presents an approach to the description of partially-evaluated
operators that makes explicit the issues associated with in-flight operator re-
placement, and enables the validity of specific transformations to be proved.
This is illustrated with reference to the substitution of physical join operators.

We observe that operator replacement for pipelined evaluation has not been
extensively investigated to date. Several strategies that may lead to changes in
the physical operators used by a plan do not adapt during operator evaluation
(e.g., [15, 9, 8]). POP [10] explores several approaches to adaptation that materi-
alize the results of complete sub-plans, but when an operator is replaced during
its evaluation, the replacement operator starts evaluating from scratch, thus re-
peating work that was done by its predecessor. Rio [3] tests the suitability of an
operator at a place in a plan by sampling and caching its inputs, and, like POP,
when an algorithm is replaced it is rerun from scratch over its input buffers.
This paper complements existing work by investigating finer-grained operator
replacement and by providing a formal characterization of the changes made.

The remainder of the paper is structured as follows. Section 2 describes the
technical context for the material that follows. Section 3 provides a notation for
describing partially evaluated operators, characterizes the states in which an op-
erator can safely be replaced, and illustrates the overall approach by considering
the replacement of physical join operators, including a proof of validity for an
example transformation. Section 4 presents some conclusions.

2 Technical Context

This section defines some terms and notions that are used later in the paper.

A query plan P can be represented by a tree consisting of a set of query
operator nodes and a set of edges representing data that flows from child nodes
to parent nodes. Given a node N , P N denotes the sub-plan of P rooted at N .
Given a query plan P , [[P]] denotes the result obtained by evaluating P .

In this paper, the nodes of a plan are considered to be drawn from a physical
algebra, i.e., one in which the node identifies the algorithm to be used. Examples
are presented later in the paper of adaptations where one physical join operator
replaces another. Five representative join algorithms, viz., hash join, nested-loop
join, merge join, index nested-loop join and symmetric hash join are considered.
An equality join condition and bag semantics are assumed throughout. Assume

that R is the left, and S the right, input of a join. Let
H

./,
NL

./ ,
M

./,
IN

./ and
SH

./ ,

respectively, denote the above physical join operators, the algorithms for which
are described briefly below:

– Hash Join [7]: All R-tuples are read and stored in a hash table, indexed on
the join attribute(s). Then, each S-tuple is read in turn and used to probe
the hash table. Any matching R-tuples are retrieved.

– Nested-Loop Join [11]: Given inputs sorted on the join attribute(s), the
tuples are read from either R or S in turn and to find which ones is S or R

(respectively) match.

– Merge Join [11]: Given inputs sorted on the join attribute(s), the tuples are
read from either R or S in turn and to find which ones is S or R (respectively)
match.

– Index Nested-Loop Join [4]: Each R-tuple is read in turn and its joint
attribute(s) are then used to search an index on S and retrieve the tuples
that match.

– Symmetric Hash Join (Pipelined Hash Join) [16]: Each tuple from
either R or S is read in turn and is both stored in the hash table for R (or S,
respectively) and used to to probe the hash table for S (or R, respectively).
Any matching R- (or S-) tuples (respectively) are retrieved.

In this paper, pipelined evaluation is assumed to be implemented using the
the iterator model [7], which has three principal functions: Open, Next and
Close. The Open function prepares the operator for result production. The
Next function produces the results one at a time, and the Close function
performs cleaning up. When combined with communication operators such as
exchange [6], the iterator model supports pipelined parallelism.

A state-transition diagram can be used to capture the evaluation trace of
operators implemented using the iterator model. These states are labelled as
I, O, O′, N, N′, C and C′ in Figure 1.

Open() in progress
Open() returned

Open() concluded
Next called()

Next() in progress
Next() returned

Next() concluded
Close() called

Close() in progress

Next called()
Open() called Close() returned

I
C
′

O O
′

N N
′

C

Fig. 1. The state-transition diagram of an iterator.

