
Verification of Computation Orchestration Via Timed
Automata

Jin Song Dong, Yang Liu�, Jun Sun, and Xian Zhang

School of Computing,
National University of Singapore

Tel.: +65 68742834; Fax: +65 6779 4580
{dongjs, liuyang, sunj, zhangxi5}@comp.nus.edu.sg

Abstract. Recently, a promising programming model called Orc has been pro-
posed to support a structured way of orchestrating distributed web services. Orc
is intuitive because it offers concise constructors to manage concurrent commu-
nication, time-outs, priorities, failure of sites or communication and so forth. The
semantics of Orc is also precisely defined. However, there is no verification tool
available to verify critical properties against Orc models. Instead of building one
from scratch, we believe the existing mature model-checkers can be reused. In
this work, we first define a Timed Automata semantics for the Orc language,
which we prove is semantically equivalent to the original operational semantics of
Orc. Consequently, Timed Automata models are systematically constructed from
Orc models. The practical implication of the construction is that tool supports
for Timed Automata, e.g., UPPAAL, can be used to model check Orc models. An
experimental tool is implemented to automate our approach.

1 Introduction

The prevalence of the Internet and web services raises the request of service-oriented
computing [22], which can invoke remote services, process the results and communi-
cate results with other terminals. However, it is very difficult and complex to design an
orchestrating system with concurrency and synchronization using practical program-
ming languages because these traditional languages use threads for concurrency and
semaphores for synchronization. Even the higher-level libraries, like channel and work-
ing pool, have to be built up based on these primary elements.

Recently, a promising programming language Orc [17, 6] has been proposed for or-
chestrating distributed services in a structured manner. It abstracts all computations,
web services and time control mechanisms as site calls, which are implemented by
primitive remote procedures. With this abstraction, it provides a concise syntax for con-
current site call executions, threads synchronization and message passing. In addition,
slow response and service failure can be easily handled using timing site calls. Us-
ing Orc, complicated orchestrating problems can be easily understood and constructed
without worrying about the programming details.

Orc is as well precise and elegant. Both operational semantics [17] and denotational
semantics (a tree semantics [18]) are defined. However, as a new emerging language,

� Corresponding author.

Z. Liu and J. He (Eds.): ICFEM 2006, LNCS 4260, pp. 226–245, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Verification of Computation Orchestration Via Timed Automata 227

there are no formal verification mechanisms to systematically verify critical properties
over systems modelled in Orc. In this work1, we address the verification problem of
the Orc language. Our aim is to detect possible violations of critical properties, espe-
cially timing properties, of Orc programs using an existing mature model checker. Our
approach starts with defining an executable model in Timed Automata [1] for Orc ex-
pressions, which conforms with the semantics of the Orc language as defined in [6]. As
a natural consequence, existing tool support for Timed Automata, e.g., UPPAAL [4], can
be used for verification of Orc models. We use two examples, namely Auction Site and
Purchase Order Handling System, to demonstrate our approach. Moreover, we imple-
ment a tool to construct UPPAAL models automatically from Orc models. Constrained
by the Timed Automata theories, our approach focuses a subset of Orc language that is
regular, type-safe and with a finite number of threads.

Orc has a strong theoretical foundation in process algebras, particularly CCS [15],
CSP [12] and π-calculus [16]. These process algebras provide fundamental models of
concurrency in which processes communicate over channels. However, Orc is differ-
ent from the above process algebras as Orc permits integration of arbitrary components
(sites) in a computation. More importantly, Orc has timing control to handle the site
failures. Traditional process algebras have well established model checking theories
and tool supports, e.g., FDR2 [20] for CSP, and FOλ

� �

[24] for π-calculus. Because
of the absence of quantitative timing support, none of these tools can model and verify
timing aspects of complex systems. There are some process algebras with time exten-
sions, e.g., Timed CSP [21]. Unfortunately, there is no good model checker available2.
Timed Automaton [1] is a notation developed for modelling and verification of real-time
systems. It is a specialized finite state machine with clocks. Well developed automatic
verification tools are available for Timed Automata [4, 7, 23]. This gives the inspiration
of this work. Our Timed Automata semantics for Orc would allow Timed Automata
verification techniques, theories and tools, to be applied to Orc.

Our work is related to works on BPEL4WS verification [10, 19] as BPEL4WS shares
many common elements with Orc. BPEL4WS [13] (Business process orchestration lan-
guages for web services) is an XML based business process orchestration language.
Both BPEL4WS and Orc orchestrate the web services by using process composition
(sequential and parallel) and communication (synchronous and asynchronous). How-
ever they are different in several ways. BPEL4WS has a rich set of the language struc-
tures to ease the process design. Orc’s concise syntax allows the reuse of the process
definitions. BPEL4WS has variables to store the state of the communications and is
able to receive calls from client web services. Orc is more abstract and as it focuses
on process and communication. Orc has a well-defined semantics. Our work therefore
focuses on defining an equivalent semantics for Orc in Timed Automata so as to use
existing tools.

The rest of the paper is organized as follows: Section 2 briefly introduces the Orc lan-
guage and the notation of Timed Automata. Section 3 presents an executable modelling

1 Besides this work, our research team recently starts to work on a reasoning tool for Timed
CSP.

2 To our knowledge, the only tool support for TCSP is the preliminary PVS encoding of TCSP
in Brooke’s PhD thesis [5].

228 J.S. Dong et al.

in Timed Automata for each and every constructor in Orc. Section 4 demonstrates how
UPPAAL is used to verify the Orc language using two case studies. Section 5 concludes
the paper with possible future works.

2 Background

This section is devoted to a brief introduction to the relevant languages and notations,
namely the Orc computation model and Timed Automata.

2.1 Orchestration Language Orc

The syntax and informal semantics of Orc are described in this section. Formal defini-
tion of Orc semantics can be found elsewhere at [6].

In the following syntax, E is an expression name, M a site name, x a variable, c a
constant, P a list of actual parameters and Q a list of formal parameters.

D ∈ Decl ::= E(Q) =̂ f
f , g ∈ Expression ::= 0 ‖ M(P) ‖ E(P) ‖ f >x> g ‖ f | g ‖ f where x :∈ g
p ∈ Actual ::= x ‖ c ‖ M
q ∈ Formal ::= x ‖ M

Declaration E(Q) =̂ f defines expression E whose formal parameter list is Q and body is
expression f . An expression is either elementary or a composition of two expressions.
An elementary expression is either: (1) 0, a site which never responds, (2) a site call
M(P), or (3) an expression call E(P). Orc has three composition operators: (1) >x>
for sequential composition, (2) | for symmetric parallel composition, and (3) where for
asymmetric parallel composition.

