
Enhanced Regular Path Queries on

Semistructured Databases

Dan Stefanescu1 and Alex Thomo2

1 Suffolk University, Boston, USA, dan@mcs.suffolk.edu
2 University of Victoria, Victoria, Canada, thomo@cs.uvic.ca

Abstract. Regular path queries are the basic navigational component of
virtually all the mechanisms for querying semistructured data commonly
found in information integration applications, Web and communication
networks, biological data management etc. We start by proposing weight-
enhanced regular path queries with semantics that allow user-assigned
preference (query) weights to be naturally combined with quantitative
database link-information for driving the navigation.
Motivated by the fact that the main applications of semistructured data
involve distributed data sources, we focus next on the distributed eval-
uation of the weight-enhanced path queries. We present a distributed
algorithm for evaluating our proposed queries in a multi-source setting.
Our algorithm is general in the sense that it does not assume a known
topology of the network and it can work using asynchronous communi-
cation. This algorithm can also be used to solve multi-source shortest
path problems for which the full graph is not known in advance. To the
best of our knowledge our algorithm is the first to address this problem
in such a setting.

1 Introduction

Nowadays, modeling and/or representing the data as labeled graphs has become
very common in many areas such as communication and traffic networks, Web
information systems, data integration, biological data management, cartography,
etc (see e.g. [8, 7, 13]). As it has been recognized by seminal works (see [1, 12]),
the basic querying mechanism for such data are (regular) path queries, which
are formulated using regular expressions, that provide to the user a recursive
way of navigating (partially unknown) graph data.

As an example from airline networks, imagine a user who wants to find all
the pairs of cities that can be reached from each other by taking Air Canada.
Notably, this can easily be captured by using a path query such as aircanada∗,
which has to be evaluated starting from each city Air Canada flies from.

In order to evaluate our example path query, a query processor would try
to find all the paths consisting of aircanada-labeled edges. However, there are
two problems associated with path queries like the above. First, a selective query
(such as aircanada∗) may return too few answers. For example, two cities such as
Vancouver (YVR) and San Diego (SAN) might not have an all-aircanada labeled

route3 and thus, the pair (YVR, SAN) will not be in the returned answer for
the query. On the other hand, partnerships between airlines are a well known
fact, and clearly the system should be able to return the pair (YVR, SAN)
even in the absence of an Air Canada route from Vancouver to San Diego. In
the particular example there is a jointly operated route with Air Canada flying
from Vancouver to Los Angeles and continuing with United Airlines from Los
Angeles to San Diego. It might seem that this is a simple matter of specifying
the disjunctive path query aircanada + united instead. However, this second
query does not differentiate between purely Air Canada routes (that the user
might prefer) and the joint partnership routes. Hence, the system should allow
the user to specify alternative choices, which can be weighted by her preferences.
Furthermore, the system should also be able to present a ranking of the returned
answers with respect to the expressed user preferences.

In this paper, we address this problem by proposing weight-enhanced path
queries (WEPQ’s). Intuitively, we allow the user to specify weighted edge al-
ternatives in path queries. For example, instead of aircanada∗, the user could
specify the weighted path query

(aircanada:0+united:1+usairways:3)∗+(aircanada:0)∗ ·(alaska:0)·(aircanada:0)∗

to express her preferences, which in plain language are: “I would like to take Air
Canada routes (paths with weight 0), or United Airlines routes but with lower
preference (weight 1), or US Airways but with even lower preference (weight 3).
Furthermore, I can accept at no cost a single Alaska segment connecting two Air
Canada routes.”

The second problem with simple path queries is that their semantics do
not take into consideration other properties of the traversed links other than the
mere link label. To illustrate with the above example, a query such as aircanada∗,
would return all the pairs of cities connected through an aircanada route without
any indication of the length of the path used to compute the answers. This is just
an example of what other information might be present at the database links,
and clearly, there are other examples of useful information such as frequency of
flights for a particular link, time of the day, special service offered, etc. Notably,
it is easy to map such information into (virtual) link weights as we navigate the
database.

