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Abstract. Java PathFinder (JPF) is an explicit-state model checker for
Java programs. It explores all executions that a given program can have
due to different thread interleavings and nondeterministic choices. JPF
implements a backtracking Java Virtual Machine (JVM) that executes
bytecodes using a special representation of JVM states. This special rep-
resentation enables JPF to quickly store, restore, and compare states; it
is crucial for making the overall state exploration efficient. However, this
special representation creates overhead for each execution, even execu-
tion of deterministic blocks that have no thread interleavings or nonde-
terministic choices.
We propose mixed execution, a technique that improves execution time of
deterministic blocks in JPF. Our technique leverages the fact that JPF
is written in Java: JPF is a special JVM that runs on top of a regular,
host JVM. Mixed execution works by translating the state between the
special JPF representation and the host JVM representation. We also
present lazy translation, an optimization that speeds up mixed execution
by translating only the parts of the state that an execution dynamically
depends on. We evaluate mixed execution on six subject programs that
use JPF for generating tests for data structures and on one case study for
verifying a network protocol. The experimental results show that mixed
execution can improve the overall state exploration time up to 36.98%,
while improving the execution time of deterministic blocks up to 69.15%.

1 Introduction

Software model checking is a promising approach for increasing the reliability of
programs. The goal of model checking is to explore the program’s state space to
find property violations or confirm that there are none. To be practical, model
checking needs to run efficiently. Several recent model checking tools—including
JPF [17], AsmLT [10], BogorVM [25], and SpecExplorer [31]—take the trade-off
to speed up the overall state exploration by slowing down a straight-line execu-
tion. This work focuses on speeding up the straight-line execution, in particular
in the Java PathFinder (JPF) model checker [17, 32].

JPF is an explicit-state model checker for Java programs. JPF takes as input
a Java program and an optional bound on the length of program execution. JPF



explores all executions (up to the given bound) that the program can have due
to different thread interleavings and nondeterministic choices. JPF can generate
as output those executions that violate a given (temporal) property, for example
violate an assertion or lead to a deadlock. JPF can also generate as output test
cases for the given program [33,34].

JPF is effectively a special Java Virtual Machine (JVM) implemented in Java.
The main difference between JPF and a regular JVM is that JPF can (quickly)
backtrack the program execution by restoring any state previously encountered
during the execution, which allows exploration of different executions from the
same state. To achieve fast backtracking, JPF uses a special representation of
states and executes program bytecodes by modifying this representation. The
special state representation makes the overall exploration of all different execu-

tions efficient, although it makes each single execution inefficient compared to
a regular JVM.

We propose mixed execution, a technique that can improve execution time
in JPF. The main idea of mixed execution is to execute some parts of the pro-
gram not on JPF but directly on the host JVM. With mixed execution, JPF
still executes the other parts of the program as usual and stores, restores, and
compares the states. Mixed execution only executes on the host JVM the deter-

ministic blocks, i.e., parts of the execution that have no thread interleavings or
nondeterministic choices. To achieve this, mixed execution translates the state
from JPF to JVM at the beginning of a block and from JVM to JPF at the
end of a block. These two translations introduce an overhead, but the speedup
obtained by executing on the host JVM can easily outweigh the slowdown due
to the translations.

Our implementation of mixed execution uses, in a novel way, a mechanism
that already exists in JPF; to quote from the JPF manual [17]:

Host VM Execution - JPF is a JVM that is written in Java, i.e. it runs
on top of a host VM. For components that are not property-relevant, it
makes sense to delegate the execution from the state-tracked JPF into
the non-state tracked host VM. The corresponding Model Java Interface
(MJI) mechanism is especially suitable to handle IO simulaion [sic] and
other standard library functionality.