Site. The basic element of Orc expression is a site call. A site is a separately defined
procedure, e.g., a web service implemented on a remote machine. A site call can give
at most one response; it is possible that a site never responds to a call, which is treated
as non-terminating computation. A site call has the same form as a function call: the
name of a site followed by an optional list of parameters. For example, calling site
Google(w) where Google is an internet search engine and w is a keyword, may return
the web sites links related to the keyword. Calling Email(a, m) sends message m to
address a, causing a permanent change in the recipient’s mailbox, and returns a signal
to denote completion of the operation. Site calls are strict, i.e., a site is called only if all
its parameters have values. Table 1 lists the fundamental sites used in Orc for effective
programming.

Sequential Composition Operator. Sequential operator >x> allows strict sequencing
of site calls. For example, Google(w) > m > Email(a, m) will first call site Google,
and name the returned value as m. After that Email(a, m) is called. If either site fails
to respond, then the evaluation returns no value. The simpler notation M � N is used
when the value returned by site M is of no significance. To send two emails in sequence
and then call Notify, we write

Email(addr1, m) � Email(addr2, m) � Notify

Verification of Computation Orchestration Via Timed Automata 229

Table 1. Fundamental Sites

0 never responds. It can be used to terminate a computation.
let(x, y, ...) returns a tuple consisting of the values of its arguments.

Clock returns the current time at the server of this site as an integer.
Atimer(t) where t is integer and t ≥ Clock, returns a signal at time t.
Rtimer(t) where t is integer and t ≥ 0, returns a signal after exactly t time units.

if (b) where b is boolean, returns a signal if b is true, and remains silent
(no response) if false.

Signal returns a signal immediately. It is the same as Rtimer(0).

Symmetric Parallel Operator. Symmetric parallel operator | gives the power of multi-
threaded computation. Evaluation of f | g, creates two threads to compute f and g
respectively. The result from f | g is the interleaving of these two streams in time order.
If both threads produce values simultaneously, they are merged arbitrarily. Operator | is
commutative and associative. An interesting expression is (Google(w) | Yahoo(w)) >
m > Email(a, m). Here, the first part (Google(w) | Yahoo(w)) may publish multiple
values, and for each value v, we call Email(a, m) where m is set to v. Therefore, the
evaluation can cause up to two emails to be sent, one with the value from Google and
the other from Yahoo.

Asymmetric Parallel Operator. The asymmetric parallel operator where is used to
prune portions of a computation selectively: Email(a, m) where m :∈ (Google(w) |
Yahoo(w)) sends at most one email, with the first value received from either Google
or Yahoo. In this expression, Email(a, m) and (Google(w) | Yahoo(w)) are evaluated
simultaneously. Email(a, m) is blocked because m does not have a value. Evaluation of
(Google(w) | Yahoo(w)) may return up to two values; the first value is assigned to m
and further evaluation of this expression is then terminated. After that, Email(a, m) is
unblocked and executed.

Expression Definition. An expression is defined like a procedure, with a name and
possible parameters, though it may return a stream of values. As an example, consider
the following restaurant reservation process, where R1 and R2 are two restaurants, and
t is the meal time. The user is notified for the first acknowledgement received from the
two restaurants, if any.

Reservation(t) =̂ Notify(x) where x :∈ R1(t) | R2(t)

Recursive definition is also supported in Orc. The following expression defines a Clock
using Rtimer(t), which emits a signal every time unit, starting immediately.

Clock =̂ Signal | Rtimer(1) � Clock

Dining Philosophers. An example of using Orc is the classical dining philosophers
problem, originally presented in [17]. There are N Philosophers, sitting around a table.
Every pair of neighbors shares a fork. The fork to the left of Philosopher i is Forki and

230 J.S. Dong et al.

to his right is Forki′(i′ = (i + 1) mod N). Philosopher i can eat only if it holds both left
and right forks. A philosopher’s life cycle consists of the following activities: acquire
the two adjacent forks, eat, and release the forks. Because of the seating arrangement,
neighboring philosophers can not eat simultaneously.

Each Forki is modelled as a FIFO buffered channel which is either empty (if some
philosopher holds the corresponding fork) or has one signal (if no philosopher holds the
fork). We write Forki.put to send a signal along the channel and Forki.get to get a signal
from the channel. Initially, each channel holds a signal. In this example, Pi (0 ≤ i < N)
depicts philosopher i, where the right neighbor of Pi is Pi′ (i′ = (i +1) mod N), and Eat
returns a signal on completion of eating.

Pi =̂ (let(x, y) � Eat � Forki.put � Forki′ .put
where x :∈ Forki.get, y :∈ Forki′ .get) � Pi

The dining philosophers problem can be represented as:

DP =̂ P0 | P1 | · · · | PN−1

This definition of dining philosophers can lead to deadlock. To avoid deadlock, philoso-
phers should pick up their forks in a specific order. For instance, all except P0 pick up
their left and then their right forks, and P0 picks up its right and then its left fork.

P′
0 =̂ Fork1.get � Fork0.get � Eat � Fork1.put � Fork0.put � P′

0
P′

i(1 ≤ i < N) =̂ Forki.get � Forki′ .get � Eat � Forki.put � Forki′ .put � P′
i

DP′ =̂ P′
0 | P′

1 | · · · | P′
N−1

2.2 Timed Automata and UPPAAL

Timed Automata are finite state machines equipped with clocks. It is a formal notation
to model behaviors of real-time systems. Its definition provides a general way to anno-
tate state transition graphs with timing constraints using finitely many real-valued clock
variables. Given a set of clock C, the set of clock constraints Φ(C) is defined as:

φ := x ≤ c | c ≤ x | x < c | c < x | φ1 ∧ φ2

where x is a clock variable and c is a real number.

Definition 1 (Timed Automata). A timed automaton A is a 6-tuple 〈S, s0, Σ, C, I, T〉,
where S is a finite set of states, s0 is the initial state, Σ is the alphabet, C is a finite
set of clocks, I : S → Φ(C) is a mapping from a state to a state invariant, and T ⊆
S × Σ × 2C × Φ(C) × S is the transition relation. �

In Timed Automata, a state is associated with an invariant, while a transition is labelled
with a synchronization action, a guard (a constraint on clocks) and a clock reset (a set
of clocks to be reset). Intuitively, a timed automaton starts execution with all clocks
initialized to zero. The automaton can stay at a node, as long as the invariant of the
node is satisfied, with all clocks increasing at the same rate. A transition can be taken
if the values of the clocks fulfill the guard. By taking the transition, all clocks in the

Verification of Computation Orchestration Via Timed Automata 231

clock reset are set to zero, while the clocks not in the clock reset keep their values. For
example, Figure 1 illustrates some simple timed automata. Graphically, a double-lined
circle indicates an initial state. Typically, a Timed Automata modelling of complex
systems would consist of a network of timed automata3.