After introducing an “edge importance aware” generalization of graph data-
bases, we formally define the notion of weighted answers to WEPQ’s on such
databases. The computed weights of the answers enable their ranking according
to the user preference for following certain database paths. Moreover, we propose
query semantics in which the weight of an automaton transition is further scaled
up or down by the importance of the traversed database edge. Thus, in our
spatial example, the edge importance could simply be the edge-length, and so,
traversing a 1000 miles united-edge would be less preferable than traversing a

3 A route may contain intermediate cities.

300 miles usairlines-edge, even though initially in the query, flying with United
Airlines was more preferable than flying with US Airways.4

Analogous to the airline example, we can also describe our semantics in a
Web scenario. Here, the database edges are hyperlinks, and the values assigned
to each edge could be based on the inverse of the page-rank of the linked page,
using an algorithm similar to the one used to rank pages in a search engine.

In almost every scenario where the data is represented in a graph based
fashion, prime examples of which are information integration, Web based infor-
mation systems, airline reservation systems etc, the data is distributed among
many different sources. Clearly, it is imperative to not only show how a query
can be evaluated in a centralized way, but also to devise truly distributed al-
gorithms for this purpose. With “truly” in this context we want to say that
the data shipping paradigm, commonly used by the today’s XQuery processors,
is not to be considered as a viable distributed solution. Instead, a query ship-
ping paradigm should be used, where the queries are appropriately decomposed,
and where each source works towards accomplishing specific tasks related to the
local data only. Hence, we turn our attention to devising a distributed algo-
rithm for the evaluation of our proposed WEPQ’s. Our assumption is that the
database graph is partitioned into several autonomous processors which do not
share memory. Communication between these processors is achieved exclusively
through message passing.

In our setting, we tackle the more challenging problem of evaluating a query
starting from multiple database nodes. Clearly, multi-source path queries impose
a much higher load on the system, since we need to find all the possible paths
spelling words in the query language, as opposed to finding paths starting from
some root only. Moreover, the database paths that one has to follow starting
from different nodes might have a great amount of overlap and a naive processing
would do extensive redundant work. To see this, imagine we want to evaluate
aircanada:0 + united:1, starting from Vancouver and Toronto. Such routes will
have many intersections such as for example in Los Angeles. An intelligent query
processing would not follow more than once sub-paths starting from Los Angeles.

We present a distributed algorithm that completely avoids traversing database
paths multiple times. Through an iterative weight-correcting process, our algo-
rithm computes and ranks the query answers. A nice feature of our algorithm
is that any snapshot of the query answer at any point in time will be a par-
tial answer to the user query. The practical consequence of this is that the user
would very soon see some partial answers to her query, and along the time that
she is willing to wait, new answers will show up, while the existing answers will
possibly be improved.

Related Work. Similar queries have been also introduced in [2] in the con-
text of Web data. However, our query semantics are more general, and furthe-

4 We assume that the user is not interested in optimizing the distance traveled. Thus,
our problem is not about multi-feature ranking. Rather we assume that the user is
interested in optimizing her preferences, which she can tolerate to be weighted by
the cost of satisfying them.

more we explore in detail different aspects of handling, generating, and evaluat-
ing such queries.

Interestingly, our expression syntax is similar with the one used in [4, 5]. Syn-
tactically, the difference is that in [4, 5], the expressions were on symbol-weight-
symbol triples as opposed to symbol-weight pairs that we use. Semantically,
the expressions of [4, 5] were used for capturing knowledge or constraints about
databases.

We also want to mention here the work of [3] and [9] on how to produce
ranked XPath answers in XML information retrieval (IR) systems. In [3] and
[9], the focus is on ranking the node answers according to the text contents of
the selected (by XPath) XML nodes. Namely, the node texts are ranked using
IR relevance criteria. We want to stress here that our approach is very different
from [3] and [9]. We rank the node answers according to the “quality” (based
on user preferences) of the paths used for reaching the nodes. Thus, we present
a graph structural approach to ranking the query answers, which is inherently
different from IR text approaches of [3] and [9].