MJI is an API that allows the host JVM to manipulate JPF state. The key
novelty of mixed execution is the use of MJI to delegate the execution from the
state-tracked JPF into the non-state tracked host JVM even for components that

are property-relevant. Indeed, mixed execution executes on the host JVM some
program code that can modify the program state and thus affect a property, for
example assertion violation. In contrast, the previous use of MJI in JPF did not
execute such program code on JVM and did not translate the state between JPF
and JVM representations. For example, we use our technique in the execution
of property-relevant fragments on the model checking of a network protocol.

We also present lazy translation, an optimization that speeds up mixed exe-
cution by translating only the parts of the state that an execution dynamically
depends on. The basic mixed execution always translates from JPF to JVM the



entire state reachable from a set of roots at the beginning of a deterministic
block. Effectively, the basic mixed execution translates the entire state that any
execution of the deterministic block may potentially read or write. In contrast,
lazy translation starts the execution with no translation and then, during the
execution, translates on demand those state parts that the specific execution
actually reads and writes. As a result, lazy translation performs less translation
and can speed up the basic mixed execution.

This paper makes the following contributions:

– Technique: We propose mixed execution as a technique to improve the ex-
ecution time and the overall state exploration time in JPF. Mixed execution
translates the state between the JPF representation and the JVM repre-
sentation to enable faster execution of bytecodes. Although we present our
technique in the context of JPF, it generalizes to other model checkers such
as AsmLT [10], BogorVM [25], and SpecExplorer [31] that use some special
state representation in exploration.

– Optimization: We present lazy translation, an optimization that improves
the running time of mixed execution by translating only parts of the state
that an execution dynamically requires.

– Implementation: We have implemented mixed execution and lazy transla-
tion by modifying the source code of JPF and providing an instrumentation
for classes executed on the host JVM.

– Evaluation: We evaluate mixed execution and lazy translation on six sub-
ject programs that use JPF for generating tests for data structures. The ex-
perimental results show that mixed execution can improve the overall state
exploration in JPF up to 36.98%, while improving the execution time of de-
terministic blocks up to 69.15%. Additionally, lazy translation can improve
the basic mixed execution up to 25.02%.

– Case Study: We also evaluate mixed execution in a case study that uses
JPF to find a bug in a fairly complex routing protocol, AODV [23].

The rest of this paper is organized as follows. Section 2 presents an example
that illustrates how mixed execution can improve state exploration in JPF. Sec-
tion 3 presents the parts of JPF relevant for the description of mixed execution.
Section 4 presents the details of mixed execution. Section 5 presents the experi-
mental results. Section 6 reviews the related work, and Section 7 concludes the
paper.

2 Example

We next present an example that illustrates how mixed execution can speed up
JPF’s state exploration. Figure 1 shows the example code that was previously
used in several studies on JPF [33–35]. The code explores the state space of the
java.util.TreeMap class from the standard Java libraries. This class implements
the map interface using red-black trees. The basic operations on the map are put,
which adds a given key-value pair (the example sets all values to null), remove,



public static void main(String[] args) {
int M = Integer.parseInt(args[0]); /* length of the sequence */
int N = Integer.parseInt(args[1]); /* range of inputs */

// initialize N method arguments
Integer[] elems = new Integer[N];

for (int i = 0; i < elems.length; i++) elems[i] = new Integer(i);
// create an empty tree, the root object for exploration

TreeMap t = new TreeMap() ;
// explore method sequences up to length M
for (int i = 0; i < M; i++) {

switch (Verify.random(2)) {
case 0: t.put(elems[Verify.random(N-1)], null); break;

case 1: t.remove(elems[Verify.random(N-1)]); break;
case 2: t.get(elems[Verify.random(N-1)]); break;

}
Verify.ignoreIf(storeIfNotAlreadyStored(t));

}

}

Fig. 1. Driver that performs bounded exhaustive exploration on TreeMap.

public class TreeMap {

Entry root ;
int size ;

static class Entry {
Object key;
Object value;

boolean color;
Entry left;

Entry right;
Entry parent; ...