In this paper, the emphasis is on adapting query plans in the state N′, as
other states are either in-progress states or else are only reached before or after
the operator as a whole has been evaluated. In state N′, a call to the Next
function has been evaluated and its result returned. If the operator has not
returned all its results, the Next function will be called again, and the operator
returns to state N. On the other hand, if the operator has returned all its results,
the Close function is called and the operator moves to state C and then C′.

3 Replacing Physical Operators

This section presents an approach to the description and validation of operator
replacement for pipelined query plans. The following issues are addressed:

1. The provision of a notation for describing partially evaluated query plans.
2. The identification of points during operator evaluation, referred to as quies-

cent states, in which the results produced by an operator in state N′ can be
defined precisely in terms of the inputs read by the operator up to then.

3. The description, for different physical operators, of the data produced and
the results that remain to be produced, at quiescent states.

4. The provision of an approach to proving that specific operator replacements
are result-neutral, i.e., that they have no effect on the result that is output.

3.1 A Notation for Partially Evaluated Query Plans

Expressions in logical or physical algebras, such as (R ./ S), describe query
plans, but provide no way of describing the runtime properties of the plan, such
as the data produced by an operator at a point in time. To describe not only
the plan, but also its evaluation status, some additional notation is introduced.

Given a sub-plan P N , let I be a child node of N.

– I+
[N :S] is the portion of [[I]] that has been returned by a previously made

call to the Next() function of I when node N is in state S, where S ∈
{I, O, O′, N, N′, C, C′}. Therefore, I+

[N :S] ⊆ [[I]].

– I−[N :S] is the portion of [[I]] that has yet to be returned to N by subsequent

calls to the Next() function of I. As a result, I = (I+
[N :S] ∪ I−[N :S]).

– last(I+
[N :S]) is the set containing the last tuple added into [[I+

[N :S]]].

3.2 Quiescent States

Section 3.1 provided a notation for describing the state of the inputs to an op-
erator during operator evaluation. However, the relationship between the input
read by an operator and the output produced by an operator at a point in time
may be different at different points in the trace, i.e., at different occurrences of

N′. Thus, during the evaluation of a hash join R
H

./S, the operator is in state

N′, and the inputs read by the algorithm are R+
[N :N′] and S+

[N :N′], where N is

the relevant instance of
H

./ in the plan. Assuming that the left operand is used

to populate the hash table, R+
[N :N′] = [[R]]. The tuples produced so far by the

algorithm may not be denoted by R+
[N :N′] ./ S+

[N :N′], because the last tuple read

from S may join with many tuples in R. As such, the tuples produced by the
operator will only be R+

[N :N′] ./ S+
[N :N′] if last(S+

[N :N′]) has been joined with every

matching tuple in R.

A quiescent state for an operator is one in which the result produced by the
operator in state N′ can be precisely defined in terms the input to the operator
at that point in time. The test as to whether or not an operator is in a quiescent
state is operator-specific. To make possible a quiescence test, we extend the
interface to an operator with an isQuiescent function, which determines from
the internal state of the operator whether or not it is in a quiescent state.

Algorithm 3.1: Nested-Loop Join(Operator R,Operator S)

comment: R and S are the outer and the inner inputs, respectively

Tuple r, s, eof comment: the state of the operator

boolean procedure Open()
if (R.Open() and S.Open())

then

{

r ← R.Next() comment: set up the outer loop

return (true)
else return (false)

Tuple procedure Next()

while (true)

s← S.Next()
if (s 6= nil and r 6= nil)

then

{

if (r.joinAtt() = s.joinAtt())
then return (concat(r,s))
else continue

else

comment: no s ∈ S to match with r ∈ R

r ← R.Next()
if (r 6= nil)

then

comment: restart S

S.Close()
S.Open()

else

{

comment: R was consumed

break ;
return (eof ← nil)

boolean procedure Close()
if (R.Close() and S.Close())
then return (true)
else return (false)

boolean procedure hasNext()
return (eof 6= nil)

boolean procedure IsQuiescent()
comment: returns true if the inner input been consumed

return (¬(S.hasNext()))

The following are characterizations of the quiescent states for the example
join operators, assuming that R is the left, and S the right, input of a join.