Surprisingly, to the best of our knowledge only very few works have dealt
with a distributed evaluation of path queries. The most important works in this
direction are [1], [11], and [10]. In [1], the architecture is similar with ours but the
queries are simple path queries without weights, and furthermore the evaluation
is considered starting from some root node only. The single root assumption is
also made in [10], focusing in a generalization of path queries that is different
from the one in the present paper. Similarly with [1] and [10] , [11] also studies
the single root scenario for simple (unweighed) path queries. However, in [11],
the main objective is to minimize the number of communication messages and
for achieving this [11] suggests an approach, which distributes the load unevenly
among processors.

Our distributed query evaluation algorithm is inherently different from the
algorithms in [1, 11, 10] because here we solve the more difficult problem of eval-
uating the query starting from multiple database objects (or all objects).5 More-
over, our queries are semantically different from those considered in [1, 11, 10].

The rest of the paper is organized as follows. In Section 2, we introduce
weight-enhanced path queries (WEPQ’s) and their semantics. Section 3 provides
a short review of the evaluation of classical path queries and the intuition behind
the algorithm for evaluating WEPQ’s. In Section 4, we present our distributed
algorithm and discuss its message complexity.

2 Databases and Weight-Enhanced Path Queries

We consider a database to be an edge-labeled graph with real values assigned
to the edges. Intuitively, the nodes of the database graph represent objects and
the edges represent relationships (and their importance) between the objects.

5 Even for simple shortest path problems, the algorithms for multi-source variants are
inherently different from the algorithms for single-source variants. Usually, the former
are dynamic programming approaches, while the latter are greedy approaches.

Formally, let ∆ be an alphabet. Elements of ∆ will be denoted R, S, As
usual, ∆∗ denotes the set of all finite words over ∆. Words will be denoted by
u, w, We also assume that we have a universe of objects, and objects will be
denoted a, b, c, . . . ,. A database DB is then a weighted graph (V, E), where V is
a finite set of objects and E ⊆ V × ∆× R × V is a set of directed edges labeled
with symbols from ∆ and weighted with numbers from R.

Before introducing weighted preference path queries, it will help to first re-
view the classical path queries.

A path query (PQ) is a regular language over ∆. For the ease of notation, we
will blur the distinction between regular languages and regular expressions that
represent them. Let Q be a PQ and DB = (V, E) a database. Then, the answer
to Q on DB is defined as

Ans(Q,DB) = {(a, b) ∈ V : a
w

−→ b in DB for some w ∈ Q},

where −→ denotes a path in the database.
Now, let N = {0, 1, 2, . . .}. A weight enhanced path query (WEPQ) is a regular

language over ∆×N. The “words” of such a language are in fact pairs in ∆∗×N.
Observe that, given a WEPQ Q, and a word w on ∆, w can be weighted in Q

by different real numbers. As an example, it could be that there exist r1, r2 ∈ R

(there can many more such numbers) such that both (w, r1), and (w, r2) are in
Q. In order to capture the best preference that query Q gives to the word w, we
define the Q-preference of w, denoted with pref

Q
(w), to be the smallest of the

values associated with with w in Q.
Next, we define the weighted answer (WAns) to a WEPQ Q on DB starting

from some object o as

WAns(Q,DB) = {(a, b, k) ∈ V × V × N : k = inf {pref
Q
(w) : a

w
−→ b in DB}}

Naturally, WEPQ’s can be represented by “weighted automata.” Formally,
a weighted automaton A = (P, ∆, τ, p0, F) consists of a finite set of states P ,
an input alphabet ∆, an initial state p0, a set of final states F , and a transition
relation τ ⊆ P × ∆ ∪ {ǫ} × N × P .