Definition 2 (Timed Automata Network). A network of timed automata is the parallel
composition of a collection of A1, . . . , An, denoted as A1 ‖ · · · ‖ An. A transition of
the network of timed automata is either a local step of one of the automata where
(s1, e, c, i, s2) ∈ Ai ∧ e �∈ (

⋃

k:1..n∧k �=i Σk) or a pairwise synchronization between two
automata where (s1, e!, c, i, s2) ∈ Ai and (s′1, e?, c′, i′, s′2) ∈ Aj. �

UPPAAL [4] is our choice of model-checker for verifying a network of timed automata
because of its efficiency (both for model-checking and simulation) as well as its wide
recognition. UPPAAL is a tool for modelling, simulation and verification of real-time
systems modelled as timed automata. It consists of three main parts, a system editor
which provides a graphical interface to design timed automata, a simulator and a model
checker. The simulator is a validation tool which enables examination of possible dy-
namic executions of a system and thus provides an inexpensive mean of fault detection
prior to verification by the model checker which covers the exhaustive dynamic behav-
ior of the system. The model checker checks invariant and bounded liveness properties
by exploring the symbolic state space of a system. The properties are expressed as a rich
subset of TCTL [11]. In a nutshell, UPPAAL is a model checker for systems that can be
modelled as a collection of non-deterministic processes with finite control structure and
real valued clocks, communicating through channels or shared variables. Typical ap-
plications include real-time controllers and communication protocols, e.g., those where
timing aspects are critical. In this work, we extend its application to orchestration of
web services.

3 Timed Automata Semantics for Orc

This section is devoted to a definition of Timed Automata semantics for Orc models,
which allows us to systematically construct the Timed Automata model from an Orc
model. The practical implication is that we may then reuse existing tools and theo-
ries for Timed Automata to achieve various purposes, for instance, synthesis of imple-
mentation [3], simulation [2], theorem proving [14] or more importantly formal ver-
ification [4]. In the following, the Timed Automata semantics for Orc expressions is
formally defined. The dining philosophers example is used as a running example.

Definition 3 (Zero Site). A zero site 0 is modelled as an automaton A0 where S =
{si, s1} and Σ = {call0} and C = ∅ and I = ∅ and T = {si, call0, ∅, true, s1}. �

A zero site is a site that never responds. Thus there is no publish event, as illustrated in
Figure 1(a). The formal definition of the automaton for the fundamental site Rtimer(t)
is presented below, which plays the central role in the timing aspect of the orchestration.

3 We may treat an automata network as one automata by constructing the product. However,
leaving it as a network saves us from the state space explosion problem as well as allowing us
to benefit from optimization built in the timed automata tools.

232 J.S. Dong et al.

Si S1

call_0

(a): Zero Site

Si S1

x<=t

call_Rtimer(t)

x:=0

x==t

get_Rtimer(t)

(b): Rtimer(t)

Si S1

call_if

[b]

get_if

(c): if

Si S1

x=0

call_signal

x:=0

get_signal

(d): Signal

Fig. 1. Fundamental Sites

Definition 4 (Rtimer(t)). A Rtimer(t) site is modelled as an automaton ARtimer(t) where
S = {si, s1} and Σ = {callRtimer(t), getRtimer(t)} and C = {x} and I = ∅ and T =
{(si, callRtimer(t), {x}, true, s1), (s1, getRtimer(t), ∅, x = t, si)}. �

The Timed Automaton for Rtimer(t) is illustrated in Figure 1(b). Once the site is called
via the synchronization on the callRtimer(t) event, the local clock x is reset to 0. After
exactly t time units, the calling site is notified via the getRtimer(t) event. Notice that we
adopt the synchronous semantics of Orc in this definition. In the asynchronous seman-
tics, arbitrary delays in processing events are allowed, including the callRtimer(t) event.
Consequently, all we can assert about the call to Rtimer(t) is that client will receive the
signal sometime after t unit delay, which is too weak for program time-outs or timed-
interrupts. We believe that the synchronous semantics is intuitive and powerful. How-
ever, the asynchronous semantics can be easily captured by changing the Φ(C) on the
transition from s1 to si as x ≥ t and removing the state invariant on state s1.

Similarly, fundamental sites callif and callSignal are defined as timed automata as
well, which are illustrated in Figure 1 (c) and (d) respectively. callAtimer(t) is ignored
since Atimer(t) can represented as Rtimer(t − c), where c is the current clock value.
calllet is a simple Timed Automaton similar to callif , but the second transition is the
publish event without condition b.

The fundamental sites presented so far are defined as the complete expression calls
(see definition 9). If we only consider timed automata for the Orc contracts of the fun-
damental sites, then the call events should be removed, e.g., the zero site 0 contains just
a single state without any transitions.

Definition 5 (Site Call). A site call M(P) is modelled as an automaton AM(P) where
S = {si, s1, s2, s3}, Σ = {callM(P), getM(P), publishM(P)}, C = ∅, I = ∅, and T =
{(si, callM(P), ∅, true, s1), (s1, getM(P), ∅, true, s2), (s2, publishM(P), ∅, true, s3)}. �

Verification of Computation Orchestration Via Timed Automata 233

Si S1 S2 S3

call_M(P) get_M(P) publish_M(P)

Fig. 2. TA for Site Call

Si S2S1

call_Rtimer(t) get_Rtimer(t)

Fig. 3. TA for Rtimer(t) Call

Free Occupied

fork_i_get

fork_i_put

Fig. 4. TA for Forki

A site call is modelled as a timed automaton allowing a call event which invokes
the service and a get event which gets the response from the called site and a publish
event which publishes the response, illustrated in Figure 2. This conforms the opera-
tional semantics of site call, i.e., the three steps of invocation, response, publication as
in [6].

A special kind of site calls is the calls to Rtimer(t) and Signal because of the tim-
ing constraints. The invocation of Rtimer(t) site is shown in Figure 3 (Signal calls are
ignored for the similarity). The initial state is set as committed state4, which will fire
the outgoing event callRtimer(t) immediately with the top priority among all transitions.
The finishing state is set as an urgent state5, which stops the timer in the finishing state.
By using the committed and urgent states, we can get exactly t time units between the
initial state and finishing state.

The behavior of the external called site must be specified as a separate timed au-
tomaton for the sake of verification. For example, the behaviors of the forks in the
dining philosophers example are modelled as in Figure 4, where the user may repeat-
edly get the fork and then put it back. Consequently, a site call Forki.put is interpreted
as a synchronization on the callForki.out (simplified as Forki.put in this example). For an
abstract site call like Eat, instead of building a trivial automaton which synchronizes
on the call event and then returns a signal, it is treated as an abstract local event for the
sake of efficient verification6.