}

public Object put(Object key, Object value) { ... }
public Object remove(Object key) { ... }

public Object get(Object key) { ... } ...
}

Fig. 2. Parts of the example code from TreeMap.

which removes the key-value pair for a given key, and get, which gets the value
for a given key. The code represents a driver that explores all sequences of put,
remove, and get operations up to the given bound M on the sequence length
and N on the range of input values. JPF’s library method Verify.random(int n)

nondeterministically returns a number between zero and the given bound n - 1.

Figure 2 shows relevant fields and methods of the class TreeMap. Objects of
the Entry class represent the nodes of red-black trees. Each node has a key-value
pair, a color (red or black), and pointers to the parent node and the left and
right children. Executions of the put, remove, and get methods manipulate the
tree (passed as the implicit this argument). The goal of the driver is to explore
different trees that can arise during the executions. JPF in general considers the
entire state when comparing different executions, but the driver uses abstract

matching [34, 35] to compare only the state of the tree, namely the state of all
objects reachable from the root t. If the state has been already visited, the JPF’s
library method Verify.ignoreIf instructs JPF to backtrack the execution.



As already mentioned, JPF uses a special representation of the JVM state
to efficiently store, restore, and compare states. Without mixed execution, JPF
executes put, remove, and get methods on the special representation, which slows
down every field read and write. Note, however, that JPF needs the state of the
tree only at the beginning and at the end of these methods; in other words, each
method can execute atomically. Mixed execution therefore executes these two
methods on the host JVM:

– At the beginning of each method execution, mixed execution translates the
objects reachable from the method parameters (including the tree reachable
from this) from the JPF representation into the host JVM representation.
(Lazy translation does not translate all objects at the beginning but only on
demand during the execution.)

– Mixed execution then invokes the method on the translated state in the host
JVM. The method execution can then modify this state.

– At the end of each method execution, mixed execution translates the state
back from the host JVM representation into the JPF representation. JPF
then compares whether it has already explored the resulting state, appropri-
ately backtracks the execution (restores the state), and the process continues.

The speedup (or slowdown) that mixed execution achieves depends on the size
of the state and the length of the method execution. The smaller the state is,
the less mixed execution has to copy between the JPF and JVM representations.
(Lazy translation further reduces this cost such that it does not depend on the
size of the state at the beginning of the method but on the size of the state
that the execution accesses.) Also, the longer the execution is, the more mixed
execution saves by executing on JVM rather than on JPF.

In our running example with TreeMap, the results depend on the bound for
the length of method sequences, M. (We set M = N in all experiments.) The bounds
used in previous studies with abstract matching, and in our driver [34,35], range
from 6 up to 10 . For these bounds, mixed execution (with lazy translation)
achieves the speedup of 9.44% to 36.98% for the overall state exploration. Con-
sidering only the executions of put, remove, and get methods, the speedup is
from 43.15% to 54.95%. The overall state exploration includes the executions
of these methods as well as the state comparison, backtracking, and other JPF
operations. Mixed execution only reduces the method execution time, while the
cost of the rest of state exploration remains the same.

3 Background

We briefly review the parts of JPF relevant for mixed execution. More details
on JPF can be found elsewhere [17, 32]. We first describe how JPF represents
state. More specifically, we focus on how JPF represents the heap. While JPF
also represents stack, thread information, class information, and all other parts
of a JVM state, mixed execution directly manipulates only the heap. We then
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Fig. 3. An example TreeMap object as an object graph and in JPF heap representation.

describe the Model Java Interface (MJI), an existing mechanism in JPF for ac-
cessing the JPF state from the host JVM. Mixed execution uses MJI to translate
the heap between the JPF and JVM representations.

3.1 Heap Representation

Each Java heap consists of a set of objects and some values for the fields of these
objects. Each object has an identity, and each field has a type that can be either
primitive (int, boolean, float, etc.) or a pointer to another object (which can
hold the special value null).

