
Discovering links between lexical and
surface features in questions and answers

Soumen Chakrabarti∗
IIT Bombay

soumen@cse.iitb.ac.in

ABSTRACT
Information retrieval systems, based on keyword match, are
evolving to question answering systems that return short
passages or direct answers to questions, rather than URLs
pointing to whole pages. Most open-domain question an-
swering systems depend on elaborately designed hierarchies
of question types. A question is first classified to a fixed
type, and then hand-engineered rules associated with the
type yield keywords and/or predictive annotations that are
likely to match indexed answer passages. Here we seek a
more data-driven approach, assisted by machine learning.
We propose a simple conditional exponential model over a
pair of feature vectors, one derived from the question and
the other derived from the a candidate passage. Features
are extracted using a lexical network and surface context as
in named entity extraction, except that there is no direct su-
pervision available in the form of fixed entity types and their
examples. Using the exponential model, we filter candidate
passages and see substantial improvement in the mean rank
at which the first answer is found. The model parameters
distill and reveal linguistic artifacts coupling questions and
their answers, which can be used for better annotation and
indexing.

1. INTRODUCTION
A Question Answering (QA) system responds to queries like
Who is the Greek God of the Sea? with a precise answer like
Poseidon. An important first step, which we focus on here, is
to identify short snippets or passages of up to several words
which contain the answer.

Traditionally, Web search engines have not rewarded queries
that are grammatical and coherent. Users have adapted by
translating their information need (e.g., When was the Space
Needle built?) into telegraphic keyword queries (e.g., "Space
Needle" history). However, this process remains a tenta-
tive one.

Meanwhile, the QA community, building on top of Infor-
mation Retrieval (IR) systems, part-of-speech and named-
entity (NE, e.g., people, place, time) taggers, and shallow
parsers, has made substantial advances in building high-
accuracy QA systems [3, 8, 9, 11, 5, 18, 26, 6, 16].

However, the success comes at a price: significant human
effort is needed to study the corpus and typical questions
and their answers, and turn that experience into elaborate
pattern matching and extraction strategies. The best QA

∗Work done while visiting CMU.

systems incorporate expert input based on manual analysis
of large corpora and a large collection of questions (over
27600 in one case).

Expert input is coded in at least two forms. The first is a
question typology with several hundred question types, such
as location (Where is John Wayne airport?), events (When
is Bastille Day?), creation-time (When did World War 1
start?), population (What is the population of Venezuela?),
why-famous (Who was Galileo?) and so on. Further wis-
dom is embedded in routines that produce the final ranking
of passages short-listed by a conventional IR engine. The
best-performing ranking routines exploit well-tuned heuris-
tic that set rewards, discounts, and penalties for exact matches,
case-insensitive matches and stemmed matches between words.

Our goal: We wish to harness robust data mining and
machine learning tools to ease—and ideally automate—the
process of mapping ad-hoc questions to likely answer pas-
sages, without having to fashion and maintain a question
taxonomy, or to tune passage ranking heuristics through
manual intervention.

We draw on two kinds of resources. First, we use a database
of is-a relations (e.g., a horse is a mammal). WordNet1 is
a source of is-a relations widely used in natural language
analysis. Moreover, recent research has enabled the boot-
strapping of is-a databases, largely automatically, from the
Web [7]. Many focused domains have already created ontolo-
gies suited to their use, e.g., the MeSH hierarchy for medical
abstracts and the UNSPSC taxonomy for e-commerce cata-
logs. These knowledge bases feed naturally into our system.

Second, we borrow basic feature extraction strategies from
the named entity (NE) extraction and information extrac-
tion (IE) communities. Unlike IE, we do not have a fixed
set of labels. Ground features on both the question and an-
swer sides must be abstracted into “soft labels” which allow
for probabilistic matching. Intuitively, if a test question is
“similar” to a sufficient number of training questions, we
should be able to predict the kind of features we wish to see
in an answer passage directly, without first embedding the
question into a type system.

Consider questions that are answered with the name of a
place. There are several ways to ask such questions, starting
with “Where . . .” or “In which city . . .” etc. Likewise, there
are several ways in which the answer can be embedded in
the context of a passage, where the answer

• Almost always has token/s starting with an uppercase
letter and continues with lowercase letters

• Is almost always flagged as a noun or noun phrase by
a POS tagger

• Tends to be preceded by in or at
• Is often a specialization (“hyponym”) of the compound

noun geographical location in WordNet.
Children are known to exploit such clues during vocabulary

1http://wordnet.princeton.edu/

1

acquisition [2]. Similar comments hold for most common
types of factual questions. Note that accumulation of “soft”
evidence for a match can happen at both the question and
the answer end.

To be sure, machine learning is already heavily used inside
many QA modules, such as part-of-speech (POS) and named
entity (NE) taggers, and shallow parsers. These modules de-
mand training data for different tasks in diverse forms, so it
is no wonder that most modules are used as black boxes, pre-
trained with generic data which we can only hope suffices
for our application. We have often seen BBN’s Identifinder2

flag Japanese person names as organization; m.p.h. and
Gaffney, SC as person; and telephone, all in all, and look
as work of art. The gazetteer in GATE3 regards 2000 as
possibly representing a year, but not 1803. Moreover, as de-
scribed above, these modules are put together via engineered
bias rather than learning the weight of their evidence for
specific QA instances. Clearly, the black-box mode of usage
can be improved upon.