Definition 6 (Sequential Composition). Let the automata network of g be Ag =̂ A1 ‖
. . . ‖ An. A sequential composition f >x> g is modelled as a timed automata network
Af>x>g =̂ Af ‖ A′

g where, A′
g =̂ (A′

1 ‖ . . . ‖ A′
n)k and for all i : 1 . . n, A′

i =̂
〈S, si, Σ, C, I, T〉 where S = Ai.S ∪ {si} and Σ = Ai.Σ ∪ {publishx} and C = Ai.C
and I = Ai.I and T = Ai.T ∪ {(si, publishx, ∅, true, Ai.si)}. �

Notice that a channel7 named publishx is defined to synchronize the publishing of a
value of x and the receiving of the value.

A sequential composition is modelled as, in general, a network of timed automata.
The network of f is untouched, whereas the automata in the network of g have to syn-
chronize on the event publishx before making a step. If there is no value passing between

4 In UPPAAL, committed states freeze time. If any process is in a committed location, the next
transition must involve an edge from one of the committed locations.

5 In UPPAAL, urgent states are semantically equivalent to adding an extra clock x, that is reset on
all incoming edges, and having an invariant x ≤ 0 on the location. Hence, time is not allowed
to pass when the system is in an urgent location.

6 In UPPAAL, it corresponds to a transition labelled with no channel event.
7 In UPPAAL, a broadcast channel is used here in order to do the synchronization for all paral-

leled automata in the g.

234 J.S. Dong et al.

publish_fork_i’_put fork_i_get publish_fork_i_get

(a) TA for Forki.get

publish_fork_i’_get fork_i_put publish_fork_i_put

(c) TA for Forki.put

publish_fork_i_get fork_i’_get publish_fork_i’_get

(b) TA for Forki′ .get

publish_fork_i_put fork_i’_put publish_fork_i’_put

(d) TA for Forki′ .put

Fig. 5. Network of Automata for P′
i(1 ≤ i ≤ N)

the Orc expressions, the first publishing signal, i.e., event publishx, is used to precede
the automata for expression g.

To abuse the notations, we use Ak to denote a network containing k copies of the
same automaton A. The network of f is parallel-composed with multiple copies of net-
work of g. Every time a new value of x is published, a new instance of the g component
is created and starts execution. In general, there would be infinite number of overlapping
activations of the g component. However, if we assume the g part executes reasonably
fast (and terminating), we need only a finite number of copies of g to fork and reuse
them once they are terminated. For the sake of verification of real world applications,
we always assume that there is an upper bound on the number of overlapping activa-
tion of the g part. For example, Figure 5 presents the automata interpretation of the
P′

i(1 ≤ i ≤ N) in the dining philosophers example, where each site call is model as a
TA and local event eat has been removed for simplicity. In general, multiple copies of
each of the automata is required. However, only one copy for each automaton is shown
as that is all that is needed in this case.

Definition 7 (Symmetric Parallel Composition). A symmetric parallel composition
f | g is modelled as a network of two timed automata (networks) Af ‖ Ag. �

A symmetric parallel composition is modelled as two automata (networks) running in
parallel. There is no communication between the f and g. f and g are probably remote
site call to services which run independently on remote machines. Thus, two automata
(networks) sharing no common event are used to capture the interleaving behaviors.
For example, the automata network for DP′ in the dining philosophers example is the
network containing the networks in Figure 5 (one for each i).

The last compositional constructor of Orc is the asymmetric parallel composition,
denoted f where x :∈ g. According to the semantics in [6], the g expression terminates
as soon as one value of x is published. This kind of dynamic termination of timed
automata is achieved through the use of a shared global flag.

Definition 8 (Asymmetric Parallel Composition). Let flag be a global boolean vari-
able. It is initially true. Let the network of the expression g be Ag =̂ A1 ‖ · · · ‖ An.
An asymmetric parallel composition f where x :∈ g is modelled as a network of timed
automata Af where x:∈g =̂ Af ‖ A′

g where, A′
g = A′

1 ‖ · · · ‖ A′
n and for all i : 1 . . n,

A′
i =̂ 〈Ai.S, Ai.si, Ai.Σ, Ai.C, Ai.I, T〉 where

Verification of Computation Orchestration Via Timed Automata 235

T = {(s1, publishx, cl′, gc, s2) | (s1, publishx, cl, gc, s2) ∈ Ai.T}
∪{(s1, e, cl, gc ∧ flag, s2) | e �= publishx ∧ (s1, e, cl, gc, s2) ∈ Ai.T}

wherecl’setsflagtofalseandresetstheclocksinclusingassignmentinUPPAAL. �

As soon as a publishing of x is achieved, the global flag is set to be false (this is atomic
since they are on the same transition). Consequently all transitions in the network of the
expression g are blocked. Therefore, the network of g terminates. Notice that the flag
is carefully implemented so that it is local to the automata in A′

g (by defining a unique
global variable for each activation of the network). The execution of Af is not blocked
until a synchronization on event publishx is required. Therefore, it may make steps in
parallel or even before g does. We remark that while our definitions of timed automata
interpretation for Orc expression are generic, there are plenty of simplifications and
optimizations to be performed on the constructed timed automata. For example, the Pi

expression is modelled (and simplified) as the automaton in Figure 6.

fork_i_get fork_i’_get

fork_i’_get fork_i_get

eat_i fork_i_put fork_i’_put

Fig. 6. Timed Automata for Pi

Definition 9 (Expression Call). An expression call is E(P) with E(P) =̂ f is modelled
as the network of timed automata for f prefixed by the callE(P) event, i.e., AE(P) =̂
〈S, si, Σ, C, I, T〉, where S = {si ∪ Af .S} and Σ = {callE(P) ∪ Af .Σ} and C = Af .C
and I = Af .I and T = {(si, callE(P), ∅, true, Af .si) ∪ Af .T}. . �

For each parameter x of the expression call, a channel publishx is defined to synchronize
with the publishing of a value of the parameter x. In case there are multiple parameters,
the expression call is executed only after all the parameters get their values (via syn-
chronization on the corresponding channels). Publishing of the parameters may occur
in any order.

For simple recursion where there is only one automaton instead of an automata net-
work when the recursion call is reached (with our simplification and optimization done),
we connect the last state to the initial state to make a loop, e.g., the automaton in Figure 6.
In general, recursion is resolved by replacing it with the least fixed point. However, Orc
does allow expressions like N = f | N where there could be infinite number of copies
of f . These kinds of expressions are disallowed for the sake of model checking.