Recall that JPF is implemented in Java. JPF uses Java integer values to
represent object identities. JPF also uses Java integers to encode all field val-
ues, be they primitive or pointers. (JPF determines the meaning of various
integers based on the field types that JPF keeps in the class information.)
Conceptually, JPF represents each object as an integer array, and the entire
heap is then an array of integer arrays. Figure 3 shows the object graph and
the JPF (rooted) heap representation for the TreeMap object that the follow-
ing sequence builds: TreeMap t = new TreeMap(); t.put(new Integer(1),null);

t.put(new Integer(2),null); t.put(new Integer(3),null). BLACK corresponds to
the constant true and RED to the constant false. The fields appearing in the
graph with unspecified valuations store null (represented as -1 in JPF).

3.2 Model Java Interface

Model Java Interface (MJI) is a mechanism in JPF that allows parts of JPF
execution to be delegated from the JPF into the host JVM. MJI is analogous
to the Java Native Interface (JNI) [2] that allows parts of JVM execution to be
delegated from the JVM into the native code, written in say the C language.
MJI, like JNI, splits executions at the method granularity; namely, each method
can be marked to be executed either in JPF or in the host JVM. (JPF uses



special name mangling to mark methods for the host JVM execution.) MJI also
provides API that allows the host JVM execution to manipulate the JPF state
representation, for example to read or write field values or to create new objects.

The libraries distributed with JPF use MJI to implement several parts of
the standard Java library. MJI, like JNI, is used to implement functionality that
either requires higher performance or is not available at the target level (e.g.,
reflection [9] in Java). Specifically, JPF uses MJI to implement several classes
and methods from the java.io and java.lang packages. These existing methods
do not modify the heap; they either only affect the IO or only return primitive
values or new objects. In contrast, our mixed execution leverages MJI to execute
code that can and does modify the heap. Also, mixed execution does not operate
on the JPF representation of state; instead, mixed execution translates the state
between the JPF representation and the host JVM representation.

4 Technique

We next present mixed execution in more detail. Like MJI and JNI (Section 3),
mixed execution operates at the method granularity: the user can mark each
method to be executed either in JPF or in the host JVM. We first present how
mixed execution invokes the methods to be executed on the host JVM. We then
present the basic version of mixed execution that eagerly translates the state
between JPF and JVM at the boundaries of a method call. We finally present
lazy translation, an optimization that translates only the parts that the execution
actually needs.

4.1 Overview

Figure 4 shows how mixed execution invokes methods for host execution. When-
ever the program is about to execute a method, mixed execution checks whether
the method is marked to be executed in the host JVM. If so, mixed execution
translates the state from JPF to JVM, executes the method, and then trans-
lates the state back from JVM to JPF. Note that mixed execution handles both
cases when the method returns normally and cases when the method throws an
exception; mixed execution catches the (JVM) exceptions and translates them
accordingly (into the JPF exceptions), together with the rest of the state.

Mixed execution assumes that the methods marked for execution in the host
JVM are deterministic, i.e., are not affected by any interleaving of threads and
have no nondeterministic choices. (This is always the case when JPF is used to
explore method sequences as shown in Section ; the code is single-threaded and
there are no Verify.random calls in the methods.) Each method takes several
arguments (one of which is the implicit this argument for instance methods).
Some of the arguments may be pointers to objects, and a method execution
can access or modify a field of any object reachable from these pointers. The
arguments thus represent the roots for the part of the heap that the method can
manipulate. (The heap may be much larger than the part reachable from the



void jpfInvoke(Method m, int[] args) {
if (m.shouldBeExecutedOnJVM()) {

// translate arguments from JPF to JVM

Object[] inputs = translateJPF2JVM(env, args);
try {

// use reflection to invoke the method on JVM;
// give it the translated values as the arguments

Object result = m.invoke(inputs);
// translate the heap reachable from the roots from JVM to JPF
translateJVM2JPF(env, inputs);

// translate the return value
int jpfResult = translateObjectJVM2JPF(env, result);

MJI.pushOnStack(jpfResult);
} catch (Throwable t) {

translateJVM2JPF(env, inputs);
// translate the exception
int jpfThrowable = translateObjectJVM2JPF(env, t);

MJI.raiseJPFException(jpfThrowable);
}

}
}

Fig. 4. Pseudo-code of the method invocation for the host JVM execution.

roots, but the method cannot manipulate the part that is not reachable from
the roots.)