Given a weighted automaton A = (P, ∆, τ, p0, F), we say that a word w ∈
∆∗ is accepted through a k-weighted transition path if there exists a sequence
(p0, w1, k1, p1), . . . , (pn−1, wn, kn, pn) of state transitions of τ (where {w1, . . . , wn}
⊆ ∆∪{ǫ}), such that pn ∈ F , w = w1 . . . wn, and k = k1+· · ·+kn. When referring
to a transition path as the above, we could also say that it is a “(k1, . . . , kn)-
weighted transition path” in order to concisely specify that such a path consists
of n transitions with respective weights k1, . . . , kn. We denote the set of all ac-
cepted words of A (regardless of transition path followed) by A(L).

Now, we can equivalently define pref
Q
(w) using weighted automata. Thus,

let AQ be an arbitrary weighted automaton for Q. For w on ∆, the Q-preference
of w is

pref
Q
(w) =

{

inf {k : w is accepted though a k-weighted transition path in AQ}
∞, if w 6∈ AQ(L).

In our definition of WAns(Q,DB), we do not use the real values that could
possibly be assigned to the edges of the database graph. As mentioned in the
Introduction, such values can be used to scale up or down the transitions during
the query evaluation.

In order to take into consideration the edge values, we define the scaled Q-
preference of a word w (of length n) through a scaling vector scale = (r1, . . . , rn) ∈
R

n, as

pref
Q
(w, scale) =

inf {r : w is accepted though a (k1, . . . , kn)-weighted
transition path in AQ, and r = k1r1 + · · · + knrn}

∞, if w 6∈ AQ(L).

For a path π in DB , we define scaleπ to be the scaling vector obtained in the
natural way from the values of each edge along π. We are ready now to define
the path scaled weighted answer (SWAns) of a WEPQ Q on DB as

SWAns(Q,DB) = {(a, b, r) ∈ V × V × R :

k = inf {pref
Q
(w, scaleπ) :

π is a path a
w

−→ b in DB}}.

Next, we show how to efficiently transform a weighted automaton A, into
one with ǫ-free transitions, in such a way that the essential features of A are
preserved. The ǫ-freeness is essential in properly computing the answer of a
WEPQ.

From the automaton A we will construct another “weight equivalent” au-
tomaton B. We will use ǫ-closure(p), similarly to [6], to denote the set of all
states q, such that there is path π, from p to q in A, spelling ǫ.

Obviously, we will keep all the non-ǫ transitions of A in the automaton B,
that we are constructing.

Now, we will insert an R-transition (R 6= ǫ) in B from a state p to a state q

whenever there is in A a path π, spelling ǫ, from p to an intermediate state r and
there is an R-transition, from that state r to the state q. We take special care
here for computing the weight of these transitions. Formally, if A = (P, ∆, τA, p0,

F), then B = (P, ∆, τB, p0, G), where G = F ∪ {p0 : if ǫ-closureA(p0) ∩F 6= ∅}
and

τB = {(p, R, n, q) : (p, R, n, q) ∈ τA} ∪

{(p, S, m + n, q) : ∃r ∈ ǫ-closureA(p),

such that (r, S, n, q) ∈ τ},

where the weight m is the weight of the cheapest path from p to r in A spelling ǫ,
and (r, S, n, q) is the cheapest S-transition from r to q.

It is easy to verify about the above constructed automaton B that

Theorem 1. For a given word w, there is k-weighted transition path spelling w

in B if and only if there is such a path in A.

Also observe that in the above construction, although there can be exponentially
many ǫ-paths from state p to state r, we insert only one transition from p to
q for each symbol labeling a transition from r to q. Hence, we have that the
size of B is polynomial on the size of A. Moreover, note that there can be many
transitions from r to s labeled with the same symbol but having different weight.
However, we only consider the cheapest of them.

3 Path Queries, Reachability, and Shortest Paths

Before presenting the distributed (weighted) query evaluation, we will review
the classical method of query evaluation. In essence, the evaluation proceeds
by creating state-object pairs from the query automaton and the database. For
this, let A be an NFA that accepts a query Q. Starting from some object a of
a database DB , we first create the pair (p0, a), where p0 is the initial state in
A. Then, we create all the pairs (p, b) such that there exist a transition from p0

to p in A, and an edge from a to b in DB , and furthermore the labels of the
transition and the edge match. In the same way, we continue to create new pairs
from the existing ones, until we are not anymore able to do so. At that point,
we produce as the answer to the query the set of object pairs (a, b), such that b

has been associated with some final state of the query automaton A.
It is worth mentioning here that the state-object pairs induce an (implicit)

edge labeled graph with these pairs as its nodes. Regarding the edges, let (q, b)
be obtained by another pair, say (p, a), through a database edge and automaton
transition both labeled by R. Then, we consider an R-labeled edge from (p, a)
to (q, b) in the induced graph.