Our contributions: To a first approximation, we repre-
sent questions and answers using feature vectors in the style
of modern information extraction systems like MALLET4

or Minor Third5, and then learn high-density regions in the
joint distribution of these features. More specifically, given
a new query and a candidate answer, we estimate if their
combined feature vector is sufficiently close to a high-density
region to accept the candidate answer. We argue that many
QA ranking strategies are “hard” approximations to such
“soft” scoring. As we shall see, the high-density zones can
also be conditioned on questions to yield eminently mean-
ingful passage features, which can be used as predictive an-
notations [17].

While questions are not explicitly classified, entities in
passages need to be generalized using an is-a hierarchy. In
this work we use WordNet. An interesting feature of our
approach is that we do not need to customize WordNet in
any way, or solve a WSD problem to attach WordNet to our
corpus.

In this paper, we start by showing that useful high-density
regions are indeed recoverable from the joint distribution of
question and answer features. We then propose a conditional
exponential model to predict if there is enough evidence that
a candidate passage is likely to answer a given question. We
fit the model to features extracted from TREC QA data
in conjunction with WordNet, with no customization what-
soever. The model reveals feature correlations which are
intuitive and useful in retrospect.

Our trained model can be used to filter candidate response
tokens from a passage-level IR system. Experiments with
TREC 2000 and TREC 2002 show significant improvements
in the earliest rank at which an answer passage is found.
Owing to the simplicity of our model, applying our classifier
to a passage span is very fast, allowing us to scale up the
filtering step to 300 responses from the IR system in 1–
2 seconds. Our results move us closer to shrink-wrapped,
trainable QA systems which are as easy to deploy as a basic
IR system.

2http://www.bbn.com/speech/identifinder.html
3http://gate.ac.uk
4http://mallet.cs.umass.edu
5http://sourceforge.net/projects/minorthird

2. PRELIMINARIES AND RELATED
WORK

In this section we set up our problem more formally, and
review some related work.

A factual question is a sequence of tokens, such as Who
wrote “20,000 Leagues Under the Sea”, possibly containing
quoted strings (which are regarded as single tokens). A cor-
pus is a set of documents; each document is a sequence
of sentences; and each sentence is a sequence of tokens.
The QA system returns a ranked list of passages. Work-
ing definitions of a passage range from a 50- or 250-byte
text window, some number of consecutive tokens, or a small
number (1–3) of consecutive sentences.

In this work we address queries which seek as answer an
entity of a type that is specified only indirectly, where the
entity satisfies some constraints expressed in the question.
We call the desired answer type the atype of the question.
In the question above, the answer entity is Jules Verne, the
atype is person, and the constraint is that the answer entity
must have written the specified book.

The constraint is expressed in two parts. First, there are
ground constants (like the book title) which we expect to oc-
cur essentially unchanged in an answer passage. Constants
are matched reasonably easily using an IR system. But en-
forcing the second part, the relation “wrote,” generally re-
quires a parse and quite some engineering; this is where
many QA systems avoid “NLP completeness” for simplicity
and speed. At this stage, we will do likewise, and think of
the IR probe as being derived from the template

FIND x NEAR GroundConstants(question)
WHERE x IS-A Atype(question)

For starters, NEAR may mean linear proximity in text, and
as we see later, this is already surprisingly effective. But
the stage is wide open for introducing diverse evidence of
nearness, including chunking and parsing, and this is an
exciting area of future work. The focus of this paper is the
predicate

x IS-A Atype(question).
Most QA systems use a two-step approach to evaluate this
predicate. First, they build a question classifier to evalu-
ate Atype(question). This classifier is usually completely
supervised, and uses a taxonomy of question types [20, 24].
Second, they map the estimated atype to tokens expected to
be found in an answer passage [17, 19]. Notable departures
from the standard paradigm include inferring paraphrases
[13], predicting answer tokens from question features [1, 6],
and using a language model conditioned on the question
type [23]. A key feature of our approach is that we do not
have any fixed system of atypes, and we do not know how
to materialize Atype(question). Instead, we evaluate the
soft predicate DoesAtypeMatch(x,question).

3. FEATURES
Each token in a question or passage may be associated with
a variety of features. We will use surface features such as or-
thography and specific word forms, and taxonomy features
which help us recognize that a passage token is an instance
of the atype that the question seeks. Inspired by Yarowsky
and others, we will adopt the “kitchen sink” approach [22]:
include as many useful-looking features as we can find, use
learning techniques robust to redundant features, and ex-
ploit the ones that float to the top.

Our approach is to generalize each passage token to many

2

levels of detail, in a redundant fashion. If a token is a noun
found in WordNet, the hypernym paths (definitions are in
the next section) to noun roots provides one kind of gener-
alization. Words not found in WordNet are generalized to
surface context patterns.

Individually, each feature thus derived can be unreliable.
E.g., both place and person names tend to start with an
uppercase letter and continue with lowercase letters. But
person names are rarely preceded by a preposition. Our
hope is that a robust learning algorithm can combine such
noisy evidence to give high accuracy.

3.1 Lexical network-based features
We start this section with a brief WordNet primer. For our
purposes, WordNet [15] is a graph where nodes are con-
cepts and edges are relations between concepts. A concept
is called a synset because it is described by a set of syn-
onyms, also called lemmas. A synset may be described
by many lemmas. Conversely, a lemma (like match) can de-
scribe many synsets, in which case it is highly polysemous.
A lemma, a part-of-speech, and a (standardized) sense num-
ber together defines a synset uniquely, and is written as
match#n#1 (first noun sense of match). We only consider
hypernym and hyponym edges in WordNet, which repre-
sent IS-A relations. E.g., in this chain of generalization:

horse, Equus caballus → equine, equid → · · · → un-
gulate, hoofed mammal → placental, placental mam-
mal, eutherian, eutherian mammal → mammal →
· · · → animal, animate being, beast, brute, creature,
fauna → · · · → entity

beast and brute are synonyms, equid is a hyponym of ungu-
late, horse is a hyponym descendant of mammal, equid is
a hypernym of horse, and entity is a hypernym ancestor
of horse.