4.2 Eager Translation

Figure 5 shows the pseudo-code of the method that translates the state from
JPF to JVM. The input to the method are an MJIEnv object, which encodes
the entire environment/state of the JPF, and an array of method arguments,
encoded in JPF as integers (Section 3). The output of the method is an array of
JVM objects that correspond to the arguments. The method uses a depth-first
traversal of the JPF heap reachable from args to create an isomorphic JVM
heap. The method creates two maps that keep the correspondence between the
JPF and JVM object identities. These maps initially start empty, but the helper
method adds for each JPF object an appropriate JVM object. The method uses
the map from JPF to JVM to appropriately translate the aliasing in the heap
from JPF into JVM. (The use of the map also ensures that the translation
terminates when the heap has cycles.) The map from JVM to JPF will be used
during the translation at the end of the execution. The method and the helper
use several MJI calls (on the env objects) to get the values of fields and to get
the types of the arguments and fields.

Figure 6 shows the pseudo-code of the method that translates the state from
JVM to JPF. The inputs to the method are an MJIEnv object and an array of the
inputs, which represent the roots of the heap at the beginning of the execution.
The effect of the method is to update the JPF state. The method uses a depth-
first traversal of the JVM heap reachable from the inputs roots to appropriately
update the JPF heap to be isomorphic to the corresponding JVM heap. The
traversals keep the set of visited objects. It is important to distinguish this set



Map<int, Object> mapJPF2JVM;
Map<Object, int> mapJVM2JPF;

// main method that translates all method arguments
Object[] translateJPF2JVM(MJIEnv env, int[] args) {

mapJPF2JVM = new Map();

mapJVM2JPF = new Map();
Object[] result = new Object[args.length];

for (int i = 0; i < args.length; i++) {
if (env.typeOf(args[i]).isPrimitive()) {

result[i] = correspondingPrimitiveObject(args[i]);
} else {

result[i] = translateObjectJPF2JVM(env, args[i]);

}
}

return result;
}
// helper method that translates all fields reachable from an object

Object translateObjectJPF2JVM(MJIEnv env, int jpfPointer) {
if (jpfPointer == MJIEnv.NULL) return null;

if (mapJPF2JVM.contains(jpfPointer)) return mapJPF2JVM.get(jpfPointer);
// create a new object

Object o = translateOneReferenceJPF2JVM(env, jpfPointer);
// set the fields of the object recursively
foreach (field f in o.getFields()) {

int value = env.getFieldValue(jpfPointer, f);
if (env.typeOf(f).isPrimitive()) {

setField(o, f, correspondingPrimitiveObject(value));
} else {

setField(o, f, translateObjectJPF2JVM(env, value));
}

}

// return the new object with all fields translated
return o;

}
// helper method that translates only one reference
Object translateOneReferenceJPF2JVM(MJIEnv env, int jpfPointer) {

if (jpfPointer == MJIEnv.NULL) return null;
if (mapJPF2JVM.contains(jpfPointer)) return mapJPF2JVM.get(jpfPointer);

// get the type of JPF object "jpfPointer"
Class c = env.getClass(jpfPointer);

// create a new object of class "c" using reflection
Object o = c.newInstance();
// update the mappings between JPF and JVM objects

mapJPF2JVM.put(jpfPointer, o);
mapJVM2JPF.put(o, jpfPointer);

return o;
}

Fig. 5. Pseudo-code of the algorithm that translates the state from JPF to JVM.

and the map from JVM to JPF objects. In the translation from JPF to JVM,
a map is used both to keep track of visited (JPF) objects and to provide the
mapping of identities. However, in the translation from JVM to JPF, a map
is only used to provide the mapping of identities, because an object should be
traversed even if it is in the map. Moreover, the translation must preserve the
original JPF identity of nodes. The translation method and its helper use several
MJI calls (on the env objects) to create new objects and set the values of fields.