The soundness of the Timed Automata modelling is proved by showing that there is a
weak bi-simulation relation between the timed automata and the operational semantics
of Orc. The following theorem is proved by a structural induction over our definitions
and the operational semantics of Orc defined in [17] (see Appendix for the proof details).

Theorem 1. For any Orc expression8 f , Af ≈ Of , where Of is the state transition
system constructed from the operational semantics of Orc in [17]. �

8 We focus on a subset of Orc langauge that is regular, type-safe and with a finite number of
threads (see Section 4 for details).

236 J.S. Dong et al.

Si S1 S2 S3

call_M(P)

q1:=p1;
q2:=p2;
...
qn:=pn

get_M(P) publish_M(P)

Fig. 7. TA for Site Call with Value Passing

Si S1 S2

call_M(P) publish_M(P)

M_Return:=v

Fig. 8. TA for Site with Value Passing

Value Passing Handling
Timed Automata do not have notions for variables and assignments. Fortunately UP-
PAAL as an extension of Timed Automata introduces variables (both local and global)
and variable assignments (in events). Hence parameter passing can be realized through
some globally shared variables since no data can be attached along a channel commu-
nication. It is obvious that these shared variables must have unique names. Because the
names of site calls are unique, we prefix all the formal parameters’ names with their site
call names. The return values of each site call are named as site call name + “Return”.

To invoke a site call, the formal parameters are assigned to the value of actual pa-
rameters in the call event in the Site Call model. The complete model of callM(P) is
shown in Figure 7. The return value of a site is assigned in the publish event in the Site
model (Figure 8). The sequential composition f >x> g has an additional assignment
x := fReturn for variable x in the publish event of f . Similarly for asymmetric parallel
composition f where x :∈ g , we add the assignment x := gReturn in the publish event
of g. The expression call E(P) =̂ f has also an assignment in the publish event for its
return value.

4 Verification Using UPPAAL

This section is devoted to a discuss on how to use tool support for Timed Automata, in
particular UPPAAL, to formally analyze the constructed Timed Automata. In general,
our modelling of Orc may end up with a network containing an infinite number of
automata (see Definitions 6 and 9). One piece of evidence of an possibly infinite number
of automata is that Orc in general allows an irregular language (as in automata theory).
Our target is therefore a subset of Orc langauge that is regular, type-safe and only allows
a finite number of threads. Some Orc examples that we regard as problematic are as the
following:

P =̂ b | a � P � c, where a, b, c are sites or even expressions
M =̂ f (x) where let(0) | Signal
N =̂ x where x :∈ N

P in general allows the language of the form anbcn which is a typical example of an
irregular language. It is a known fact that such languages can not be expressed using
finite automata. Therefore, they are beyond automata-based model checking. M is not
type safe because the type of x can be either integer 0 or a signal. In general, x could be
any type. This as well presents a problem to current model-checking techniques. Lastly,

Verification of Computation Orchestration Via Timed Automata 237

N allows an infinitely number of threads of f running independently, which would result
in an infinite internal loop without returning a value, i.e., a divergence in CSP’s terms.

4.1 Automated Construction

We developed an experimental tool to automatically construct UPPAAL models from
Orc models using XML and Java technology. We start with parsing the Orc program and
building an Abstract Syntax Tree. Afterwards, each Orc language construct is converted
to a timed automaton or a network of time automata according to our definitions in
Section 3. The output of the program is an XML representation of the UPPAAL model,
which is ready to be employed and verified. The experimental tool and Orc examples
appeared in this paper can be found on the web [9].

We briefly mention some of the implementation issues here. Because UPPAAL does
not allow data to pass through channels, global variables are carefully defined to pass
along the values, i.e., a publish event is always attached with an assignment to the
respective global variable. An aggressive simplification procedure is applied whenever
possible to simplify and optimize the constructed Timed Automata. For instance, when
we apply Definition 6, if we are certain there is only one copy of g required, we may
do the product of the two automata and remove the publish event given that it does not
affect the rest of the model. We also try to minimize the number of clock variables by
reusing the same ones as so to speed up the verification. However, the simplification
and optimization remains as a challenging task and we may improve it by considering
Orc laws.

Once the UPPAAL model is built, we may import it using UPPAAL and do veri-
fication. For example, it can be easily verified that the first Orc model of the dining
philosophers can lead to deadlock. In our experiment, we created 5 philosophers and 5
fork instances. Afterwards we checked if the model is deadlock free using the follow-
ing property: A[] not deadlock. UPPAAL reports that the property does not hold for the
system. A counterexample where all philosophers pick up their left fork can be found
via random simulation. In the case that the first philosopher always picks up the right
fork, we verify that the Orc model is deadlock-free and it satisfies properties like that
no more than half of the philosophers can be eating at the same time etc.

4.2 Case Study: Orchestrating an Auction

In this subsection, we demonstrate the construction of the UPPAAL model from Orc
as well as property checking through a typical web-based application, i.e., running an
auction for an item. This example was originally presented in [17].

First, the item is advertised by calling site Adv(v0), which posts its description and
a minimum bid price at a web site. Bidders put their bids on specific channels. In UP-
PAAL, a template called Bidder is built, which outputs a bid on channel bid. In general,
there are multiple Bidders. A Multiplexor is used to merge all the bids into a single
channel, i.e., bid. The Timed Automata for the sites (like, Adv(v0), PostNext(m) and
PostFinal(n)) used in this example are not shown, because they have the same structure
as the TA in Figure 8.

238 J.S. Dong et al.

call_bid_i_get!
x>u

x<=u

call_next_bid?

publish_next_bid!

next_bid_return:=x

call_next_bid? x:=bid_i_get_return

bid_i_get_publish?

(a): Timed Automata for nextBid(u)

call_bids? call_next_bid!

u:=v

publish_next_bid?

y:=next_bid_ret

call_bids?
publish_y!

(b):Timed Automata for Bids(v) part 1

publish_y?

publish_bids!

bid_ret:=y

(c):Timed Automata for Bids(v) part 2

publish_y?

call_bids!

v:=y

(d):Timed Automata for Bids(v) part 3

Fig. 9. Basic Sites in Auction Example

Multiplexori =̂ bidi.get >y> bid.put(y) � Multiplexori

Multiplexor =̂ Multiplexor1 | Multiplexor2 | . . . | Multiplexori

Three variations on the auction strategy, Auctioni(v) (1 ≤ i ≤ 3) are considered. We
start the auction by executing z :∈ Auctioni(V) where V is the minimum acceptable bid.