Each passage token is mapped to one or more synsets in
the WordNet noun hierarchy. Holding extreme faith in the
kitchen sink approach (and mainly because it would be com-
putationally expensive), we perform no word sense disam-
biguation. From each synset we walk up the noun hypernym
hierarchy and collect all hypernym ancestor synsets as fea-
tures associated with the given token. We do not consider
non-noun hypernym hierarchies because they are known to
not be as usable as the noun hierarchy, and because most
answers are nouns or noun-related entities.

WordNet is only a representative example; we can use the
occurrence of a token in any precompiled dictionary, and
any available sources of instance-of and part-of information
as features. E.g., in a medical application, we can use the
extensive MeSH hierarchy, and if wanted to support QA on
product reviews, we might use the UNSPSC product taxon-
omy6.

3.2 Surface context features
Lexical features work only for finite domains, and surface
context features are one way to supplement lexical features
to handle infinite domains (e.g., quantities).

Surface features for questions currently include (lower-
cased) token sequences of length up to three tokens, start-
ing from standard wh-word question leaders: when, what,
how, where, which, who, whom, whose, why, name, and de-
fine. This set is language-specific, and is designed to capture
clues about the desired atype.

Surface features of passage tokens are extracted in a man-

6http://www.eccma.org/unspsc

ner similar to information extraction systems. We flag if a
token has some uppercase letter (hasCap), is all uppercase
letters, is an abbreviation (uppercase letters and periods),
has an uppercase letter followed by two or more lowercase
letters (hasXxx), has a digit (hasDigit), and is entirely dig-
its. (Later, we intend to use the part of speech of the token
and its adjacent tokens; our current POS tagger is not as
fast as our indexer.)

3.3 Proximity features
Most QA systems reward linear proximity between candi-
date answers and matched question tokens, and some pro-
vide a reasonably formal justification [5]. In our setup, when
we consider a passage token as (part of) a candidate answer,
we also measure the linear distance (number of interven-
ing tokens) between the candidate token and each matched
question token. To make proximity features compatible with
all other boolean features, we combine the reciprocal of
the distances, in two ways: take their average or take their
maximum.

4. LIKELIHOOD RATIO TESTS
We start with some exploratory data analysis: are there
indeed consistent, detectable patterns that can be extracted
from the feature classes we collect? We limit our study to
pairs of features, one from the question and one from the
answer. Searching for larger correlated itemsets would be
prohibitive in such high dimensional spaces.

Figure 1 shows some pairs of features (only surface fea-
tures from question and passage tokens) that pass the well-
known likelihood ratio test with the highest scores, showing
strong association between the feature pairs.

Q-feature A-feature Score
whom hasCap 159
whom hasXxx 162
who wrote hasCap 164
where are hasXxx 166
who wrote hasXxx 167
who invented hasXxx 181
who invented hasCap 200
what year hasDigit 280
what city hasCap 373
what city hasXxx 378
how many hasDigit 449
of hasXxx 480 *
what hasXxx 540 *
what hasCap 555 *
name hasXxx 897
name hasCap 911
is hasXxx 1110 *
is hasCap 1115 *
where hasXxx 1196
where hasCap 1205
when hasDigit 1367
who hasXxx 1594
who hasCap 1707

Figure 1: The most strongly associated pairs of sur-
face features in questions and answer tokens are
highly intuitive. The score shown is the standard
−2 log Λ score which is χ2-distributed. (Meaningless
and/or useless pairs are marked “*” and commented
upon in the text.)

Can we simply retain some of the top-scoring pairs in
Figure 1 in a question-to-answer mapping table and achieve
our objective? Perhaps, but any score threshold would be
rather arbitrary. A χ2 table shows almost all pairs as signif-
icantly associated. Even pairs which are meaningless or too
general to be useful, like (who, hasDigit), (what, hasXxx),

3

(what, hasCap), and (is, hasXxx), get significant scores (see
“*”). The problems are obvious: the likelihood ratio test
does not discriminate among token labels, and does not cap-
ture redundancies in correlation information across different
pairs.

Q-feature A-feature Score
who painted artist#n#1 12
how much definite quantity#n#1 24
how much metric unit#n#1 25
how far nautical linear unit#n#1 26
how far mile#n#1 26
how much metric weight unit#n#1 33
how many definite quantity#n#1 37
how many number#n#2 55
how many large integer#n#1 60
when is time period#n#1 79
when is calendar day#n#1 98
who wrote writer#n#1 103
when is day#n#4 135
city state capital#n#1 236
what city state capital#n#1 236
king sovereign#n#1 275
where is region#n#3 283
where location#n#1 288
king king#n#1 294
who person#n#1 316
where region#n#3 370

Figure 2: Strong associations between surface fea-
tures of questions and WordNet-derived features of
answers are also intuitive. Synsets are written in
the standard lemma#pos#sense format.

