
A Reasoning Method for Timed CSP based on
Constraint Solving

Jin Song Dong, Ping Hao, Jun Sun, Xian Zhang?

School of Computing,
National University of Singapore

{dongjs,haoping,sunj,zhangxi5}@comp.nus.edu.sg

Abstract. Timed CSP extends CSP by introducing a capability to
quantify temporal aspects of sequencing and synchronization. It is a
powerful language to model real time reactive systems. However, there
is no verification tool support for proving critical properties over sys-
tems modelled using Timed CSP. In this work, we construct a reasoning
method using Constraint Logic Programming (CLP) as an underlying
reasoning mechanism for Timed CSP. We start with encoding the se-
mantics of Timed CSP in CLP, which allows a systematic translation
of Timed CSP to CLP. Powerful constraint solver like CLP(R) is then
used to prove traditional safety properties and beyond, e.g., reachabil-
ity, deadlock-freeness, timewise refinement relationship, lower or upper
bound of a time interval, etc. Counter-examples are generated when
properties are not satisfied. Moreover, our method also handles useful
extensions to Timed CSP. Finally, we demonstrate the effectiveness of
our approach through case study of standard real time systems.

1 Introduction

Event-based specification languages like the classic Communicating Sequential
Process (CSP) of Hoare’s [7] and its timed extension Timed CSP [14], have been
proposed for decades. Such specification languages are elegant and intuitive as
well as precise. They have been widely accepted and applied to a wide range of
systems, including communication protocols, embedded systems, etc [15]. It is
important that system specified using CSP or Timed CSP can be proved for-
mally and even better if the proving is fully automated. For CSP, the de facto
mechanized verification support is its model checker FDR (Failure Divergence
Refinement [5, 15]), which verifies various properties by showing that there is a
refinement relation from the constructed CSP model to the CSP process cap-
turing the properties. However, there is not yet a mechanized proving method
for Timed CSP due to the complexity of time, e.g., the timed trace and fail-
ure semantics of Timed CSP is far more complex than the failure semantics of
CSP. As far as the authors know, the only attempt is Brooke’s work on partial
encoding Timed CSP in PVS [2], which relies on heavy user interaction.

? Author for correspondence, phone: +65 65162834, fax: +65 67794580

Constraint Logic Programming (CLP [9]) is designed for mechanized prov-
ing based on constraint solving. CLP has been successfully applied to model
programs and transition systems for the purpose of verification [6, 11], showing
that their approach outperforms the well-know state-of-art systems with higher
efficiency. [1] employs a logic program transformation based approach for induc-
tive verification of real-life parameterized protocols. In this work, we propose a
constraint-based approach for solving the verification problem of Timed CSP,
which readily implies we handle untimed CSP as well. It is the first reasoning
mechanism for Timed CSP. The challenge is to cope with the great expressive-
ness of Timed CSP and allow efficient automatic proving of various assertions.

Our approach starts with a systematic translation of the semantics of Timed
CSP into CLP. Both operational and denotational semantics are encoded, which
are used for verifying different kinds of properties. We then go beyond by allow-
ing useful extensions to Timed CSP, for example, the concept of signal as in [4]
for specifying broadcast communication and some liveness conditions, and inte-
gration of Timed CSP and state-based specification languages, so that we may
specify and verify systems with non-trivial data structures. The practical impli-
cation of our translation of Timed CSP to CLP is that powerful constraint solvers
like CLP(R) [10] can be used to prove properties over systems modelled using
Timed CSP. We investigate ways of proving traditional safety properties and be-
yond, for example reachability, deadlock-freeness, refinement relationship,lower
or upper bound of a time interval and etc. Moreover, we are also able to generate
counter examples if the properties are not satisfied. We implemented a prototype
as a CLP(R) program and experimented our encoding with standard real-time
systems.

The remainder of the paper is organized as follows. Section 2 briefly intro-
duces Timed CSP and the Constraint Logic Programming. Section 3 illustrates
the encoding of both operational and denotational semantics of Timed CSP in
CLP. A number of useful extensions to Timed CSP are also considered. Sec-
tion 4 presents various proving we may perform over systems modelled using
Timed CSP and translated to CLP. Section 5 illustrates the effectiveness of our
approach with case studies. Section 6 concludes the paper.

2 Background

2.1 Timed CSP

Hoare’s CSP [7] is an event based notation primarily aimed at describing the
sequencing of behavior within a process and the synchronization of behavior
(or communication) between processes. Timed CSP extends CSP by introducing
a capability to quantify temporal aspects of sequencing and synchronization.
Inherited from CSP, Timed CSP adopts a symmetric view of process and envi-
ronment. Events represent a cooperative synchronization between process and
environment. Both process and environment may control the behavior of the
other by enabling or refusing certain events and sequences of events.

The syntactic class of Timed CSP expressions is defined as the following:

P ::= Stop | Skip | Run | e t→ P | e : E → P(e) | e • t → P(t)
| P1 2 P2 | P1 u P2 | P1 X ||Y P2 | P1 |[X]|P2 | P1 ||| P2

| P1; P2 | P1 O P2 | P1 .{d} P2 | Wait[d] | P1 O{d} P2 | µX • P(X)

RunΣ is a process always willing to engage any event in Σ. Stop denotes a
process that deadlocks and does nothing. A process that terminates is writ-
ten as Skip. A process which may participate in event e then act according to
process description P is written as e • t → P(t). The (optional) timing pa-
rameter t records the time, relative to the start of the process, at which the
event e occurs and allows the subsequent behavior P to depend on its value.
The process e t→ P delays process P by t time units after engaging event e. The
external choice operator (2) allows a process of choice of behavior according to
what events are requested by its environment. Internal choice represents vari-
ation in behavior determined by the internal state of the process. The parallel
composition of processes P1 and P2, synchronized on common events of their
alphabets X , Y (or a common set of events A) is written as P1 X ||Y P2 (or
P1 |[A]|P2). The sequential composition of P1 and P2, written as P1; P2, acts
as P1 until P1 terminates by communicating a distinguished event X and then
proceeds to act as P2. The interrupt process P1 O P2 behaves as P1 until the first
occurrence of event in P2, then the control passes to P2. The timed interrupt
process P1 O{d} P2 behaves similarly except P1 is interrupted as soon as d time
units have elapsed. A process which allows no communications for period d time
units then terminates is written as Wait[d]. The timeout construct written as
P1 .{d} P2 passes control to an exception handler P2 if no event has occurred
in the primary process P1 by some deadline d . Recursion is used to give finite
representation of non-terminating processes. The process expression µX • P(X)
describes processes which repeatedly act as P(X).