Non-terminating Auction . The first solution continually takes the next bid from chan-
nel bid which exceeds the current (highest) bid and posts it at a web site by calling
PostNext.

nextBid(u) =̂ bid.get >x> {(if (x > u) � let(x)) | (if (x ≤ u) � nextBid(u))}
Bids(v) =̂ nextBid(v) >y> (let(y) | Bids(y))

Orc expression nextBid(v) returns the next bid from c exceeding v. The site call if (x >
v) returns a signal if x > v and remains silent otherwise. Bids(v) returns a stream of
bids from bid where the first bid exceeds v and successive bids are strictly increasing.
The following strategy starts the auction by advertising the item, and posts successively
higher bids at a web site. But the expression evaluation never terminates. The Timed
Automata of nextBid(u) and Bids(v) are shown in Figure 9. The Timed Automata of
nextBid(u) is simplified by combining the two if-condition automata with the main
nextBid(u) TA, because the two conditions (x > u) and (x ≤ u) are exclusive.

Auction1(p) =̂ Adv(p) � Bids(p) >z> PostNext(z) � 0

Following the Timed Automata semantics defined in Section 3, Auction1(v) is inter-
preted as the automata in Figures 10 and 11.

By checking with UPPAAL, we can see that this version of the auction system is
deadlock free, which means it never terminates. In this example, we assume that ex-
pression let(y) in Bids(v) is carried out fast enough so that there will not be an infinite
number of threads of let(y). In addition to deadlock-freeness, we may verify properties
like a bid is never lower than the minimum (see examples in Table 2).

Verification of Computation Orchestration Via Timed Automata 239

call_adv!

v0:=p

publish_adv? call_bid!

v:=p

publish_bids?

z:=bids_return

Fig. 10. TA for Auction1 part 1

publish_bids? call_post!

m:=z

publish_post? call_0!

Fig. 11. TA for Auction1 part 2

Table 2. Experiment Results

Orc Property Result Time(s) Remark
Auction1 A[] not deadlock true 20 Non-terminating.
Auction1 A[] not (PostNext.posted<250) true 3 No bid price lower 250.
Auction1 A[] not(old==0) imply new>old true 90 Price posted on the PostNext

site keeps increasing.
Auction1 E<> PostNext.posted == 500 true 1 Possible to post 500.
Auction2 A[] not deadlock false 1 Terminating.
Auction2 A[] PostFinal.postFinal imply true 150 Auction terminates after h

Auc.c>=h time units.
Auction2 A[] PostFinal.final == 1000 imply true 10 The final bid comes from

Bidder10.bid == true the respective bidder.
Auction3 A[] not deadlock false 1 Terminating.
Auction3 E[] not(PostNext.p1<h and true 60 It is not possible to post a

PostNext.p1>0) highest bid before h time units.

In order to save space, the automata in the next two examples have been simplified
whenever possible. Committed states are used to prevent undesired interleaving behav-
iors. For example, it is used to publish multiple signals at once for expressions like
let(x, y, z).

Terminating Auction. The previous program is modified so that the auction terminates
if no higher bid arrives for h time units (say, h is an hour). The winning bid is then posted
by calling PostFinal, and the goal variable is assigned the value of the winning bid. The
expression Tbids(v), where v is a bid, returns a stream of pairs (x, flag), where x is a bid
value, x ≥ v, and flag is boolean. If flag is true, then x exceeds its previous bid, and if
false then x equals its previous bid, i.e., no higher bid has been received in an hour.

Tbids(v) =̂ let(x, flag) | if (flag) � Tbids(x)
where (x, flag) :∈ nextBid(v) >y> let(y, true) | Rtimer(h) � let(v, false)

Auction2(v) =̂ Adv(v) � Tbids(v) >(x, flag)>
{if (flag) � PostNext(x) � 0 | if (flag) � PostFinal(x) � let(x)}

In this auction, a new site call named PostFinal is added which is quite similar to
PostNext. The difference between a non-terminating auction and a terminating auc-
tion is that a time-out (h time unit) process is added. As time-out (or timed-interrupt)
is a typical timing behavior, we do define some templates to treat them specially and
effectively. A list of typical composable timing patterns formally defined in terms of
Timed Automata is available elsewhere in [8]. For example in Figure 12, we can use the

240 J.S. Dong et al.

Bid get

let

bid_put? x<=y

x>y
y:=x,c:=0,new:=x

y:=v,c:=0

call_adv!

call_postnext!

publish_adv?

c>=h

c>=h

c>=h

call_postfinal!

Fig. 12. Auction2: Terminating Auction

Bid get

let

Less

bid_put?
x<=y

x>y
y:=x

y:=i,c:=0, v:=i
call_adv!

publish_adv?

c>=h

c>=h

c>=h

not(v==y)
call_postnext!

v==y

call_postfinal!

c:=0

Fig. 13. Auction3: Batch Processing

typical way of dealing with time-out in Timed Automata by adding a clock to record the
time, as well as some clock constraints to guard the transitions. The constructed Timed
Automata for Auction2 is shown in Figure 12, in which c denotes the clock and h is a
constant.

Batch Processing. The previous solution posts every higher bid as it appears in channel
bid. It is reasonable to post higher bids only once each hour. Thus, the last solution
collects the best bid over an hour and posts it. If this bid does not exceed the previous
posting, i.e., no better bid has arrived in an hour, the auction is closed, the winning bid
is posted and its value is returned as the result. In the interest of space, we skip the Orc
model and the construction. The detail of the auction is available elsewhere in [17]. The
constructed Timed Automaton is presented in Figure 13.

In the verification experiment of auction example using UPPAAL, we created 10 Bid-
ders whose bid prices are from 200 to 1100, while the minimum bid price is 250. UP-
PAAL version 3.4 is installed on a machine running Windows XP with 3GHz Pentium 4
processor and 512MB memory. Some properties concerning all three auction strategies
together the verification time are illustrated in Table 2.

4.3 Case Study: Purchase Order Handling

In this subsection, we present an example for handling purchase order, which was orig-
inally presented by Mistra and Cook [13].

GetInv(custInfo, PO) =̂ ProduceInv(price, prodSchd) > inv > let(inv)
where (price, prodSchd) :∈

(let(x, y)
where x :∈ InitPriceCal(PO) � GetPrice(shpInfo) > x > let(x)

y :∈ (InitProdSchd(PO) � GetProdSchd(shpSchd) > y > let(y)
where shpSchd :∈ GetShpSchd(shpInfo)))

where shpInfo :∈ GetShpInfo(custInfo))
POHandling(custInfo, PO) =̂ MailInv(inv, custInfo)

where inv :∈ GetInv(custInfo, PO) | Rtimer(t) � let(error)

On receiving the purchase order from a customer, the process initiates three tasks
concurrently: calculating the final price for the order, selecting a shipper, and schedul-
ing the production and shipment for the order. While some of the processing can pro-
ceed concurrently, there are control and data dependencies between the three tasks. In

Verification of Computation Orchestration Via Timed Automata 241

particular, the shipping price is required to finalize the price calculation, and the ship-
ping date is required for the complete fulfillment schedule. When the three tasks are
completed, invoice processing can proceed and the invoice is mailed to the customer.
If the invoice can not be generated within t time units, an error message is sent to the
customer.