In other words, a measure of association does not, in it-
self, tell us how to combine evidence from multiple pairs,
because they are often highly redundant. Apart from re-
dundancy among surface features, there is much redundancy
among IE and WordNet features. Consider Figure 2, which
shows strongly associated pairings between surface features
in the question and WordNet synsets derived from the an-
swer passage. These are also by-and-large meaningful, but
it is not clear how to discount evidence from one source
against evidence from another, based purely on measures of
association.

5. PASSAGE SCORING AND FILTERING
Current practice in mapping questions to likely answer pas-
sages amounts to the following procedure. Given a question
q, extract from it a suitable feature vector ~q. Using pre-
compiled mapping tables (and/or an automatic classifier)
predict some properties of a feature vector ~p that is likely
to be generated by an answer passage, and then look for
passages p that generate or satisfy ~p.

Here we seek to avoid a fixed classification of ~q by inducing
a two-class (yes/no) classifier on the joint distribution of ~q
and ~p. I.e., we concatenate ~q and ~p into a single feature
vector ~x = (~q, ~p), and let y be a boolean prediction. Many
classifiers will output not only a boolean prediction but also
a score (which may be an estimated probability of belonging
to the “yes” class). We can use the score in at least two ways:
Rerank: Use the score given by the classifier to rerank pas-

sages, ignoring their original rank as returned by the
IR engine.

Eliminate: The original IR ranking is retained, but pas-
sages with scores less than a threshold are eliminated,
reducing the ranks of true answer passages.

5.1 Non-linear learners
A linear classifier such as a linear SVM will fit a weight
vector ~w = (~wq, ~wp) from the training data, and then predict

y ∈ {−1, +1} as sign(~w · ~x) = sign(~wq · ~q + ~wp · ~p). A
linear classifier is unlikely to be suitable. Ideally, we would
like different questions to substantially modulate the kinds
of features we should seek in passages. But, in case of a
linear classifier, fixing the question merely materializes the
~wq · ~q part into a constant, and the portion ~wp that scores
~p remains unchanged. Thus the discriminant will assign
static notions of positive or negative importance to passage
features, irrespective of the question.

The study of pairwise likelihood ratio suggests that our
model should directly capture pairwise interactions between
features. In kernel classifiers, this can be done using a
quadratic kernel K(~x1, ~x2) = (~x1 · ~x2 + 1)2, which will po-
tentially capture all pairwise interaction of attributes. For
training instances xi, 1 ≤ i ≤ n, the SVM will estimate dual
variables αi, 1 ≤ i ≤ n, mostly zero, such that the prediction
for a new feature vector ~x = (~q, ~p) is

P
i αiyiK(~xi, ~x).

Because the αi’s, ~xi’s and yi’s are known, given ~q (the
question part of ~x), we can “materialize” the discriminantP

i αiyiK(~xi, ~x) explicitly as a linear (because ~q is known
and fixed) function of ~p. E.g., if ~q switches on the feature
how many, we expect the coefficient of the features hasDigit
and number#n#2 to be large in a positively-labeled ~p, and
we can use this information to look for and score promising
passages more effectively.

5.2 A conditional exponential model
In our prototype, we retain the discriminative learning strat-
egy, but we use a conditional exponential model with our
feature-pairs explicitly materialized instead of a SVM with
a quadratic kernel. In our experience, the exponential model
(a log-linear learner) is faster to train given the very large
number of instances created in our QA application. More-
over, in this application, SVM cannot really give us the ben-
efit of kernelization, because during query time, the kernel
has to be materialized in any case.

where

when

who

how_many

how_far

how_long

what_tourist

hasXxx

hasCap

hasDigit

nautical_mile#n#1

linear_unit#n#1

location#n#1

person#n#1

time_period#n#1

number#n#2

Question
features

Answer
features

Model
parameter

on each edge

IS
-A

 fe
at

ur
es

IE
 fe

at
ur

es

Figure 3: Our model potentially assigns a param-
eter to each pair of features, one derived from the
question and the other derived from the answer.

4

We explicitly model pairwise feature interactions between
feature vectors ~q and ~p by assigning one model parameter for
each pair of scalar features, one (qi) drawn from the question
and the other (pj) drawn from the passage, as shown in
Figure 3. We express our model as

Pr(Y = +1|~q, ~p; ~w) = logit
“
w0 +

P
i,j wi,jqipj

”
,

where logit(a) = ea/(1 + ea). (1)

and Pr(Y = −1|~q, ~p; ~w) = 1− Pr(Y = +1|~q, ~p; ~w).
Our overall goal is to maximize the total conditional (log)

probability over all (~q, ~p) instances over choices of parame-
ters ~w, i.e.,

~w∗ = arg max
~w

X
(~q,~p);y

log Pr(y|~q, ~p; ~w). (2)

To avoid over-fitting and improve numerical stability, we use
a Gaussian prior in our optimization [4]:

max
~w

8<: X
~q,~p,y

log Pr(y|~q, ~p; ~w)− γ
X
i,j

w2
i,j

9=;
involving a smoothing parameter γ which is chosen by cross-
validation. Experimental data suggests that careful tun-
ing of γ can help the log-linear model compete favorably
with SVMs [25]. We use L-BFGS, a sparse, limited-memory,
quasi-Newton numerical solver7 to search for the best w.

Note that each parameter wi,j (except the offset w0 and
parameters associated with proximity features, which we
avoid discussing for simplicity) is associated with one ques-
tion feature and one answer feature. Therefore, inspection of
these parameters can reveal interesting and possibly unex-
pected structures in the relationship between question and
passage features.

1: Index sliding passage windows of three sentences using
an IR system.