Example 1 (Timed vending machine). A user may insert some coins and then
make a choice between coffee or tea. Once the choice is made, the vending ma-
chine dispatches the corresponding drink. Or the user may ask the machine to
release the coins and walk away. If the user idles more than 10 seconds after the
coin is inserted, the machine will release the coins.

TVM =̂ µX • coin → ((reqrelease → release 2→ X)
2 (coffee 3→ dispatchcoffee → X) 2 (tea 2→ dispatchtea → X))
.{10} (release → X)

2.2 CLP Preliminaries

Constraint Logic Programming (CLP) began as a natural merger of two declar-
ative paradigms: constraint solving and logic programming. This combination
helps make CLP programs both expressive and flexible, and in some cases, more
efficient than other kinds of programs. The CLP scheme defines a class of lan-
guages based upon the paradigm of rule-based constraint programming, where
CLP(R) is an instance of this class. We present some preliminary definitions
about CLP [9].

Example 2 (Factorial). The following is typical CLP program:

fac(0, 1).
fac(N ,X1 ∗N) : −N > 0, fac(N − 1,X1).

A relation fac(N, X) is defined, where X is the factorial of N , denoted as X = N !.
There are two atoms for the relation fac(N, X), where the first atom is a fact
and the second one is a rule.

The universe of discourse D of our CLP program is a set of terms, integers,
and lists of integers. A Constraint is written using a language of functions and
relations. They are used in two ways, in the basic programming language to
describe expressions and conditions, and in user assertions, defined below. In this
paper, we will not define the constraint language explicitly, but invent them on
demand in accordance with our examples. Thus the terms of our CLP programs
include the function symbols of the constraint language.

An atom, is as usual, of the form p(t̃), where p is a user defined predicate
symbol and t̃ is a sequence of terms. A rule is of the form A : −B̃ , Ψ where the
atom A is the head of the rule, and the sequence of atoms B̃ and the constraint
Ψ constitute the body of the rule. A goal has exactly the same format as the body
of the rule of the form ? − B̃ , Ψ . If B̃ is an empty sequence of atoms, we call
this a (constrained) fact . All goals, rules and facts are terms. A ground instance
of a constraint, atom and rule is defined in obvious way. A ground instance of
a constraint is obtained by instantiating variables therein from D. The ground
instances of a goal G, written [[G]] is the set of ground atoms obtained by taking
all the true ground instances of G and then assembling the ground atoms therein
into a set. We write G1 |= G2 to mean that for all groundings θ of G1 and G2,
each ground atom in G1θ appears in G2θ.

Let G = (B1, ...,Bn , Ψ) and P denote a goal and program respectively. Let
R = A : −C1, ...,Cm , Ψ1 denote a rule in P , written so as none of its variables
appear in G . Let A = B , where A and B are atoms, be shorthand for equations
between their corresponding arguments. A reduct of G using R is of the form

(B1, ...,Bi−1,C1, ...,Cm ,Bi+1, ...,Bn ,Bi = A ∧ Ψ ∧ Ψ1)

provided Bi = A ∧ Ψ ∧ Ψ1 is satisfiable. A derivation sequence is a possibly
infinite sequence of goals G0,G1, ... where Gi , i > 0 is a reduct of Gi−1. If there
is a last goal Gn with no atoms, notationally (2, Ψ) and called a terminal goal,
we say that the derivation is a successful and that the answer constraint is Ψ .
A derivation is ground if every reduction therein is ground.

Example 3 (Derivation). We calculate the 3! through the goal ? − fac(3, X).
The following demonstrates a derivation sequence of the goal with three steps.
The constraints in the last step which are the termination goal answer X = 6.

N = 3, fac(N , X).
⇓

N = 3,N > 0,N − 1 = N1,X = N ∗X1, fac(N1,X1).
⇓

N = 3,N > 0,N − 1 = N1,X = N ∗X1,
N1 > 0,N1 − 1 = N2,X 1 = N1 ∗X2, fac(N2,X2).

⇓
N = 3,N > 0,N − 1 = N1,X = N ∗X1,N1 > 0,N1 − 1 = N2,
X 1 = N1 ∗X2,N2 > 0,N2 − 1 = 0,X2 = 1.

3 Timed CSP Semantics in CLP

This section is devoted to an encoding of the semantics of Timed CSP in CLP.
The practical implication is that we may then use powerful constraint solver
like CLP(R) [10] to do various proving over systems modelled using Timed CSP.
Both the operational semantics and denotational semantics are encoded. The
encoding of operational semantics serves most of our purposes. Nevertheless
the encoding of the denotational semantics offers an alternative way of proving
systems modelled in Timed CSP as well as the correctness of the encoding itself.