Now, when having a weighted query automaton, we can modify the classical
matching algorithm to build instead a weighted state-object graph. This can be
achieved by assigning to the edges of this graph the corresponding automaton
transition weights scaled by the corresponding database edge-values.

It is not difficult to see that, in order to find the weighted answers to the
query, we have to find, in the state-object graph, the shortest paths from the
“sources” (p0, a) to all the nodes (p, b), where p is a final state in the query
automaton A.

However, the challenge is that when the database is very large and dis-
tributed, we cannot afford to construct the above graph, and then use some
centralized shortest path algorithm on it.

In the next section, we present a distributed algorithm which computes the
multi-source shortest paths in the state-object graph, while constructing it on
the fly and achieving all the possible overlap in the computations starting from
each source.

4 Distributed Evaluation of Path Queries

Our algorithm has two interwoven components: the computation of query an-
swers and its termination detection. In this paper, we focus on the computation

of query answers. The termination detection will be discussed in a companion
paper.

The central idea of our algorithm is to overlap computations starting from
different objects. We assume that each database object, say a, is being serviced
by a dedicated process for that object Pa.

Each process starts by creating an initial task for itself. The tasks are “keyed”
by the automaton states, with the initial tasks being keyed by the initial state,
say p0. Each task 〈p, . . .〉 corresponding to some object a (serviced by Pa), is
eventually selected for “expansion,” which is the creation and sending of new
tasks to other processes whenever there is an automaton transition originating at
state p that matches a database edge originating at the object a. Let (p, R, q, k)
be such a transition matching a database edge (a, R, b, t). Then the process Pa

will send the task 〈q, . . .〉 to the process Pb servicing the object b. The process Pb,
upon receival of the task 〈q, . . .〉, will establish a virtual communication channel
with the process Pa for the originating task 〈p, . . .〉. This channel is weighted by
kt. In a sense, the completion of the task 〈p, . . .〉 in Pa depends on the completion
of the task 〈q, . . .〉 in Pb.

Notably, overlapping of computations happens when a process receives the
same task multiple times from different neighboring processes. In such a case
the receiving process does not accept the “new” task, but instead it creates only
a virtual communication channel with the sending process as explained above.
The overlapping of computations is reminiscent of view-based optimization of
queries.

Whenever a process receives (the first time) a task keyed by a final state,
it sends as an answer, through the backward communication channels, the id

of the object that it services. The receiving processes will back-propagate such
answers, through their appropriate backward communication channels, satisfying
along the way the p0 keyed tasks. The meaning of “appropriate” will become
clear in the detailed algorithm that follows. The back-propagated answers will
be weighted by the cost of traversing the communication channel paths. Recall
that the cost of a communication channel is the product of the corresponding
automaton transition and database edge weights. At the joint points, i.e. at the
tasks receiving the same answer from different paths, we “relax” the weight of
the answer by setting it equal to the smallest received weight.

Now, we formally present our algorithm, which, as we mentioned earlier, em-
phasizes the distributed computation of query answers ignoring (for the moment)
the termination detection of the computation.