2: Randomly partition QA pairs for training and testing
(5–10 folds were used).

3: for each training question q do
4: Collect question features into a feature vector ~q as

described.
5: Send the question to the IR system and get top 300

response passages
6: Using the regular expressions provided by TREC,

mark token spans where the correct answer appears.
Keep each answer span as tight as possible.

7: end for
8: for each token over all passages do
9: Collect surface features from token.

10: Map token to noun synset(s) in WordNet if possible,
and collect all hypernym ancestors.

11: Together, these features give ~p, the feature vector
derived from the passage.

12: ~q and ~p together define an instance.
13: The label y for the instance is +1 if the passage

token is inside an answer span, and −1 otherwise.
14: end for

Figure 4: Collection of training instances for the
log-linear classifier.

6. EXPERIMENTS
We experimented with two years of TREC QA data (2000
and 2002) and got broadly similar results. The corpus was

7http://riso.sourceforge.net

1: Collect question features into a feature vector xq as
described.

2: Send the question to the IR system and get top 300
response passages

3: for each token over all candidate passages do
4: Obtain passage features xp and combined feature

vector x as during training
5: Using the log-linear classifier, get a boolean predic-

tion for the token
6: end for
7: if all tokens in a passage are eliminated then
8: Eliminate the passage
9: end if

10: Present surviving passages in the order originally pro-
vided by the IR system.

Figure 5: Using the classifier to prune the passage
list.

chopped up into sentences. Three consecutive sentences
were defined as a passage. Passages were indexed using
Lucene8, which implements a standard TFIDF search.

The training process is shown in Figure 4, and the testing
process is shown in Figure 5. TREC 2000 yielded a train-
ing set with 198496 instances and 674631 (largely boolean)
features, where the average instance had only 42 features
turned on. For TREC 2002 the corresponding numbers were
170264 instances, 540901 features and average fill of 43.6.
Convergence was declared when ‖∇(w)‖/‖w‖ dropped be-
low 0.001; this happened between 500 and 2000 iterations
(10–40 minutes on a 1GHz 1GB P4) depending on γ.

TREC 2002

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2
False positive

Tr
ue

 p
os

iti
ve

Linear
Quadratic

TREC 2002

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1
Recall

P
re

ci
si

on

Linear
Quadratic

Figure 6: The quadratic representation enables a
much better fit to the data and consequent accuracy
on test data. ROC and recall-precision curves are
shown. The breakeven F1 value is 0.44 for the linear
model and 0.61 for the quadratic model.

There are two related design choices during testing where
more exploration is warranted in future work. First, we

8http://jakarta.apache.org/lucene/

5

eliminate passages rather than rerank them (see §5). We
also tried reranking, but the actual value of the logistic score
was not reliable enough. Second, a passage survives if any
of its tokens cannot be eliminated. I.e., token scores are not
combined into a passage score in any sophisticated fashion.

6.1 Linear vs. quadratic
For many applications, dependencies between features are
not well-understood, and the choice of a kernel is an exper-
imental art. In our application, however, verifying that a
quadratic representation gave much greater accuracy was an
important part of vindicating our model. Figure 6 confirms
our intuition. In both ROC and recall-precision measures,
the quadratic model is far superior.

Our positive experience with the quadratic representation
may have implications for setting up log-linear models in IE
and shallow parsing. Efforts to synthesize non-linear com-
binations of raw features to strengthen the log-linear model
in these domains are relatively recent [14].

A. where B. who

hasXxx 0.27
region#n#3 0.25
location#n#1 0.25
hasCap 0.18
country#n#1 0.17
district#n#1 0.17
hasDigit -0.1
artifact#n#1 -0.13
measure#n#3 -0.14
abstraction#n#6 -0.16
act#n#2 -0.16

hasXxx 0.38
hasCap 0.31
entertainer#n#1 0.16
leader#n#1 0.14
artist#n#1 0.14
performer#n#1 0.13
person#n#1 0.09
poet#n#1 0.08
location#n#1 -0.18
entity#n#1 -0.21
hasDigit -0.21
abstraction#n#6 -0.31

C. when D. how many

hasDigit 0.65
time period#n#1 0.08
holiday#noun#2 0.06
day#noun#4 0.06
calendar month#n#1 0.05
calendar day#n#1 0.05
hasXxx -0.09
hasCap -0.12
object#n#1 -0.13
entity#n#1 -0.18

hasDigit 0.16
integer#n#1 0.07
*twelve#n#1 0.06
number#n#2 0.06
definite quantity#n#1 0.06
measure#n#3 0.03
cognition#n#1 -0.03
relation#n#1 -0.03
object#n#1 -0.05
act#n#2 -0.05
entity#n#1 -0.07

E. how far F. linear unit#n#1
nautical mile#n#2 0.02
hasDigit 0.02
linear measure#n#1 0.02
linear unit#n#1 0.02
measure#n#3 0.01
hasXxx -0.004
hasCap -0.005
object#noun#1 -0.006
entity#n#1 -0.007

how far 0.02
*where is 0.009
*what speed 0.005
how long 0.003
whom -0.002
when -0.004
what city -0.004
how many -0.005
what -0.007

G. location#n#1 H. hasDigit

where 0.249
city 0.109
province 0.029
country 0.015
state 0.012
*tourist 0.004
year -0.0230
how -0.0314
when -0.043
name -0.113
who -0.178

when 0.65
what year .18
how many 0.16
how much 0.09
which date 0.05
*how hot 0.02
how far 0.02
company -0.03
city -0.05
name -0.09
where -0.10
who -0.21

Figure 7: Fixing features of questions and watching
answer parameters, and vice versa. Items marked
with a “*” are meaningful, but were unanticipated
from our limited study of the corpus and question-
answer pairs.