Set<Object> visited;
// main method that translates the post-state

void translateJVM2JPF(MJIEnv env, Object[] inputs) {
visited = new Set();
for (int i = 0; i < inputs.length; i++) {

if (!(env.typeOf(args[i]).isPrimitive())) {
translateObjectJVM2JPF(env, inputs[i]);

}
}

}
// helper method that translates one object
int translateObjectJVM2JPF(MJIEnv env, Object o) {

if (o == null) return MJIEnv.NULL;
if (!visited.contains(o)) {

visited.add(o);
// get type of the object
Class c = o.getClass();

// get (or create if necessary) the corresponding JPF object
int jpfPointer;

if (!mapJVM2JPF.contains(o)) {
// create new JPF object of the same type

jpfPointer = env.createNewObject(c);
mapJVM2JPF.add(o, jpfPointer);

} else {

jpfPointer = mapJVM2JPF.get(o);
}

// set the fields of the object recursively
foreach (field f in c.getFields()) {

Object value = getField(o, f);
if (f.isPrimitive()) {

env.setFieldValue(jpfPointer, f, correspondingPrimitiveJPF(value));

} else {
env.setFieldValue(jpfPointer, f, translateObjectJVM2JPF(env, value));

}
}

}

return mapJVM2JPF(o);
}

Fig. 6. Pseudo-code of the algorithm that translates the state from JVM to JPF.

4.3 Lazy Translation

Lazy translation is an optimization that translates between JPF and JVM only
the parts of the heap that a method execution actually needs. While eager trans-
lation translates the entire heap at the beginning of the execution, lazy transla-
tion translates only the arguments and not all fields reachable from them. During
the execution, however, lazy translation performs a check for each field read and
write to determine whether the field has been translated from JPF to JVM. If
not, lazy translation translates only that one field and continues the execution.
By the end of the execution, lazy translation typically translates into JVM only
a small part of the heap reachable from the method arguments at the beginning.

Lazy translation requires some changes to the code of the methods executed
by mixed execution. Specifically, lazy translation requires the checks for each field
read and write. We achieve those checks using code instrumentation. Figure 7
shows some code from the TreeMap example before and after instrumentation.
For each field, the instrumentation adds (i) a boolean flag that tracks whether



/* Original code, before instrumentation. */
public class TreeMap {

static class Entry {

Entry left;
...

}
public Object put(Object key, Object value) {

... = e.left; /* field read */
e.left = ...; /* field write */

}

...
}

/* Code after instrumentation. */

public class TreeMap {
static class Entry {

Entry left;

boolean _mixed_is_copied_left = false;
Entry _mixed_get_left() {

if (!_mixed_is_copied_left) {
MJIEnv env = JPF.getMJIEnv();
int jpfPointer = env.getFieldValue(mapJVM2JPF(this), "left");

left = translateOneReferenceJPF2JVM(env, jpfPointer);
_mixed_is_copied_left = true;

}
return left;

}
void _mixed_set_left(Entry e) {

left = e;

_mixed_is_copied_left = true;
}

...
}
public Object put(Object key, Object value) {

... = e._mixed_get_left(); /* field read */
e._mixed_set_left(...); /* field write */

}
...

}

Fig. 7. Example code before and after instrumentation.

the field has been translated from JPF to JVM, (ii) a method for reading the
field value (translating it from JPF if necessary), and (iii) a method for writing
the field value. The instrumentation also replaces all field reads and writes in
the original code with the invocations of appropriate methods. A similar instru-
mentation has been used previously in testing and model checking [4, 33].