The purpose of this example is to show that the complex Orc expression can be
represented by a clear UPPAAL model and the verification of time and data dependency.
The UPPAAL model and property checking of this example are skipped (refer to [9]).

5 Conclusion and Future Works

The contribution of our work is threefold. Firstly, we defined an automata-based seman-
tics for the Orc language, which allows a systematic construction of Timed Automata
models from Orc models. Secondly, we explored ways of use UPPAAL to verify critical
properties over Orc models. Lastly, we developed a tool to automate our approach.

There are some possible future works. One is better tool support of our approach,
e.g., a graphical user interface for editing Orc models, hiding UPPAAL programs and
visualizing counter examples if there are any, a better simplification and optimization
strategy, etc. Another possible future work concerns the inadequate data passing capa-
bility of Orc, i.e., no complex data structure is supported. Therefore, we might provide
a mechanism for introducing and manipulating data structures like arrays and tuples in
our tool. The long term objective of this work is to investigate the relationship between
process algebras and automata theories, e.g., provide theories and tools for applying
automata-based model-checking to languages and notations based on process algebra.

Acknowledgements

The authors would like to thank Prof. Jayadev Misra for insightful discussion on the
Orc language and pointing out relevant papers.

References

1. R. Alur and D. L. Dill. A Theory of Timed Automata. Theor. Comput. Sci., 126(2):183–235,
1994.

2. T. Amnell, A. David, and Y. Wang. A Real-Time Animator for Hybrid Systems. In J. W.
Davidson and S. L. Min, editors, LCTES, volume 1985 of Lecture Notes in Computer Science,
pages 134–145. Springer, 2000.

3. T. Amnell, E. Fersman, P. Pettersson, H. Sun, and Y. Wang. Code Synthesis for Timed
Automata. Nord. J. Comput., 9(4):269–300, 2002.

4. J. Bengtsson, K. G. Larsen, F. Larsson, P. Pettersson, and Y. Wang. UPPAAL - a Tool
Suite for Automatic Verification of Real-Time Systems. In R. Alur, T. A. Henzinger, and
E. D. Sontag, editors, Hybrid Systems, volume 1066 of Lecture Notes in Computer Science.
Springer, 1995.

5. P. Brooke. A Timed Semantics for a Hierarchical Desgn Notation. PhD thesis, University of
York, 1999.

242 J.S. Dong et al.

6. W. R. Cook and J. Misra. A Structured Orchestration Language. 2005. Available for down-
load at http://www.cs.utexas.edu/users/wcook/projects/orc.

7. C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool KRONOS. In Hybrid System III:
Verification and Control, pages 208–219, 1996.

8. J. S. Dong, P. Hao, S. Qin, J. Sun, and Y. Wang. Timed Patterns: TCOZ to Timed Automata.
In J. Davies, W. Schulte, and M. Barnett, editors, ICFEM’04, volume 3308 of Lecture Notes
in Computer Science, pages 483–498. Springer, 2004.

9. J. S. Dong, Y. Liu, J. Sun, and X. Zhang. http://nt-appn.comp.nus.edu.sg/fm/orc, 2006.
10. H. Foster, S. Uchitel, J. Magee, and J. Kramer. Model-based Verification of Web Service

Compositions. In Automated Software Engineering 2003, 2003.
11. T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic Model Checking for Real-

Time Systems. In 7th. Symposium of Logics in Computer Science, pages 394–406, 1992.
12. C. A. R. Hoare. Communicating Sequential Processes. International Series in Computer

Science. Prentice-Hall, 1985.
13. IBM, BEA Systems, Microsoft, SAP AG, and Siebel Systems. BPEL4WS, Business Process

Execution Language for Web Service version 1.1, 2003. http://www.siebel.com/bpel.
14. H. M. Lin and Y. Wang. A Proof System for Timed Automata. In J. Tiuryn, editor, FoSSaCS,

volume 1784 of Lecture Notes in Computer Science, pages 208–222, 2000.
15. R. Milner. Communication and Concurrency. Prentice-Hall International, 1989.
16. R. Milner. Communicating and Mobile Systems: the π Calculus. Cambridge University

Press, 1999.
17. J. Misra and W. Cook. Computation Orchestration: A Basis for Wide-Area Computing. To

appear in the Journal of Software & Systems Modeling, 2006.
18. J. Misra, T. Hoare, and G. Menzel. A Tree Semantics of an Orchestration Language. In M.

Broy (ed.) Proc. of the NATO Advanced Study Institute, Engineering Theories of Software
Intensive Systems, NATO ASI Series, Marktoberdorf, Germany, August 2004.

19. G. G. Pu, X. P. Zhao, S. L. Wang, and Z. Y. Qiu. Towards the semantics and verification of
BPEL4WS. In International Workshop on Web Languages and Formal Methods, UK, 2005.

20. A.W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall, 1997.
21. S. Schneider and J. Davies. A Brief History of Timed CSP. Theoretical Computer Science,

138, 1995.
22. M. P. Singh and M. N. Huhns. Service-Oriented Computing. John Wiley & Sons, Ltd, 2005.
23. M. Sorea. TEMPO: A Model-checker for Event-recording Automata. In Proceedings of

Workshop on Real-time Tools, August 2001.
24. A. Tiu. Model Checking for Pi-calculus Using Proof Search. In CONCUR’05, San Francisco,

August 2005.

Appendix. Correctness Proof

This section presents the proof of the weak bi-simulation relation between the timed
automata and the operational semantics of Orc. In this proof, the Orc expressions refer
to a subset of Orc langauge that is regular, type-safe and with a finite number of threads
(see Section 4 for details).

Definition 10. Given an Orc expression, the transition system associated with the ex-
pression is (O, o0, Σ, −→1) where O is the set of possible Orc configurations, o0 is
the initial given Orc expression, Σ is the alphabet which includes all events in the Orc
semantics [17], and −→2 is the transition relation by the transition rules [17].