6.2 Model parameter anecdotes
Each component (except for w0) of the parameter vector w
estimated by the classifier corresponds to a question feature
and a passage feature. We can set a feature in the ques-
tion (respectively, answer), sort the model parameters, and
look for the answer (respectively, question) features with the
smallest and largest coefficients.

Figure 7(A–E) shows the results. Where and who ques-
tions share hasCap and hasXxx, but differentiate answers
based on WordNet features. Similarly, the sharing of has-
Digit does not confound when, how many, and how far.

In all cases, very generic features (e.g., the noun roots)
get negative coefficients. Why not zero? A little thought
shows this is necessary for rejecting false positives. As a
by-product, the sign may help us decide which predictive
annotations to index.

In (F–H) we set answer features to reveal abstraction of
question features. Again, we see intuitive question classes
which require answers of the set type.

6.3 Rank improvement via filtering
As shown in Figure 5, passages are considered in the order
returned by Lucene. We scan the top response passages,
convert each token to a feature vector, and subject the to-
ken to the trained classifier. The classifier returns a score
Pr(Y = +1|x) for each token. We eliminate tokens that
have scores lower than a fixed threshold and eliminate a
passage if all its tokens are eliminated. Surviving passages
are presented in their original order. If the passage contains
the TREC-specified answer as a substring, it is an answer
passage.

0

100

200

300

0 100 200 300
IR rank

R
an

k
af

te
r f

ilt
er

in
g

TREC 2000
TREC 2002

Figure 8: Scatter plot of ranks of first correct pas-
sages before (x) and after (y) filtering. Points below
the diagonal are good news.

In Figure 8 we plot a scatter of ranks before and after
filtering. We see that filtering is very effective at improv-
ing the ranks of answer passages, often dropping them from
200–300 down to less than 50. The comparison with the IR
baseline demonstrates that our model is good at discrimi-
nating answer tokens from non-answer tokens.

Why use an IR baseline which is worse than the best QA
systems reported? Ideally, we should start with the best
system, enhance it with our new feature representation and
learning ideas, and make standard end-to-end MRR5 mea-
surements. In practice, hardly any QA system is available
for downloading, and even demos are rare. LCC9, among

9http://www.languagecomputer.com/

6

Threshold MRR MRR5 Baseline MRR MRR5 Baseline
0 0.335801 0.31 0.335801 0.224 0.203 0.224

0.01 0.392679 0.37 0.303 0.284
0.02 0.40768 0.387 0.308 0.288
0.03 0.421534 0.401 0.315 0.296
0.04 0.429354 0.41 0.3173 0.298
0.05 0.434404 0.415 0.324 0.305
0.06 0.437291 0.419 0.328 0.309
0.07 0.445003 0.427 0.332 0.314
0.08 0.451273 0.434 0.332 0.315
0.09 0.452495 0.436 0.334 0.317
0.1 0.454288 0.439 0.335801 0.331 0.313 0.224
0.2 0.484491 0.463 0.334 0.317
0.3 0.491376 0.461 0.334 0.322
0.4 0.46389 0.445 0.305 0.296
0.5 0.429192 0.421 0.2764 0.269
0.6 0.3781 0.37 0.243 0.237
0.7 0.341465 0.336 0.197 0.193
0.8 0.281271 0.275 0.161 0.158
0.9 0.233732 0.229 0.11 0.109

1 0.003618 0.003618 9.53E-04 0.0007

TREC 2000 TREC 2002

TREC 2000
0.491

0.336

0.3

0.4

0.5

0 0.5
Acceptance threshold

M
R

R

MRR
MRR5
Baseline

TREC 2002
0.334

0.224

0.2

0.25

0.3

0.35

0 0.5
Acceptance threshold

M
R

R

MRR
MRR5
Baseline

Threshold MRR MRR5 Baseline MRR MRR5 Baseline
0 0.335801 0.31 0.335801 0.224 0.203 0.224

0.01 0.392679 0.37 0.303 0.284
0.02 0.40768 0.387 0.308 0.288
0.03 0.421534 0.401 0.315 0.296
0.04 0.429354 0.41 0.3173 0.298
0.05 0.434404 0.415 0.324 0.305
0.06 0.437291 0.419 0.328 0.309
0.07 0.445003 0.427 0.332 0.314
0.08 0.451273 0.434 0.332 0.315
0.09 0.452495 0.436 0.334 0.317
0.1 0.454288 0.439 0.335801 0.331 0.313 0.224
0.2 0.484491 0.463 0.334 0.317
0.3 0.491376 0.461 0.334 0.322
0.4 0.46389 0.445 0.305 0.296
0.5 0.429192 0.421 0.2764 0.269
0.6 0.3781 0.37 0.243 0.237
0.7 0.341465 0.336 0.197 0.193
0.8 0.281271 0.275 0.161 0.158
0.9 0.233732 0.229 0.11 0.109

1 0.003618 0.003618 9.53E-04 0.0007

TREC 2000 TREC 2002

TREC 2000
0.491

0.336

0.3

0.4

0.5

0 0.5
Acceptance threshold

M
R

R

MRR
MRR5
Baseline

TREC 2002
0.334

0.224

0.2

0.25

0.3

0.35

0 0.5
Acceptance threshold

M
R

R

MRR
MRR5
Baseline

Figure 9: By using a suitable threshold on Pr(Y =
+1|x), we can prune away large number of non-
answer passages and increase MRR beyond the IR
baseline (threshold=0).

the best QA systems, is an exception, but the exact corpus
is not known and the results must be scraped from HTML.
Unless code is available, it is impossible to replicate the myr-
iad undocumented details of tokenization, compound word
detection, chunking, POS tagging, query formulation, and
so on.