– Hash Join: The last S-tuple read has been joined with all matching R-tuples
in the hash table.

– Nested-Loop Join: The last R-tuple read has been joined with all matching
S-tuples.

– Merge Join: The last R-tuple read has been joined with all matching S-
tuples and the join attribute value(s) of the next R-tuple is different from
that of the last R-tuple read.

– Index Nested-Loop Join: The last R-tuple read has been joined with all
matching S-tuples that were retrieved by a lookup on an index on S.

– Symmetric Hash Join: The last tuple read from either R or S has been
joined with all matching tuples in the hash table for S or R, respectively.

Algorithm 3.1 defines Nested-Loop Join(R,S) and formalizes the quiescent-
state test for this algorithm, viz., that a state is quiescent if there are no more
S-tuples to read (in that pass).

Related notions include moments of symmetry, from the work on eddies,
which determine when the order of the inputs to a join can be changed [1];
this is a narrower notion than that of a quiescent state, as it defines conditions
for a specific adaptation. In [12], operators are classified, with respect to their
ability to participate in adaptations, on the basis of properties shared by groups
of algorithms (e.g., that they have fixed memory consumption); here, quiescent
states are used not so much to identify different forms of algorithm as to support
the algebraic-level description of operator states, as described in Section 3.3.

3.3 Describing Partial Results

When an operator is in a quiescent state, it is possible to define its result precisely
in terms of the data it has consumed. As a consequence, it is also possible to
define precisely the portion of the result that remains to be produced.

Table 1 describes both the intermediate results produced by the different
operators at quiescent states and the corresponding portion of the result that
has yet to be returned. As an example, for hash join with operands R and S,
at a quiescent state, every tuple that has been read into the hash table (i.e.,
R+

[N :N′] = R) has been joined with every tuple that has been read from the other

operand (i.e., S+
[N :N′]). To complete the evaluation, every tuple in R+

[N :N′] = R

needs to be joined with the tuples that have yet to be read from S (i.e., S−

[N :N′]).

A similar justification lies behind the other entries in Table 1.

When one join operator is to be replaced with another operator at a quiescent
state, the rightmost column in Table 1 describes the work that remains to be
done by the new operator. Section 3.4 describes how the validity of the entries
in Table 1 can be proved.

Table 1. The intermediate result and the remainder of R ./ S at a quiescent N′

Physical Join Operator (
X

./) Intermediate Result Remainder

Hash Join (
H

./) [[R+

[
H

./:N′]
./S+

[
H

./:N′]
]] [[R+

[
H

./:N′]
./S−

[
H

./:N′]
]]

Nested-Loop Join (
NL

./) [[R+

[
NL

./ :N′]
./S]] [[R−

[
NL

./ :N′]
./S]]

Merge Join (
M

./) [[(R+

[
M

./:N′]
− last(R+

[
M

./:N′]
)) [[(last(R+

[
M

./:N′]
) ∪R−

[
M

./:N′]
)

./(S+

[
M

./:N′]
− last(S+

[
M

./:N′]
))]] ./(last(S+

[
M

./:N′]
) ∪ S−

[
M

./:N′]
)]]

Index Nested-Loop Join (
IN

./) [[R+

[
IN

./ :N′]
./S]] [[R−

[
IN

./ :N′]
./S]]

Symmetric Hash Join (
SH

./) [[R+

[
SH

./ :N′]
./S+

[
SH

./ :N′]
]] [[(R+

[
SH

./ :N′]
./S−

[
SH

./ :N′]
)

∪(R−

[
SH

./ :N′]
./S+

[
SH

./ :N′]
)

∪(R−

[
SH

./ :N′]
./S−

[
SH

./ :N′]
)]]

3.4 Replacing Operators

To compute the remainder of the result, an adaptive system may choose to
replace an operator in a plan with one that it is predicted will perform better
in a specific setting. For example, a nested-loop join may have been selected by
the optimizer based on inaccurate predictions for the cardinalities of the inputs
to a join; if in practice the cardinalities used by the optimizer are revealed to
be underestimates, it may be appropriate to migrate to a hash join instead.
Alternatively, a hash join may have been assigned on the assumption that the
selectivity of the right hand operand was quite high; if it turns out to be low,
it may be more effective to complete the evaluation using an index nested-loop
join. There could also be resource restrictions that, e.g., lead to a hash table
within a join exceeding the available memory, which in turn leads to options
being explored such as changing to a join algorithm that uses less memory, e.g.,
nested-loop join.