Algorithm 1

Input:
1. A database DB . For simplicity we assume that each database object, say

a, is being serviced by a dedicated process for that object Pa.
2. A weighted automaton A = (P, ∆, τ, p0, F) for a WEPQ Q. This au-

tomaton is sent first to all the processes.6

6 This does no harm to the true distribution of computation. Instead of transferring
whole parts of the data (as in the XQuery paradigm), we simply send (once only)

Output: The weighted answers to the query Q evaluated on the database DB .
Method: Each process Pa creates a task 〈p0, {}, unexpanded〉 for itself. If p0

is also a final state, insert (a, 0) in the pair-set of the above p0-task, which
would become 〈p0, {(a, 0)}, unexpanded〉.
1. Repeat 2, 3, and 4 at each process Pa in parallel, until termination is

detected.
2. For each unprocessed yet task 〈p, {. . .}, unexpanded〉

(a) if there is a t-weighted R-edge, from object a to some object b in
DB , and there is a k-weighted R-transition from state p to some
state q in automaton A

then (Pa will expand the task to Pb)
Pa creates a message 〈a, p, q, u〉, where u = kt, and sends it to
process Pb.

else Pa is “stuck” with respect to this task, and sends an empty
message 〈〉 through each communication channel (see step 3)
〈(a, p), (,), x〉, to the processes at the other end of the channels.

(b) Task 〈p, {}, unexpanded〉 will change to expanded.
3. Upon receival of a message 〈c, r, p, v〉 (due to expansion of an r-keyed

task of Pc)
(a) if Pa does not have yet a task 〈p, {. . .}, 〉

then Pa creates a corresponding task 〈p, {}, unexpanded〉 for itself,
and establishes a virtual communication channel 〈(a, p), (c, r), v〉
between this task and the r-keyed task of Pc.
if p is a final state
then Pa inserts (a, 0) in the pair set of 〈p, {}, unexpanded〉,

which becomes 〈p, {(a, 0)}, unexpanded〉.
else (Pa has already a task 〈p, {. . .}, 〉)

If there is not already a communication channel 〈(a, p), (c, r), v〉,
create one as above.

(b) Next, for each object-weight pair (d, y) in the p-task pair-set, Pa

sends a message 〈d, y + v〉 through the communication channel
〈(a, p), (c, r), v〉.

4. Upon receival of a message 〈e, z〉 through some channel, say 〈(,), (a, p), y〉:
(a) Pa checks whether there exists a pair (e,) in the p-task pair-set. If

there exists such a pair, say (e, w), update (relax) it with (e, min{z, w});
otherwise insert (e, z).

(b) if in step (a) a change, which is an update or insertion, did happen
(say we got (e, z) in the above pair-set)

then Pa propagates the change upwards by sending through each
channel 〈(a, p), (,), v〉 the message 〈e, z + v〉.

else (when in step (a) there was no change) Pa does nothing. It has
already good object weights for the p-keyed task, which have
been (or will be soon) propagated upwards.

the query automaton, which is polynomial in the size of the regular expression given
by the (human) user.

Finally upon termination, which happens when there are no more messages
sent but not yet received, set

eval(A,DB) = {(a, b, r) : (b, r) is in the pair-set of the p0-task of process Pa}.

It is easy to verify that the following theorem is true.

Theorem 2. Upon termination of the above algorithm, we have that

eval(A,DB) = SWAns(Q, DB).

Now, we illustrate the Algorithm 1 by the following example. Consider the
database and the query automaton in Figure 1, left and right respectively. Due
to space constraints, we have abbreviated unexpanded by u, and expanded by e.
A possible sequence of actions for Algorithm 1 is given in Table 1. In the first

R,1
R,2

S,1

S,1R,3

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��
��

�
�
�
�

S,1

d

ba

c

p
0 p

1

R

S

,1

,1

Fig. 1. A database and a query automaton

column labeled “T ” we number the hypothetical time (break)points in which we
observe the system. An explanation for the (possible) actions at each time point
follows.

1. All the processes create a task 〈p0, {}, u〉 for themselves.
2. Pa expands the tasks 〈p0, {}, u〉 and sends the task 〈p1, {}, u〉 to both Pc

and Pd. Pc and Pd observe that p1 is a final state and insert (c, 0) and (d, 0)
respectively in their p1-task pair-set. Next, Pc and Pd send 〈c, 1〉 and 〈d, 3〉
respectively to Pa through the appropriate virtual channels.