Verification of Computation Orchestration Via Timed Automata 243

Definition 11. Given a Timed Automaton, the transition system associated with the au-
tomaton is (S, s0, Σ ∪ T, −→2) where S =̂ S × V is the set of all possible states.
Each state is composed of a control state and a valuation of the clocks. The initial state
s0 = 〈i, v0〉 comprises the initial state i and a zero valuation v0. −→2⊆ S×(Στ ∪T)×S
comprises all possible transitions of the following two kinds:

– a time passing move 〈s, v〉 δ−→2 〈s, v + δ〉.
– an action execution 〈s, v〉 a−→2 〈s′, v′〉 iff s

a; X; ϕ−→ s′. That is, the clock interpretation
meets the guard (v |= ϕ), and the new clock valuation satisfies: v′(x) = 0 for all
x ∈ X and v′(x) = v(x), for all x �∈ X.

Definition 12. For any o ∈ O and s ∈ S, c ≈ s if and only if,

– ∀ α ∈ Σ, o
α−→1 o′ implies there exists s′ such that s

α−→2 s′, and o′ ≈ s′.
– ∀ α ∈ Σ, s

α−→2 s′ implies there exists o′ such that o
α−→1 o′, and o′ ≈ s′.

Theorem 2. Given an Orc expression Orc, let LTSOrc =̂ (O, o0, Σ, −→2) be the tran-
sition system associated with the expression. Let AOrc be the corresponding Timed Au-
tomaton defined using definition 3 to 9 in the paper. Let LTSAOrc =̂ (S, s0, Σ ∪T, −→1)
be the transition system associated with the Timed Automaton. o0 ≈ s0.

Proof: The theorem can be proved by a structural induction on the Orc expressions. To
abuse notations, we write Orc ≈ AOrc to mean LTSOrc.o0 ≈ LTSAOrc .s0.

– 0: In Orc semantics, there is no transition rule for 0, so LTS0 is a single state transi-
tion system without any transitions. The same is LTSA0 . Thus, 0 ≈ A0.

– let(z): In Orc semantics, the only transition for LTSlet(z) is let(z)
publishz−→1 0. It is also

the only transition in the responding Timed Automaton. Thus, let(z) ≈ Alet(z).
– Rtimer(t): In Orc semantics [17], there is no transition rules for this basic site. How-

ever, it plays an important role in our work. After being called, the only transition
allowed is time passing,

Rtimer(t)
δt1−→1 Rtimer(t − t1); Rtimer(t) δt−→1 0

The calling site is blocked until the t time units has elapsed. By definition 4 and 11,
the Timed Automaton bi-simulates the site Rtimer(t).

– The proof for fundamental sites if and Signal are skipped. There are no formal
semantics defined for them. We can treat them as the normal site calls.

– Site call M(P): According to Orc’s operational semantics [17], the transitions in

LTSM(P) are M(P)
callM(P)−→1 ?k and ?k

getM(P)−→1 let(v). According to our definition 5,
the two transitions have one-to-one correspondence to the transitions in the Timed
Automaton shown in figure 2. In particular, s2 ≈ let(v) and, therefore, s1 ≈?k and,
lastly, si ≈ M(P). Thus, M(P) ≈ AM(P).

– Sequential composition f >x> g: According to the operational semantics of Orc,
the two transitions available for the sequential composition are:

244 J.S. Dong et al.

f >x> g
a−→1 f ′ >x> g if f

a−→1 f ′

f >x> g
publishv−→1 (f ′ >x> g) | [v/x].g if f

publishv−→1 f ′

Assume f ≈ Af and g ≈ Ag. For every a such that if f
a−→1 f ′, there is a transition

in LTSf>x>g. Because Af>x>g is Af ‖ A′
g (by definition 6), there is a corresponding

transition in Af>x>g because a is local to automaton Af and by definition 2 the local

actions are free to occur. Moreover, f ′ ≈ Af ′ by assumption. If f
publishv−→1 f ′, then

f >x> g
publishv−→1 (f ′ >x> g) | [v/x].g. By definition 6, there is a corresponding

transition in A′
g. As long as the number of publish events are finite, there is always

a corresponding transition in one of the A′
g.

In the other direction, for every transition a from the initial state of Af>x>g, if a is
a publish event, it must be a synchronization between Af and one of the A′

g. By as-

sumption, there must be a transition f
a−→1 f ′. Therefore, there is a corresponding

transition in f >x> g
publishv−→1 (f ′ >x> g) | [v/x].g. If a is a local event, then it must

belong to Af because the only transition in A′
g at its initial state is a synchronized

publish event. There must be a corresponding transition in LTSf and LTSf>x>g. By
induction, we conclude f > x> g ≈ Af>x>g.

– Symmetric composition f | g: According to the operational semantics of Orc, the
two transitions available for the sequential composition are:

f | g
a−→1 f ′ | g if f

a−→1 f ′

f | g
a−→1 f | g′ iff g

a−→1 g′

Therefore, f and g are interleaving. By definition 7, the corresponding Timed Au-
tomaton is defined as Af |g =̂ Af ‖ Ag. The events in both f and g are renamed so
that there is no synchronization between f and g. Assume f ≈ Af and g ≈ Ag. By
definition 2 and the above, transitions rules, we conclude f | g ≈ Af |g.

– Asymmetric composition f where x :∈ g: According to the operational semantics
of Orc, the two transitions available for the sequential composition are:

f where x :∈ g
a−→1 f ′ where x :∈ g if f

a−→1 f ′

f where x :∈ g
a−→1 [v/x].f if g

a−→1 g′

f where x :∈ g
a−→1 f where x :∈ g′ if g

a−→1 g′ and a �=!v

Form the transaction rules we can conclude the following three properties: 1) f
and g run in parallel; 2) the first returned value of g is passed to f and g stops; 3)
f is blocked if x is not available. From the three properties, the transition system
LTSf where x:∈g is the production of LTSf and LTSg, where they synchronized on
the transition publishx and g is stopped after the synchronization. LTSAf where x:∈g is
exactly the same transition according to the definition 7, which uses the shared flag
to stop the execution of g.

– Expression call E(P) =̂ f : According to the operational semantics of Orc, the tran-
sition available for expression call composition is: E(P) τ−→1 [P/x].f iff �E(x) =̂
f � ∈ D. The internal event τ acts as the initial event of the expression. It passes the
input value to formal parameters. The equivalent event in the TA model is callE(P)

Verification of Computation Orchestration Via Timed Automata 245

event in the definition 9. The one-to-one mapping is shown in the following two
transition systems.

LTSE(P) �= ({LTSf .S ∪ o0}, {LTSf .Σ ∪ τ}, o0,

{LTSf . −→1 ∪(o0, τ, LTSf .o0)})
LTSAE(P) �= ({LTSAf .S ∪ (i, v0)}, {LTSAf .Σ ∪ τ}, (i, v0),

{LTSf . −→1 ∪((i, v0), τ, (LTSf .s0.i, v0)))})

Therefore, we conclude that our Timed Automata semantics is sound.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