In essence, with reference to Table 1, an operator in a quiescent state can be
replaced by any other operators if the remainder of the result can be computed.
The complete result is then the union of that produced by the original oper-
ator with that produced by the replacement operators; this union may not be
carried out explicitly, as replacement operators may simply be planted within a
suspended plan, which then resumes evaluation. The suspension and resumption
of plans has been discussed in the literature (e.g., [14]).

Using the notation from Section 3.3, the following rule could be used to indi-
cate that a nested loop join can be replaced during its evaluation at a quiescent
state by a hash join, where the value to be computed by the hash join is that

described in the Remainder column in Table 1. For any quiescent [
NL

./ : N′]:

[[R ./ S]] = [[R+

[
NL

./ :N′]
./S]] ∪ [[R−

[
NL

./ :N′]

H

./S]] (1)

The decision as to whether or not a specific operator replacement is appropriate
in a context could be made with reference to a cost model that compares the
cost of completing the existing plan with the cost of changing from one plan to
another plus the cost for the evaluation of the replacement plan.

The next step is to prove that an operator replacement is result-neutral. To
do so, there are two proof obligations:

1. To show that the value of intermediate the join result from Table 1 in the
quiescent state N′ is correct.

2. To show that the union of the value produced by the original plan and the
value computed by the transformed plan provides a correct result for the
query.

Such proofs must be provided on a case-by-case basis, reflecting the fact that
different algorithms have different quiescent states, which leave different amounts
of work to be carried out by other algorithms. Due to limited space, proofs
are only provided for the replacement of a nested-Loop join with a hash join
operator. Similar proofs for other physical join operators have been conducted
in an analogous manner but space constraints preclude their presentation here.

Proof by induction shows that, for a nested-loop join operator in a quiescent
state N′, the value of the intermediate join result is as stated in Table 1. Given

a sub-plan P
NL

./
, for all integers i ≥ 1, let N′(i) represent the i-th occurrence of

the quiescent state in the execution trace of this operator’s evaluation.

Theorem 1 (Value of the Intermediate Result for Nested-Loop Join).

[[P

NL

./
[N′(i)]]] = [[R+

[
NL

./ :N′(i)]
./S]] (2)

Proof.

Basis step: If i = 1, then (2) becomes:

[[P

NL

./
[N′(1)]]] = [[R+

[
NL

./ :N′(1)]
./S]] (3)

Let the first matching tuple read from R be tr1
. Then, R+

[
NL

./ :N′(1)]
= {tr1

}. Sub-

stituting R+

[
NL

./ :N′(1)]
in (3) yields:

[[P

NL

./
[N′(1)]]] = [[{tr1

}./S]] (4)

which holds, which holds, because given that the quiescent-state test for nested-
loop join in Section 3.2 is satisfied in the first quiescent N′, it follows that the
first matching tuple from R has been joined with all matching tuples in S.

Induction step: In a quiescent state N′, for any integer k ≥ 1, the induction
hypothesis states that:

[[P

NL

./
[N′(k)]]] = [[R+

[
NL

./ :N′(k)]
./S]] (5)

Assuming (5), we prove that

[[P

NL

./
[N′(k+1)]]] = [[R+

[
NL

./ :N′(k+1)]
./S]] (6)

Firstly, following from the quiescent-state test for nested-loop join in Section 3.2,
the value of a sub-plan in the subsequent quiescent state to a quiescent state k

(i.e., [[P

NL

./
[N′(k+1)]]]) equals the intermediate result at k (i.e., [[P

NL

./
[N′(k)]]]) unioned

with the result of joining the most recently read tuple of R (i.e., last(R+

[
NL

./ :N′(k+1)]
)),

with the tuples in S:

[[P

NL

./
[N′(k+1)]]] = [[P

NL

./
[N′(k)]]] ∪ [[last(R+

[
NL

./ :N′(k+1)]
)./S]] (7)

Using the right-hand side of (5) to substitute [[P

H

./
[N′(k)]]] in (7) gives:

[[P

NL

./
[N′(k+1)]]] = [[R+

[
NL

./ :N′(k)]
./S]] ∪ [[last(R+

[
NL

./ :N′(k+1)]
)./S]] (8)

Since the value of symbol ([[]]) denotes the result set of evaluating a plan frag-
ment, two or more results can be unioned, so (8) becomes:

[[P

NL

./
[N′(k+1)]]] = [[(R+

[
NL

./ :N′(k)]
./S) ∪ (last(R+

[
NL

./ :N′(k+1)]
)./S)]] (9)

From (9), by the distributivity of join with respect to union, it follows that:

[[P

NL

./
[N′(k+1)]]] = [[(R+

[
NL

./ :N′(k)]
∪ last(R+

[
NL

./ :N′(k+1)]
))./S]] (10)

By the definition of the quiescence condition in Section 3.2, it follows that:

last(R+

[
NL

./ :N′(k+1)]
) * R+

[
NL

./ :N′(k)]
(11)

Therefore, the left operand of the join in the right-hand side of (10) becomes:

(R+

[
NL

./ :N′(k)]
∪ last(R+

[
NL

./ :N′(k+1)]
)) = R+

[
NL

./ :N′(k+1)]
(12)

Substituting the right-hand side of (12) in (10) gives (6), as desired. ut

We note that this proof is independent of the join operator that is to replace
the nested-loop, and thus that the proof need not be repeated for different target

operators. Next, we have to prove that changing from
NL

./ to
H

./ is result-neutral.

Given a sub-plan P J , where J is quiescent in state N′, we show that replacing
J with J ′ is result-neutral when J is a nested-loop join and J ′ is a hash join.

Theorem 2 (Validity of Replacing Nested-Loop Join with Hash Join).

[[P J]] = [[P J[N′]]] ∪ [[P J
′

]] (13)

Proof.

According to Table 1, we get [[P J]] = [[R
NL

./ S]], [[P J[N′]]] = [[R+

[
NL

./ :N′]
./S]] and

[[P J
′

]] = [[R−

[
NL

./ :N′]

H

./S]]. Substituting into (13) gives:

[[R
NL

./ S]] = [[R+

[
NL

./ :N′]
./S]] ∪ [[R−

[
NL

./ :N′]

H

./S]] (14)

Since the value of symbol ([[]]) represents the result of a plan fragment, two or
more results can be unioned, so (14) becomes:

[[R
NL

./ S]] = [[(R+

[
NL

./ :N′]
./S) ∪ (R−

[
NL

./ :N′]

H

./S)]] (15)

Assuming the correctness of Nested-Loop Join (i.e.,
NL

./) and Hash Join

(i.e.,
H

./) in implementing the semantics of logical join operation (i.e., ./), (15)

becomes:

[[R./S]] = [[(R+

[
NL

./ :N′]
./S) ∪ (R−

[
NL

./ :N′]
./S)]] (16)

From (16), by the distributivity of join with respect to union, it follows that:

[[R./S]] = [[(R+

[
NL

./ :N′]
∪R−

[
NL

./ :N′]
)./S)]] (17)

By the definitions of I+ and I− in Section 3.1, it follows that (R+ ∪ R−) = R.
Substituting into (17) gives:

[[R./S]] = [[R./S]] (18)

Thereby establishing (13), i.e., that replacing J with J ′ is result-neutral when J

is a nested-loop join and J ′ is a hash join. ut

We observe that no re-computation for the initial segment of the join result
is needed.

4 Conclusion

Adaptive query processing shows promise for improving the performance of query
evaluation, especially in settings in which available statistical information may
be unreliable or out-of-date.

This paper adds the following to existing results on adaptive query process-
ing:

1. A notation for describing the properties of partially evaluated query plans;
this notation enables systematic and precise description of transformations
to query execution plans at runtime.