For all these reasons, it is very common [10, 21] for re-
searchers to use an IR baseline, change very few things at
a time, and make careful assessments of the effect of each
enhancement. Katz and Lin [10] claim that an extensive re-
cent study [12] presents “substantial empirical evidence that
boolean-based passage retrieval techniques are sufficient to
obtain reasonable performance in question answering tasks.”

In the QA literature the mean reciprocal rank (MRR)
is commonly used as an aggregated figure of merit. Suppose
nq ≥ 1 is the earliest rank of the passage at which the an-
swer to question q ∈ Q is found. Then MRR is defined as
(1/|Q|)

P
q(1/nq). MRR is between 0 and 1, and a higher

MRR is better. TREC contestants are required to report
MRR5, where any value of nq > 5 must be regarded as ∞.

MRR and MRR5 (while perhaps reasonable as final fig-
ures of merit) offer little guidance in diagnosing the strengths
and weaknesses of the many components of QA systems.
MRR assigns the same penalty for dropping an answer from
rank 1 to rank 2 as the penalty for dropping the answer
from rank 2 to rank ∞ (i.e., not reporting it at all). MRR5
will ignore a rank reduction from 20 to 6. In relative terms,
MRR5 will be more hostile to a rank reduction from 20 to 6
than a rank reduction from 20 to 10. Both MRR numbers
conflate many critical measurements into single end-to-end
numbers.

In Figure 9 we plot MRR and MRR5 against the posterior

probability threshold at which a passage token is accepted as
(part of) an answer. As we assert larger acceptance thresh-
olds, we filter out non-answers and increase MRR beyond
the IR baseline. Beyond some acceptance threshold, we get
too demanding and start losing the true answer tokens. As
can be seen, the peak MRR is substantially larger than the
IR baseline (+46% for TREC 2000, +49% for TREC 2002).
MRR and MRR5 differ only slightly; in many cases we do
not get an answer because there is no answer in the top 300
passages, and query expansion or back-off techniques will
likely help. To give an impression of where we stand rela-
tive to highly-engineered champion systems, for TREC 2000,
where our MRR5 is 0.463, the top scores are 0.76 (LCC
again), 0.46, 0.46, and 0.31. Our “clean-room” approach to
QA is quite promising, at least considering rank order. (We
could not obtain MRR5 scores for TREC 2002.)

6.4 Ablation and drill-down studies
We also did ablation experiments with features. For TREC
2002, filtering passages with the known BBN Identifinder tag
gave us an MRR which was several percent lower. Clearly,
the exponential model is learning something extra from all
those features. As Figure 10 shows, features derived from
WordNet turn out to be more important than surface pat-
terns, but for one of our two data sets, surface patterns have
visible marginal benefits.

Features Recall Precision F1
TREC 2000

Surface 0.024 0.497 0.047
WordNet 0.427 0.634 0.510
Surface+WordNet 0.447 0.619 0.519

TREC 2002
Surface 0.035 0.492 0.066
WordNet 0.383 0.662 0.485
Surface+WordNet 0.451 0.653 0.533

Figure 10: Effect of including/excluding feature sub-
sets.

Figure 11 shows how MRR gains for specific question
types compared with the average gain (scaled to 1). The
most visible deviations from the mean are for what, which
and who. Questions with who are doing very well by com-
bining evidence from orthography and WordNet. Questions
with what and which are doing relatively poorly (even as
the absolute improvement is 30–40%).

TREC 2002
Before After Ratio RelRatio

what 0.356 0.498 1.398876 0.940862
which 0.332 0.469 1.412651 0.950126
name 0.299 0.47 1.571906 1.057239
where 0.405 0.65 1.604938 1.079456
how 0.261 0.413 1.582375 1.06428
when 0.292 0.439 1.503425 1.011179
who 0.337 0.59 1.750742 1.177521

0.341 0.507 1.486804 1

TREC 2002

0.8

0.9

1

1.1

1.2

w
ha

t

w
hi

ch

na
m

e

w
he

re

ho
w

w
he

n

w
ho

Question typeM
R

R
 g

ai
n

Figure 11: MRR gain ratio of various question types
relative to average overall MRR gain ratio.

We found two distinct factors that explain our observa-
tion. First, sequences of 1–3 tokens starting with what are

7

not enough to capture enough clues about the atype. Sec-
ond, for both what and which questions, the atype space is,
in principle, unbounded. In ongoing work, we are adding a
synthesized “test for equality” feature for what and which
questions. Summarizing, we feel that we can retain the sim-
plicity of our basic approach and perform better with some
more work on feature extraction and representation.

7. CONCLUSION
We have presented a very simple but promising exponen-
tial model coupling question and passage features for the
QA problem. Our results move us closer to shrink-wrapped,
end-user trainable QA systems. We believe that such indi-
rect supervision of language tasks will become increasingly
important, and components must plug into a global proba-
bilistic infrastructure rather than be engineered black boxes.