The very initial step of our work is the syntax encoding of Timed CSP process
in CLP syntax, which can be automated easily by syntax rewriting. A relation of
the form proc(N ,P) is used to present a process P with name N . For instance,
Figure 1 is the syntax encoding of process TVM in CLP, which is a recursive
process with name tvm.

proc(c1, delay(coffee, eventprefix (dispatchcoffee, tvm), 3)).

proc(c2, delay(tea, eventprefix (dispatchtea, tvm), 2)).

proc(c3, eventprefixc(reqrelease, delay(release, tvm, 2))).

proc(choices, extchoice(extchoice(C ,T),R))

: −proc(c1,C), proc(c2,T), proc(c3,R).

proc(to, timeout(C , eventprefix (release, tvm), 10))

: −proc(choices,C).

proc(tvm, recursion([tvm, eventprefix (coin,P)], eventprefix (coin,P)))

: −proc(to,P).

Fig. 1. Timed Vending Machine in CLP

3.1 Operational Semantics

The operational semantics of Timed CSP is precisely defined by Schneider [17]
using two relations: an evolution relation and a timed event transition relation. It
is straightforward to verify that our encoding conforms the two relations in [17].

A relation of the form tos(P1,T1,E,P2,T2) is used to denote the t imed
operational semantics, by capturing both evolution relations and timed event
transition relations. Informally speaking, tos(P1,T1,E,P2,T2) is true if the pro-
cess P1 may evolve to P2 through either a timed transition, i.e., let T2-T1 time
units pass, or an event transition by engaging an abstract event instantly1. The
relation tos defines a transition system interpretation of a Timed CSP process,
where the state is identified by the combination of the process expression and the
time variable. Using tabling mechanism offered in some of the constraint solvers
like CLP(R) [10] or XSB [19], the termination of the derivation sequence based
on relation tos depends on the finiteness of the reachable process expressions
from the initial one. Therefore, if a process is irregular (i.e. its trace is irregular
as in automata theory), proving of goals which need to explore all reachable pro-
cess expressions is not feasible. However, even for irregular processes, interesting
proving like existence of a trace is still possible.

We define the tos relation in terms of each and every operator of Timed CSP.
For the moment, we assume the process is not parameterized and we shall handle
parameterized processes uniformly in Section 3.3. For instance, the primitive
process expressions in Timed CSP are defined through the following clauses:

tos(stop,T1, [], stop,T2) : −D >= 0,T2 = T1 + D .
tos(skip,T , [termination], stop,T).
tos(skip,T1, [], skip,T2) : −D >= 0,T2 = T1 + D .
tos(run,T , [], run,T).
tos(run,T1, [], run,T2) : −D >= 0,T2 = T1 + D .

The only transition for process Stop is time elapsing. Process Skip may
choose to wait some time before engaging event termination which is our choice
of representation for event X in CLP. Process Run may either let time pass
or engage any event. In the following, we show how hierarchical operators are
encoded in CLP using the alphabetized parallel composition operator as an
example.

In the operational semantics, the event transition and evolution transition
associated with the alphabetized parallel composition operator the alphabetized
parallel composition operator P1 X ||Y P2 are illustrated as the following [17]:

P1
e→ P ′1 [e ∈ X ∪ {τ} \Y]

P1 X ||Y P2
e→ P ′1 X ||Y P2

P2
e→ P ′2 [e ∈ Y ∪ {τ} \X]

P1 X ||Y P2
e→ P1 X ||Y P ′2

1 Or both at the same time by engaging an nontrivial action which takes time (neces-
sary for only extensions to Timed CSP like TCOZ [12] where E could be a compli-
cated computation)

tos(eventprefix (E ,P),T1, [], eventprefix (E ,P),T1 + D) : −D > 0.

tos(eventprefix (E ,P),T , [E],P ,T).

tos(prefixchoice(X ,P),T , [Y],P ,T) : −member(Y ,X).

tos(prefixchoice(,P),T1, [],P ,T1 + D) : −D > 0.

tos(timeout(Q1, ,),T , [E],P ,T) : −tos(Q1,T , [E],P ,T).

tos(timeout(,Q2,D),T , [tau],Q2,T) : −D = 0.

tos(timeout(Q1,Q2,D),T , [tau], timeout(P ,Q2,D),T)

: −tos(Q1,T , [tau],P ,T).

tos(timeout(Q1,Q2,D),T1, [], timeout(P ,Q2,D − T),T1 + T)

: −T > 0,T <= D , tos(Q1,T1, [],P ,T1 + T).

tos(wait(D),T1,E ,P ,T2) : −tos(timeout(stop, skip,D),T1,E ,P ,T2).

tos(extchoice(P1,) ,T , [E],P3,T) : −tos(P1,T , [E],P3,T).

tos(extchoice(,P2),T , [E],P4,T) : −tos(P2,T , [E],P4,T).

tos(extchoice(P1,P2),T , [tau], extchoice(P3,P2),T) : −tos(P1,T , [tau],P3,T).

tos(extchoice(P1,P2),T , [tau], extchoice(P1,P4),T) : −tos(P2,T , [tau],P4,T).

tos(extchoice(P1,P2),T1, [], extchoice(P3,P4),T2)

: −T2 > T1, tos(P1,T1, [],P3,T2), tos(P2,T1, [],P4,T2).

tos(interleave(P1,P2),T ,E , interleave(P3,P2),T)

: −tos(P1,T ,E ,P3,T), (E == []; E == [tau]).

tos(interleave(P1,P2),T ,E , interleave(P1,P4),T)

: −tos(P2,T ,E ,P4,T), (E == []; E == [tau]).

tos(interleave(P1,P2),T , [E], interleave(P3,P2),T) : −tos(P1,T , [E],P3,T).

tos(interleave(P1,P2),T , [E], interleave(P1,P3),T) : −tos(P2,T , [E],P3,T).

tos(interleave(P1,P2),T1, [], interleave(P3,P4),T1 + D)

: −D > 0, tos(P1,T1, [],P3,T1 + D), tos(P2,T1, [],P4,T1 + D).

tos(interleave(P1,P2),T , [termination], interleave(P3,P4),T)