3. Pb expands the tasks 〈p0, {}, u〉 and sends a p1-task to Pc. Since Pc has
already received such a task before (from Pa), it does not create a new task,
but only establishes a virtual channel with Pb for the originating p0-task.
Also, Pc sends 〈c, 2〉 to Pb.

4. Pc expands the tasks 〈p0, {}, u〉. It gets stuck.
5. Pc expands the tasks 〈p1, {}, u〉 and sends a p1-task to Pd. Since Pd has

already received such a task before, it does not create a new task, but only
establishes a virtual channel with Pc for the originating p1-task. Also, Pd

sends 〈d, 1〉 to Pc. Pc in turn sends 〈d, 2〉 to Pa, and 〈d, 3〉 to Pb. Pa will
update(relax) the weight for d from 3 to 2.

6. Pd expands the task 〈p0, {}, u〉. It gets stuck.

7. Pd expands the tasks 〈p1, {(d, 0)}, u〉 and sends a p1-task to Pb. Pb observes
that p1 is a final state inserts (b, 0) in its p1-task pair-set. Also, Pb sends
〈b, 1〉 to Pd through the appropriate virtual channel. Pd propagates this new
answer by sending 〈b, 4〉 to Pa, and 〈b, 2〉 to Pc.

8. Further computation occurs leading, upon termination, to this final snap-
shot.

T Pa Pb Pc Pd

1 〈p0, {}, u〉 〈p0, {}, u〉 〈p0, {}, u〉 〈p0, {}, u〉

2 〈p0, {(c, 1), (d, 3)}, e〉 〈p0, {}, u〉 〈p0, {}, u〉 〈p0, {}, u〉
〈p1, {(c, 0)}, u〉 〈p1, {(d, 0)}, u〉

3 〈p0, {(c, 1), (d, 3)}, e〉 〈p0, {(c, 2)}, e〉 〈p0, {}, u〉 〈p0, {}, u〉
〈p1, {(c, 0)}, u〉 〈p1, {(d, 0)}, u〉

4 〈p0, {(c, 1), (d, 3)}, e〉 〈p0, {(c, 2)}, e〉 〈p0, {}, e〉 〈p0, {}, u〉
〈p1, {(c, 0)}, u〉 〈p1, {(d, 0)}, u〉

5 〈p0, {(c, 1), (d, 2)}, e〉 〈p0, {(c, 2), (d, 3)}, e〉 〈p0, {}, e〉 〈p0, {}, u〉
〈p1, {(c, 0), (d, 1)}, e〉 〈p1, {(d, 0)}, u〉

6 〈p0, {(c, 1), (d, 2)}, e〉 〈p0, {(c, 2), (d, 3)}, e〉 〈p0, {}, e〉 〈p0, {}, e〉
〈p1, {(c, 0), (d, 1)}, e〉 〈p1, {(d, 0)}, u〉

7 〈p0, {(b, 4), (c, 1), (d, 2)}, e〉 〈p0, {(c, 2), (d, 3)}, e〉 〈p0, {}, e〉 〈p0, {}, e〉
〈p1, {(b, 0)}, u〉 〈p1, {(b, 2), (c, 0), (d, 1)}, e〉 〈p1, {(d, 0), (b, 1)}, e〉

8 〈p0, {(b, 3), (c, 1), (d, 2)}, e〉 〈p0, {(b, 4), (c, 2), (d, 3)}, e〉 〈p0, {}, e〉 〈p0, {}, e〉
〈p1, {(b, 0), (c, 1), (d, 2)}, e〉 〈p1, {(b, 2), (c, 0), (d, 1)}, e〉 〈p1, {(b, 1), (c, 2), (d, 0)}, e〉

Table 1. A possible sequence of snapshots for Algorithm 1

It is worth mentioning that any snapshot of eval(A, DB) at any time during
the execution of the above algorithm is a partial answer to the query. The answer
would be partial because: (a) there could still be objects to be discovered during
the navigation, and (b) the weights of the already discovered objects could be
further improved, i.e. lowered, should we wait further for the algorithm to con-
tinue. However, depending on the application a “quicker” partial answer could
be more desirable than the complete answer.