Our work opens up some obvious avenues for exploration.
We should explore higher order kernels with maximum mar-
gin learners. We should improve feature extraction, espe-
cially for what and which, possibly using chunking on the
question. It would be nice to integrate disambiguation nat-
urally into the framework, rather than as a preprocessing
step. Finally, it would be promising (but computationally
challenging) to extend the flat feature space in our expo-
nential model to a more elaborate graphical model involving
some salient parts of the lexical network.

8. REFERENCES
[1] E. Agichtein, S. Lawrence, and L. Gravano. Learning

search engine specific query transformations for
question answering. In WWW Conference, pages
169–178, 2001.

[2] P. Bloom. How Children Learn the Meanings of
Words. MIT Press, Cambridge, MA, 2000.

[3] E. Breck, J. Burger, D. House, M. Light, and I. Mani,
editors. Question Answering from Large Document
Collections, AAAI Fall Symposium on Question
Answering Systems, 1999.

[4] S. F. Chen and R. Rosenfeld. A gaussian prior for
smoothing maximum entropy models. Technical
Report CMU-CS-99-108, Carnegie Mellon University,
1999.

[5] C. L. A. Clarke, G. V. Cormack, and T. R. Lynam.
Exploiting redundancy in question answering. In
SIGIR, pages 358–365, 2001.

[6] S. Dumais, M. Banko, E. Brill, J. Lin, and A. Ng.
Web question answering: Is more always better? In
SIGIR, pages 291–298, 2002.

[7] O. Etzioni, M. Cafarella, D. Downey, S. Kok, A.-M.
Popescu, T. Shaked, S. Soderland, D. S. Weld, and
A. Yates. Web-scale information extraction in
KnowItAll. In WWW Conference, New York, 2004.
ACM.

[8] S. Harabagiu, D. Moldovan, M. Pasca, R. Mihalcea,
M. Surdeanu, R. Bunescu, R. Girju, V. Rus, and
P. Morarescu. FALCON: Boosting knowledge for
answer engines. In TREC 9, pages 479–488,
Gaithersburg, MD, 2000. NIST.

[9] E. Hovy, L. Gerber, U. Hermjakob, M. Junk, and
C.-Y. Lin. Question answering in webclopedia. In
TREC 9, Gaithersburg, MD, 2000. NIST.

[10] B. Katz and J. Lin. Selectively using relations to
improve precision in question answering. In EACL
Workshop on Natural Language Processing for

Question Answering, Budapest, Hungary, 2003.
[11] C. Kwok, O. Etzioni, and D. S. Weld. Scaling question

answering to the Web. In WWW, volume 10, pages
150–161, Hong Kong, may 2001. IW3C2 and ACM.
See http://www10.org/cdrom/papers/120/.

[12] M. Light, G. Mann, E. Riloff, and E. Breck. Analyses
for elucidating current question answering technology.
Journal of Natural Language Engineering,
7(4):325–342, 2001.

[13] D. Lin and P. Pantel. Discovery of inference rules for
question answering. Natural Language Engineering,
7(4):343–360, 2001.

[14] A. McCallum. Efficiently inducing features of
conditional random fields. In UAI, 2003.

[15] G. Miller, R. Beckwith, C. Fellbaum, D. Gross, and
K. Miller. Introduction to WordNet: An online lexical
database. International Journal of Lexicography, 1993.

[16] E. Nyberg, T. Mitamura, J. Callan, J. Carbonell,
R. Frederking, K. Collins-Thompson, L. Hiyakumoto,
Y. Huang, C. Huttenhower, S. Judy, J. Ko, A. Kupsc,
L. V. Lita, V. Pedro, D. Svoboda, and B. V. Durme.
The JAVELIN question-answering system at
TREC 2003: A multi-strategy approach with dynamic
planning. In TREC, volume 12, 2003.

[17] J. Prager, E. Brown, A. Coden, and D. Radev.
Question-answering by predictive annotation. In
SIGIR, pages 184–191. ACM, 2000.

[18] D. Radev, W. Fan, H. Qi, H. Wu, and A. Grewal.
Probabilistic question answering on the web. In
WWW Conference, pages 408–419, 2002.

[19] G. Ramakrishnan, S. Chakrabarti, D. A. Paranjpe,
and P. Bhattacharyya. Is question answering an
acquired skill? In WWW Conference, pages 111–120,
New York, 2004.

[20] J. Suzuki, T. Hirao, Y. Sasaki, and E. Maeda.
Hierarchical directed acyclic graph kernel: Methods
for structured natural language data. In ACL, pages
32–39, 2003.

[21] S. Tellex, B. Katz, J. Lin, A. Fernandes, and
G. Marton. Quantitative evaluation of passage
retrieval algorithms for question answering. In
Proceedings of the 26th Annual International ACM
SIGIR Conference on Research and Development in
Informaion Retrieval, pages 41–47. ACM Press, 2003.

[22] D. Yarowsky. Decision lists for lexical ambiguity
resolution: Application to accent restoration in
Spanish and French. In ACL, volume 32, pages 88–95,
Las Cruces, NM, 1994.

[23] D. Zhang and W. S. Lee. A language modeling
approach to passage question answering. In Text
REtrieval Conference (TREC), volume 12,
Gaithersburg, MD, Nov. 2003. NIST.

[24] D. Zhang and W. S. Lee. Question classification using
support vector machines. In SIGIR, Toronto, Canada,
2003. ACM.

[25] J. Zhang and Y. Yang. Robustness of regularized
linear classification methods in text categorization. In
SIGIR, pages 190–197. ACM, 2003.

[26] Z. Zheng. AnswerBus question answering system. In
Human Language Technology Conference (HLT), 2002.

8