: −tos(P1,T , [termination],P3,T), tos(P2,T , [termination],P4,T).

tos(hiding(P1,X),T , [tau], hiding(P2,X),T)

: −tos(P1,T , [E],T ,P2),member(E ,X).

tos(hiding(P1,X),T , [E], hiding(P2,X),T)

: −tos(P1,T , [E],P2,T),not(member(E ,X)).

tos(hiding(P1,X),T1, [], hiding(P2,X),T1 + D)

: −D > 0, tos(P1,T1, [],P2,T1 + D),

not(member(A,X), tos(P1, , [A], ,)).

tos(sequential(P1,P2),T , [E], sequential(P3,P2),T)

: −tos(P1,T , [E],P3,T),not(E = termination).

tos(sequential(P1,P2),T , [termination],P2,T) : −tos(P1,T , [termination],, T).

tos(sequential(P1,P2),T1, [], sequential(P3,P2),T1 + D)

: −D > 0, tos(P1,T1, [],P3,T1 + D),not(tos(P1, , [termination], ,)).

tos(interrupt(P1,P2),T , [E], interrupt(P3,P2),T) : −tos(P1,T , [E],P3,T).

tos(interrupt(,P2),T , [E],P3,T) : −tos(P2,T , [E],P3,T).

tos(interrupt(P1,P2),T1, [], interrupt(P3,P4),T1 + D)

: −D > 0, tos(P1,T1, [],P3,T1 + D), tos(P2,T1, [],P4,T1 + D).

Fig. 2. Operational Semantics of Timed CSP in CLP

P1
e→ P ′1,P2

e→ P ′2 [e ∈ X ∩Y]
P1 X ||Y P2

e→ P ′1 X ||Y P ′2

P1
dÃ P ′1,P2

dÃ P ′2

P1 X ||Y P2
dÃ P ′1 X ||Y P ′2

The → represents an event transition, whereas Ã represents an evolution
transition. The rules associated with the alphabetized parallel composition op-
erator are as the following:

tos(para(P1,P2,X ,Y),T , [E], para(P3,P2,X ,Y),T)
: −tos(P1,T , [E],P3,T),member(E ,X),not(member(E ,Y)).

tos(para(P1,P2,X ,Y),T , [E], para(P1,P4,X ,Y),T)
: −os(P2,T , [E],P4,T),member(E ,Y),not(member(E ,X)).

tos(para(P1,P2,X ,Y),T , [E], para(P3,P4,X ,Y),T)
: −tos(P1,T ,E ,P3,T), tos(P2,T ,E ,P4,T),

member(E ,X),member(E ,Y).
tos(para(P1,P2,X ,Y),T1, [], para(P3,P4,X ,Y),T1 + D)

: −tos(P1,T1, [],P3,T1 + D), tos(P2,T1, [],P4,T1 + D).

The first two rules state that either of the components may engage an event as
long as the event is not shared. The third rule states that a shared event can
only be engaged simultaneously by both components. The last expresses that the
composition may allow time elapsing as long as both the components do. Other
parallel composition operation, like |[X]| and |||, can be defined as special cases
of the alphabetized parallel composition operator straightforwardly. There is a
clear one-to-one correspondence between our rules and the operators which are
partly illustrated in Figure 2 and fully at our website2. Therefore, the soundness
of the encoding can be proved by showing there is a bi-simulation relationship
[13] between the transition system interpretation defined in [17] and ours, and
the bi-simulation relationship can be proved easily via a structural induction.

For simplicity, we do restrict the form of recursion to µX • P(X), which
means mutual recursion through process referencing has to be transformed before
hand. The following clauses illustrate how recursion is handled, where N is the
recursion point, i.e., X in µX • P(X)) and P is the process expression, i.e.,
P(X).

tos(recursion([N ,P],P1),T , [E], recursion([N ,P],P2),T)
: −not(P1 == N), tos(P1,T , [E],P2,T).

tos(recursion([N ,P],P1),T1, [], recursion([N ,P],P2),T1 + D)
: −D > 0, tos(P1,T1, [],P2,T1 + D).

tos(recursion([N ,P],N),T , [], recursion([N ,P],P),T).

2 http://nt-appn.comp.nus.edu.sg/fm/clp

3.2 Denotational Semantics

We also encode both the timed traces and the timed failures model of Timed
CSP, where the semantics of a Timed CSP process is represented by a set of
timed traces or a set of timed failures [16]. A timed failure is a record of an
execution, consisting of a timed trace which contains information about event
performed, and a timed refusal which contains information about when events
could be refused. In contrast to the operational semantics, which focuses on a
single step at once, the denotational semantics captures all possible observations
of systems modelled using Timed CSP. Therefore, it is easier to prove over all
possible behaviors in the denotational semantics model.

In the following, we illustrate our encoding using only a few fundamental
constructors for the sake of space saving. A relation timedfailure(P, f(Tr, R)) is
defined to capture the timed failure semantics, where P is a process expression
and Tr is a sequence of timed events and R is a set of timed refusals. For instance,

timedfailure(stop, failure([],)).
timedfailure(skip, failure([],R))

: −sigma(R,S),not(member(termination,S)).
timedfailure(skip, failure([tevent(T , termination)],R))

: −T >= 0, before(R,T ,Z), sigma(Z ,N),not member(termination,N).

The relation sigma(P, S) is used to retrieve all events S in a process expression
P, i.e., S = σ(P). Similarly, the relation before(R, T, Z) is defined accordingly
as Z = R ¹ T , i.e., the refusals before time T. Basically, the first rule states
that the failures of process Stop are an empty trace with all possible refusals.
Process Skip refuses everything until the occurrence of event termination, and
all events are refused afterwards. As for compositional operators, we take the
interface parallel composition operator as an example.

timedfailure(parallel(Q1,Q2,A), failure(S ,N))
: −timedfailure(Q1, failure(S1,N 1)),

timedfailure(Q2, failure(S2,N 2)), union(N 1,N 2,N),
union(A, [termination],AT), remove(N 1,AT ,N 11),
remove(N 2,AT ,N 22), setequal(N 11,N 22), tsynch(S1,S2,A,S).