Complexity. Here we are interested in the number of messages since to
send a message is an order of magnitude more expensive than to perform a main
memory operation. We show the following.

Theorem 3. The number of messages in Algorithm 1 is bounded by (E · |τ |)2,
where E is the number of edges in DB, and |τ | is the cardinality of the transition
relation of A.

Proof Sketch. Each physical database edge can “accommodate” in the worst
case |τ | virtual communication channels. To set up a communication channel
one “forward” message is needed. Now the question is how many times a com-
munication channel is traversed “backward,” by the update 〈d, y〉 messages. It
is not difficult to see that a new wave of possible update messages can be propa-
gated backwards for each forward message 〈c, r, p, v〉 in step 3 of the algorithm.
As a wave of updates could have in the worst case up to E · |τ | backward mes-
sages, we get the claimed upper bound. ⊓⊔

We can make a tradeoff between the time the nodes wait before initiating an
update-wave, and the query response time. If each process waits a certain time

before back-propagating query answers (as opposed to immediately sending all
the answers that the process knows), then it is possible that better weighted
answers will arrive to the processes, and many back-propagation messages will
be cancelled. Not sending right away might be good for “throughtput” when
we have a big number of executing queries. Such a strategy might significantly
reduce the stress to the system making it possible to execute faster a set of
queries.

As mentioned before, (due to space constraints) we do not present here the
termination detection algorithm. It will be found in a future companion paper.

References

1. S. Abiteboul, V. Vianu. Regular Path Queries with Constraints. Journal of Com-
puting and System Sciences 58(3) 1999, pp. 428-452.

2. Flesca, S., Furfaro, F., and Greco, S. Weighted path queries on web data. In Pro-
ceedings of the 4th International Workshop on the Web and Databases (WebDB ’01).
Informal Proceedings, pp. 7–12.

3. Grabs T., and H.-J. Schek ETH Zürich at INEX: Flexible Information Retrieval
from XML with PowerDB-XML Proc. INEX Workshop 2002: pp. 141–148

4. Grahne, G., and Thomo, A. Approximate reasoning in semistructured data. In
Proceedings of the 8th International Workshop on Knowledge Representation meets
Databases (KRDB ’01). Online Proceedings, http://ceur-ws.org/Vol-45/03-thomo.ps

5. Grahne, G., and Thomo, A. Query answering and containment for regular path
queries under distortions. In Proceedings of the 3rd International Symposium on
Foundations of Information and Knowledge Systems (FoIKS ’04). Lecture Notes in
Computer Science 2942, Springer, 2004, pp. 98–115.

6. Hopcroft, J., E., and Ullman, J., D. Introduction to Automata Theory, Languages,
and Computation. Addison-Wesley, Reading, MA, 1979.

7. Mendelzon, A., O., Mihaila, G., A., and Milo, T. Querying the World Wide Web.
International Journal on Digital Libraries, 1 (1), 1997, pp. 57–67.

8. Mendelzon A. O., and P. T. Wood, Finding Regular Simple Paths in Graph
Databases. SIAM J. Comp. 24 (6) : 1235–1258, 1995.

9. Meyer, H., I. Bruder, A. Heuer, and G. Weber The Xircus Search Engine. INEX
Workshop 2002, pp. 119–124

10. Stefanescu D. C., Thomo, A, and Thomo, L. Distributed evaluation of generalized
path queries Proc. Proceedings of the 2005 ACM Symposium on Applied Computing
2005 pp. 610–616.

11. Suciu D., Distributed query evaluation on semistructured data. ACM Transactions
on Database Systems, 27 (1), 2002, pp. 1–62.

12. Vardi. M. Y. A Call to Regularity. Proc. PCK50 - Principles of Computing &
Knowledge, Paris C. Kanellakis Memorial Workshop ’03, pp. 11.

13. Lacroix, Zoe and Raschid, Louiqa and Naumann, Felix and Vidal, Maria Esther.
Exploring Life Sciences Data Sources Technical report 2003.