2. A demonstration of the use of the notation for describing changes to phys-
ical join operators within pipelined plans, including an example of how the
validity of such transformations can be proved.

The notation and proof strategies contributed in this paper can be generalized
to other pipelined physical operators. The paper is thus best thought of as con-
tributing a framework for such formal analysis task.

The above results seek to contribute to ongoing work on adaptive databases
by:

1. Encouraging the formal description of adaptations, thereby providing assur-
ances as to the correctness of changes made to execution plans at runtime.
Although a few adaptive strategies have received a formal treatment (e.g.,
[13] includes several proofs of properties of eddies and their extensions), such
a practice does not seem to be widespread.

2. Providing a formal underpinning for the replacement of physical operators
during their evaluation, thereby allowing finer-grained adaptations than have
been supported by most previous work that changes plans at runtime (e.g.,
[15, 9, 8, 10]).

Acknowledgement K. Eurviriyanukul thanks Rajamangala University of Tech-
nology Lanna, Chiang Mai, Thailand, for their financial support.

References

1. R. Avnur and J.M. Hellerstein. Eddies: Continuously Adaptive Query Processing.
In ACM SIGMOD, pages 261–272, 2000.

2. S. Babu and P. Bizarro. Adaptive Query Processing in the Looking Glass. In
CIDR, pages 238–249, 2005.

3. S. Babu, P. Bizarro, and D. DeWitt. Proactive Re-Optimization. In Proc. ACM

SIGMOD, pages 107–118, 2005.
4. H. Garcia-Molina, J. Widom, and J.D. Ullman. Database System Implementation.

Prentice-Hall, Inc., 1999.
5. A. Gounaris, J. Smith, N. W. Paton, R. Sakellariou, and A. A. A. Fernandes.

Adapting to Changing Resources in Grid Query Processing. In Proc. 1st Interna-

tional Workshop on Data Management in Grids. Springer-Verlag, 2005.
6. G. Graefe. Encapsulation of Parallelism in the Volcano Query Processing System.

In Proc. SIGMOD, pages 102–111, 1990.
7. G. Graefe. Query Evaluation Techniques for Large Databases. ACM Comput.

Surv., 25(2):73–170, 1993.
8. Z.G. Ives, D. Florescu, M. Friedman, A. Y. Levy, and D. S. Weld. An Adaptive

Query Execution System for Data Integration. In SIGMOD Conference, pages
299–310, 1999.

9. N. Kabra and D. J. DeWitt. Efficient Mid-Query Re-Optimization of Sub-Optimal
Query Execution Plans. In SIGMOD Conference, pages 106–117, 1998.

10. V. Markl, V. Raman, D. E. Simmen, G. M. Lohman, and H. Pirahesh. Robust
Query Processing through Progressive Optimization. In SIGMOD Conference,
pages 659–670, 2004.

11. P. Mishra and M. H. Eich. Join Processing in Relational Databases. ACM Comput.

Surv., 24(1):63–113, 1992.
12. Kenneth W. Ng, Zhenghao Wang, and Richard R. Muntz. Dynamic Reconfigu-

ration of Sub-Optimal Parallel Query Execution Plans. Technical Report CSD-
980033, UCLA, 1998.

13. V. Raman, A. Deshpande, and J. M. Hellerstein. Using State Modules for Adaptive
Query Processing. Technical Report UCB/CSD-03-1231, University of California
Berkeley, 2003.

14. M. A. Shah, J. M. Hellerstein, S. Chandrasekaran, and M. J. Franklin. Flux: An
Adaptive Partitioning Operator for Continuous Query Systems. In ICDE, pages
25–36, 2003.

15. Tolga Urhan, Michael J. Franklin, and Laurent Amsaleg. Cost Based Query Scram-
bling for Initial Delays. In SIGMOD Conference, pages 130–141, 1998.

16. A. N. Wilschut and P. M. G. Apers. Dataflow Query Execution in a Parallel Main-
memory Environment. Distributed and Parallel Databases, 1(1):103–128, 1993.