The relation union(X, Y, Z) is the set union, i.e., Z = X ∪ Y . The relation
remove(X, Y, Z) is the set subtraction, i.e., Z = X \ Y . The relation tsynch
defines the ways in which a trace tr1 from component Q1 and a trace tr2 from
component Q2 can be combined to form a trace of the parallel (formal definition
in [16]). The interface parallel operator requires synchronization on events from
the interface event set A, and interleaving on events not in A.

Notice that the denotational semantics focuses on observations of the system,
which allows us to query the system behaviors as a whole. For instance, it is more
straightforward to check timewise refinement using the denotational semantics,
and irregular processes can be handled if we replace the recursion using its fixed
point. However, because there is no guarantee that the derivation sequence is
terminating, we have to limit the height of the proving tree.

3.3 Handling Extensions to Timed CSP

Timed CSP is introduced in [14]. Since then, various extensions of Timed CSP
have been proposed. In this work, we identify some of the effective extensions
and show that they can be encoded in the CLP framework. For instance, the
idea of signal by Davies [4] is a simple yet useful extension to capture liveness
as well as model broadcasting effectively. The motivation of the concept sig-
nal is that when describing the behavior of a real-time process, we may wish
to include instantaneous observable events that are not synchronization. For
example, an audible bell might form part of the user interface to a telephone
network, even though the bell may ring (a signal) without the cooperation of the
user. Informally, signal events are distinguished events that will occur as soon
as they become available, and will propagate through parallel composition. A
process may ignore any signal performed by another process, unless it is wait-
ing to perform the corresponding synchronization. For any observation that can
be extended into the future, the only events that must be observed are signals.
Therefore, signals are useful both for modelling broadcast communication and
specifying liveness conditions, i.e., some events must be engaged.

sigTF (eventprefix (E , ,), sigfailure([],X ,T))
: −not(E == sig()), sigma(X ,Z),

not(member(E ,Z)), end(X ,T1),T >= T1.
sigTF (eventprefix (E ,P ,D), sigfailure([tevent(T ,E) | XS],Y ,T1 + D + T))

: −T >= 0,not(E == sig()), sigTF (P , sigfailure(S ,Y 1),T1),
backthrough(Y ,T + D ,Y 1), begin(S ,T2),T2 >= T + D ,
end(S ,Y ,T3),max (T ,T3,T4),T1 + D + T >= T4,
before(Y ,T ,Z), sigma(Z ,N),
not(member(E ,N)), delay(S ,T + D ,XS).

sigTF (eventprefix (sig(E),P ,D), sigfailure([], [], 0)).
sigTF (eventprefix (sig(E),P ,D), sigfailure([tevent(0,E) | XS],Y ,T))

: −sigTF (P , failure(S ,Y 1),T1), backthrough(Y ,T + D ,Y 1),
T = T1 + D , before(Y ,T ,Z), sigma(Z ,N),
not(member(E ,N)), delay(S ,T + D ,XS).

The relation sigTF (P , sigfailure(Tt ,Tr ,T)) is used to capture this time failure
semantics for signals, where P denotes the process, Tt is the timed trace, Tr
denotes the timed refusal set and T denotes a time value. The CLP clauses
illustrate the possible evolution of signal event prefixing. The first two clauses
denote the semantics for event prefix process a → P where a is not a signal,
while the last two denote the one with signal event â, presented as sig(a). In
the above rules, end(X,T) computes the least upper bound of the time refusal
X . backthrough(Y,T,Y1) represents the relation: Y - T = Y1, i.e., timed refusal
Y 1 is generated from Y by translating it backwards through time T . begin(S,
T) retrieves the time of occurrence of the first event in timed trace S .

Another extension of special interest is Timed CSP integrated with state-
based languages like Z [20] to model systems with not only complicated con-
trol flow but also complex data structures [12, 18]. Instead of adopting a heavy

language like TCOZ (Timed Communicating Object-Z [12]), we allow a finite
number of variables to be associated with a process3, called state variables. In
addition, we allow a state update transition, i.e., instead of engaging an abstract
event, the system may perform a state update which changes the valuation of
the state variables. A state update is specified as a predicate involving state
variables before and after the update, as in Z style where the after-variables are
primed [20].

For instance, there is a fragment of the specification of this vending machine,
in which we allow different coins to be inserted via a channel communication
coin?x where x is 10, 20 or 50, a data variable Quota is requested to accumulate
the amount of all coins inserted by the user.

Insert(Quota) =̂ coin?x → AddQuota

where AddQuota is an operation defined in Z , which is:

AddQuota =̂ [x?, quota, quota ′ : N | quota ′ = quota + x?]

This Timed CSP specification corresponds to the following CLP clauses
where both the pre and post values of the process parameter are presented
as the parameters, namely Quota1 and Quota2, of the relation proc. The user
is responsible to specify exactly how an action updates the data variables, e.g.,
adding the amount of the coin to Quota.

proc(coin, eventpreifx (coin(X 1), addquota),Quota1,Quota2)
: −action(addquota,X 1,Quota1,Quota2).

action(addquota,X 1,Quota1,Quota2) : −Quota2 = Quota1 + X 1.

4 Proving Properties of Timed CSP

This section is devoted to various proving we may perform over systems modelled
using Timed CSP and then encoded in CLP. We implemented a prototype in one
of the CLP solver, namely CLP(R). Any CLP assertion can be proved against
a given real-time system. We also developed a number of shortcuts for easy
querying and proving.

4.1 Safety and Liveness

Using CLP, we may make explicit assertion which is neither just a safety asser-
tion, nor just a liveness assertion. Yet it can be used for both purposes using
a unique interpretation. In the following, we show how safety properties and
liveness properties, like reachability, can be queried. We employ the concept of
coinductive tabling with the purpose of obtain termination when dealing with
recursions, which facilitates verifying safety and liveness properties based on
traces. The detailed introduction of coinductive tabling can be found in [8].
3 which are of types supported by current tools for CLP.

Because Timed CSP is an event-based specification language, it is clearly
useful to prove safety and liveness properties in terms of predicate concerning
not only state variables but also events. A discussion on how to allow such
temporal properties is presented in [3]. In order to explore the full state space,
we define the following4:

treachable(P ,P , [],T1,T1).
treachable(P ,Q , [E | N],T1,T2)

: −tos(P ,T1,E ,P1,T3), treachable(P1,Q ,N ,T3,T2).

The relation treachable(P, Q, N, T1, T2) states that it is possible to reach the
process expression Q at time T2 from P at time T1, with trace N. By using the
tabling method, we dynamically record the process expressions that have been
explored so as to avoid re-exploring them. In this regard, one kind of liveness
property namely reachability is easily asserted using treachable.

An invariant property (a predicate over time variable and state variables and
possible local clocks) is in general expressed as the assertion:

inv(P ,T ,Property) : −not(treachable(P ,Q , ,T ,T1),not sat(Property)).

where not sat(Property) is a constraint indicating that the output from the
previous atom not satisfying the user defined Property .

One safety property of special interest is deadlock-freeness. The following
clauses are used to prove it.

tdeadlock(P ,T1) : −treachable(P ,P1,N ,T1,T2),
(not(tos(P1,T2, [],Q ,T), tos(Q ,T , [], ,)); (tos(P1,T2, [],Q ,);
not(tos,P1,T2, [], ,))), printf (”deadlock at : %”, [N]).

Basically, it states that a process P at time T1 may result in deadlock if it can
reach the process expression Q at time T2 where no event transition is available
neither at T2 nor at any later moment. The last line outputs the deadlocked
trace as a counterexample. Alternatively, we may present it as a result of the
deadlock proving.

We allow trace-based properties (safety or liveness) that can be checked by
exploring trace set partially. The retrieve of a trace is done by the predicate
superstep(P ,N ,Q), which finds a sequence of events through which process ex-
pression P evolves to Q :

superstep(P , [],) : −not(tos(P , , ,Q ,),not table(Q)).
superstep(P , [A | N],Q) : −tos(P , ,M ,P1,),not(M == []; M == [tau]),

M = [A],not table(P1), assert(table(P1)), superstep(P1,N ,Q).
superstep(P ,N ,Q) : −tos(P , ,M ,P1,), (M == []; M == [tau]),

not table(P1), assert(table(P1)), superstep(P1,N ,Q).

We may prove that some event will always eventually be ready to be en-
gaged using the following rule: where rule member(N ,E) returns true if event
E appears at least once in the event sequence N .
4 The possible state variables and local clocks are skipped for simplicity.

finally(P ,E) : −not(superstep(P ,N ,)),not member(N ,E).

Predicate finally(P ,E) captures the idea that there is no such trace without
event E in this process P . In other words, this process will eventually go to
event E . Another property based on traces would be identifying the relationship
among events, e.g., event A can never happen before (after) event B in a trace
or trace fragment. Take the timed vending for example, we would like to ensure
that in a round of using the machine, the event tea will never be followed by an
event dispatchcoffee.

Example 4 (Verification). For the timed vending machine, we would like to check
that it is deadlock-free by running the following goal and expecting failure:

?− proc(vending ,P), tdeadlock(P , 0)

Moreover, we would expect that whenever we choose tea, it would never dispatch
coffee instead of tea, which can be checked by the following goal:

?− proc(vending ,P), super(P ,N), (not in(tea,N);
after(N , dispatchcoffee, tea)).

4.2 Timewise Refinement Checking

The notion of refinement is a particularly useful concept in many forms of engi-
neering activity. If we can establish a relation between components of a system
which captures the fact that one satisfies at least the same conditions as another,
then we may replace a worse component by a better one without degrading the
properties of the system.

Compared to untimed CSP refinements which can be checked by FDR [15],
timedwise refinements for Timed CSP contain more information about timing
behavior. With the denotational model - timed failure model build in CLP,
the refinement relations can be defined for systems described in Timed CSP in
several ways, depending on the semantic model of the language which is used. In
the timed versions of CSP, we mainly concentrate on two forms of refinement,
corresponding to the semantic models which are trace timewise refinement and
failure timewise refinement.

Trace timewise refinement A process Q is a trace timewise refinement of P
if all of its timed traces are allowed by P . The trace timewise relation is written
P TvTF Q where P is an untimed CSP process, and Q is a timed CSP process.
It is defined as:

P TvTF Q = ∀(s,ℵ) ∈ T F [[Q]] • #s< ∞⇒ strip(s) ∈ traces(P)

Detailed explanation can be found in [16]. In our timed failure model in CLP, we
are able to find any finite timed trace of a process. Instead of testing every timed
trace of a process Q by proving that this timed trace s with times removed is also

a legal trace for the untimed process P , we test the negation of this predicate.
We introduce the predicate traceTR to find a violative timed trace of Q that
is not a legal trace of P with its time information removed. The definition of
timedTR is given by the following CLP clause: where Q is the timed process, P
is the untimed process, S is a timed trace of Q and TimeRmTr represents the
times removed version of S .

traceTR(P ,Q ,S) : −timedfailure(Q , failure(S ,Refusal)),
strip(S ,TimeRmTr),not(trace(P ,TimeRmTr)).

Failures timewise refinement The timed process Q is a failure timewise
refinement of the untimed process P if all of its timed traces are allowed by
P , as well as all its timed failures are allowed by the stable failures of P . It is
formally defined as in [16]:

P SFvTF Q = ∀(s,ℵ) ∈ T F [[Q]] • #s< ∞⇒ strip(s) ∈ trace(P) ∧
(∃ t : R+; X ⊆ Σ • ([t ,∞)×X) ⊆ ℵ ⇒ (strip(s),X) ∈ SF [[P]])

We take the similar approach as the trace timewise refinement which tests the
negation of the universal predicate. The predicate failureTR is introduced to
capture this idea, which can be represented by the following CLP clauses:

failureTR(P ,Q ,S ,Refusal) : −timedfailure(Q , failure(S ,Refusal)),
((strip(S ,TimeRmTr),not(trace(P ,TimeRmTr)));
not(inStableFailure(Q ,S ,Refusal ,P))).

inStableFailure(Q ,S ,Refusal ,P) : −T > 0, sigma(Q ,Sigma),
subset(Sigma,X), (not(subset(prod(int(T , inf),X),Refusal));
(strip(S ,TimeRmTr), stablefailure(P , failure(TimeRmTr ,X)))).

4.3 Additional Checking

In reality, most processes are non-terminating, so it would not be possible to
retrieve all possible traces of a process. However, by given a specific trace of a
trace fragment, we are able to identify whether it is an event sequencing of a
given process. For instance, the following clause is used to query if a sequence
of event is a trace of the system, where P is a process expression and X is a
sequence of events.

trace(P ,X) : −superstep(P ,X ,) .

In addition to proving pre-specified assertions, one distinguished feature of our
approach is that implicit assertions may be proved. For example, we may identify
the lower or upper bound of a (time or data) variable, which is very useful for
applications like worst or best case analysis of execution time.

dur(P ,Q ,T1,T2) : −tos(P ,T1, ,Q ,T2).
dur(P ,Q ,T1,T2) : −tos(P ,T1, ,P1,T3), dur(P1,Q ,T3,T2).

We are able to compute the duration of the execution of one process P to its
subsequent process Q by the above two rules, where T1 is the starting time and
T2 is the ending time. By using the predicate dur , we are able to get identify the
lower bound of some processes involving time. The process Wait(2); a 3→ Skip
should terminate in more than 5 time units, which can be identified by the
following goal and expecting T≥5.

?− dur(sequ(wait(2), delay(a, skip, 3)), stop, 0,T).

5 Experiments and Results

In this section, we compare our method to the mature model checker for CSP,
namely FDR (version 2.78), in terms of flexibility as well as efficiency. We im-
plement a prototype as a normal CLP(R) program. In the following, we demon-
strate our experiments with three examples on a Unix system located at a Sunfire
sever with IGB user memory. Because FDR is designed for CSP, the quantitative
timing aspects of the examples have been abstracted before FDR verification.

Timed Vending Machine The specification of the timed vending machine
is presented in Example 1. Figure 1 shows the timed vending machine model
in CLP. This example is customized into a FDR program (say P), in which
the time-out operator is replaced with an external choice. The following are the
properties verified:

– tvm-1 Deadlock-freeness
– tvm-2 Trace timewise refinement:

• in CLP, whether the process TVM is a trace timewise refinement of P .
• in FDR, whether the process P is a trace refinement of TVM .

– tvm-3 Whether there is such a case that coffee is selected while tea is dis-
patched.

Dining Philosopher The classic dining philosopher example is also experi-
mented. The specification is available in [7]. We implemented this example with
N philosophers and N forks. The following properties are experimented:

– philosopherN-1 It is not deadlock-free
– philosopherN-2 No more than N+1/2 philosophers can eat at the same time.
– philosopherN-3 It is possible that one philosopher eat all the time with the

others starving. This property is checked with trace refinement.

The Railway Crossing The railway crossing system is modelled and checked,
which is complex enough to demonstrate a number of aspects of the modelling
and verification of timed systems. The system consists of three components: a
train, a gate and a controller. The gate should be up to allow traffic to pass

Property Goal in CLP

deadlock-freeness proc(system, P), tdeadlock(P, 0) |= false

if train enters crossing, proc(system, P), supersetp(P, X),
the gate must be down last(X, entercrossing),filter(X, [up,down], X2),

last(X2, up) |= false

lower bound for a train proc(system, P), dur(delay(nearind, ,),
passes the crossing is 320s eventprefix(outind,), T1, T2),T2-T1<320 |= false

if the gate is up, the train proc(system,P), superstep(P, X),
must have left the crossing not(not in([up, entercrossing, leavecrossing], X);

after(X, leavecrossing, entercrossing))) |= false

legal trace checking proc(system, P),superstep(P, [trainnear, nearind,
downcomm,down, confirm, entercrossing,

leavecrossing, outind])|=true

Table 1. Properties Verification

when no train approaching and lowered to obstruct traffic when a train is com-
ing. The controller monitors the approach of a train, and instructs the gate to
be lowered within the appropriate time. The train is modelled abstractly with
behaviors: nearing, entering and leaving the crossing. The Timed CSP modelling
is as follows (originally presented in [16]):

TRAIN =̂ µT • trainnear → nearind 300→ entercrossing
20→ leavecrossing → outind → T

GATE =̂ µG • downcom 100→ down → confirm → G
2 upcom 100→ up → confirm → G

CONTROLLER =̂ µC • outind 1→ upcom → confirm → C
2 nearind 1→ downcom → confirm → C

CROSSING =̂ CONTROLLER C ||G GATE
SYSTEM =̂ TRAIN T ||C∪G CROSSING

The time information of the system is that: the train takes at least 5 minutes
from triggering the near.ind sensor to reach the crossing; and at least 20 seconds
to get across the crossing. The controller takes a negligible amount of time, say
1 second, from receiving a signal from a sensor to relaying the corresponding
instruction to the gate. The gate process takes 100 seconds to get itself into
position following an instruction. A number of interesting properties can be
formulated, evidenced in Table 1. The three properties selected for comparing
our approach with FDR verification are:

– railway-1 Deadlock-freeness
– railway-2 Whether trace 〈trainnear ,nearind , downcomm, down, confirm,

entercrossing , leavecrossing , outind〉 is a legal trace or not.
– railway-3 Whether the lower bound for a train passes the crossing is 320s.

Assertion CLP(R) (sec) FDR (sec)

tvm-1 0.00 0.23
tvm-2 0.03 0.27
tvm-3 0.01 −

railway-1 0.25 0.25
railway-2 0.02 0.26
railway-3 0.32 −

Assertion CLP(R) (sec) FDR (sec)

phi3-1 0.12 0.25
phi3-2 0.22 −
phi3-3 0.04 0.17
phi4-1 0.84 0.28
phi4-2 2.5 −
phi4-3 0.1 0.3

Table 2. Experiment Results

We summarize our results in Table 2. We ran the examples in both CLP(R)
and FDR systems and we calculated the execution time of each property if the
property is able to be checked in that system. From the table, we can see that
most of our timing analysis performance are competitive with the well-known
system, while in some cases, we are not so competitive. The important metric of
our experiments is the flexibility. The results show that our reasoning method
based on constraint solver can handle a wider range of properties, including the
timed-related properties, bounds of variables, event specified properties, and etc.

6 Conclusions

In this paper, we proposed a reasoning method for Timed CSP based on con-
straint logic, which to our knowledge, is the first mechanized reasoning support
for Timed CSP. The contribution of this work is fourfold. Firstly we showed
that event-based process algebra Timed CSP can be encoded in CLP by en-
coding both the operational and denotational semantics. Our work therefore
broadened real-time systems which can be specified and verified by CLP. Sec-
ondly, we handled some useful extensions to Timed CSP, most significant one
is the concept of singal for specifying broadcast communication. Thirdly, we in-
vestigated a wide range of properties that may be proved based on constraint
solving, for instance we showed that using a unique interpretation, traditional
safety and liveness can be proved effectively as well as properties such as lower or
upper bound of a variable and refinement. Lastly, we implemented a prototype
program and applied our approach to various systems. In our future work, we
plan to build a graphical user interface for automatically translating Timed CSP
models, inserting properties, visualizing counterexamples if any and etc, which
has been partially done recently. Besides, we would also extend our method to
verify other integrated formalisms which are based on CSP/Timed CSP.

Acknowledgement

The authors thank Andrew Santosa for insightful discussion on CLP and pointing
out relevant documentations.

References

1. R. Abhik and I.V. Ramakrishnan. Automated Inductive Verification of Parame-
terized Protocols. In International Conf. on Computer Aided Verification (CAV).
Springer, 2001.

2. P. J. Brooke. A Timed Semantics for a Hierarchical Design Notation. PhD thesis,
University of York, April 1999.

3. S. Chaki, E. M. Clarke, J. Ouaknine, N. Sharygina, and N. Sinha. State/Event-
based Software Model Checking. In Proceeding of Integrate Formal Methods 2004,
pages 128–147, 2004.

4. J. Davies. Specification and Proof in Real-Time CSP. Cambridge University Press,
1993.

5. Formal Systems (Europe) Ltd. Failure Divergence Refinement: FDR2 User Manual.
1997.

6. G.l Gupta and E. Pontelli. A Constraint-based Approach for Specification and
Verification of Real-time Systems. In IEEE Real-Time Systems Symposium, pages
230–239, 1997.

7. C. A. R. Hoare. Communicating Sequential Processes. International Series in
Computer Science. Prentice-Hall, 1985.

8. A. Santosa J. Jaffar and R. Voicu. Modeling Systems in CLP with Coinductive
Tabling. In International Conference on Logic Programming, 2005.

9. J. Jaffar and M. J. Maher. Constraint Logic Programming: A Survey. Journal of
Logic Programming, 19/20:503–581, 1994.

10. J. Jaffar, S. Michaylov, P. J. Stuckey, and R. H. C. Yap. The CLP(R) Language
and System. ACM Trans. Program. Lang. Syst., 14(3):339–395, 1992.

11. J. Jaffar, A. E. Santosa, and R. Voicu. A CLP Proof Method for Timed Automata.
In Real-Time Systems Symposium, pages 175–186, 2004.

12. B. P. Mahony and J. S. Dong. Timed Communicating Object Z. IEEE Trans.
Software Eng., 26(2):150–177, 2000.

13. R. Milner. A Calculus of Communicating Systems, volume 92. Springer-Verlag,
1980.

14. G. M. Reed and A. W. Roscoe. A Timed Model for Communicating Sequential
Processes. In L. Kott, editor, ICALP, volume 226 of Lecture Notes in Computer
Science, pages 314–323. Springer, 1986.

15. A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall, 1997.
16. S. Schneider. Concurrent and Real-time System: The CSP Approach. JOHN WI-

LEY & SONS, LTD, 2000.
17. S. A. Schneider. An Operational Semantics for Timed CSP. In Proceedings

Chalmers Workshop on Concurrency, 1991, pages 428–456. Report PMG-R63,
Chalmers University of Technology and University of Göteborg, 1992.

18. G. Smith and J. Derrick. Specification, Refinement and Verification of Concurrent
Systems-An Integration of Object-Z and CSP. Formal Methods in System Design,
18(3):249–284, 2001.

19. D. S. Warren. Programming with Tabling in XSB. In PROCOMET ’98: Pro-
ceedings of the IFIP TC2/WG2.2,2.3 International Conference on Programming
Concepts and Methods, pages 5–6, London, UK, 1998.

20. J. Woodcock and J. Davies. Using Z: Specification, Refinement, and Proof.
Prentice-Hall International, 1996.