At the end of a method execution on the host JVM, mixed execution with
lazy translation traverses the JVM heap similarly as mixed execution with eager
translation. In contrast to eager translation, only those fields whose flags are
set to true are translated from JVM to JPF and recursively followed further. A
further optimization would be to have dirty flags to avoid translation from JVM
to JPF for the fields whose value was not changed.



subject methods explored

UBStack push, pop
DisjSet union, find

Trie add, is word, is proper prefix
Vector addElement, removeElement, elementAt

LinkedList add, removeLast, contains
TreeMap put, remove, get

Fig. 8. Subjects used in the experiments.

5 Experiments

We next discuss the experiments used to evaluate mixed execution. We have im-
plemented mixed execution by modifying to the code of the Java PathFinder [17]
to include the algorithms from figures 4, 5, and 6. We have also implemented a
prototype tool that automates instrumentation for lazy optimization. We eval-
uate mixed execution on six subject programs that use JPF for state explo-
ration in data structures. We also evaluate mixed execution on a network pro-
tocol for which JPF could find one injected error. The blocks of code delegated
to mixed execution are deterministic: they are sequential code without non-
deterministic choices (Verify.random calls). We conducted all the experiments
on a dual-processor Intel R© XeonTM 2.8 GHz machine running Linux version
2.6.15 with 2 GB memory. We used Sun’s 1.4.2 06-b03 JVM, allocating 1.5 GB
for the maximum heap size.

5.1 Data Structures

We evaluate mixed execution on the six data structures listed in Figure 8. We
take the subjects from a variety of studies on model checking and testing:

– UBStack is an implementation of a stack bounded in size, storing integer
objects without repetition [6, 21, 28, 37].

– DisjSet is an implementation of a union-find data structure implementing
disjoint sets [37].

– Trie implements a dictionary, i.e., it stores a collection of strings sorted
lexicographically [38].

– Vector, LinkedList, and TreeMap are from the Java 1.4 Collection Frame-
work [29].

Our state exploration considers the methods that add, remove, and search for
elements in each data structure, as listed in Figure 8.

Each experiment uses an execution driver similar to that in Figure 1. We set
JPF to use breadth-first state exploration, and we use mixed execution with lazy
translation. Figure 9 tabulates the results. For each subject and several bounds
on both the method sequence length and the range of values, the table lists
the number of JPF internal states, the total number of bytecodes executed by
JPF (with mixed execution, some bytecodes are executed on the host JVM), the
overall execution time for state exploration, and the execution time of methods



# bytecodes total time method exec. only
name bound # states JPF mixed JPF mixed speedup JPF mixed speedup

[ms] [ms] [%] [ms] [ms] [%]

UBStack 5 929 181217 19677 2318 2137 7.81 490 276 43.67
UBStack 6 5776 1561823 132475 5605 4367 22.09 1836 726 60.46
UBStack 7 41094 14940706 1038230 31602 20889 33.90 14301 4412 69.15

DisjSet 5 624 207261 21507 2546 2500 1.81 187 233 -24.60
DisjSet 6 4653 2067901 161408 9602 8902 7.29 1146 789 31.15
DisjSet 7 47480 27152409 1874435 92054 82169 10.74 14133 8194 42.02

Trie 5 129 120869 4839 1686 1636 2.97 262 221 15.65
Trie 6 257 293899 10855 2068 1966 4.93 419 287 31.50
Trie 7 513 690129 24359 2804 2572 8.27 752 460 38.83
Trie 8 1025 1679127 54311 4834 4149 14.17 1440 847 41.18
Trie 9 2049 4018501 120103 9329 7730 17.14 2929 1446 50.63
Trie 10 4097 9190465 263549 18946 15599 17.67 6547 3064 53.20

Vector 5 7057 892349 120244 4513 4074 9.73 1001 522 47.85
Vector 6 91706 13596654 1605126 38360 30534 20.40 11504 4462 61.21
Vector 7 1466919 247371240 26241690 1276992 1124545 11.94 206508 74046 64.14

LinkedList 5 5471 302914 105134 4390 4256 3.05 914 808 11.60
LinkedList 6 74652 4218361 1446823 35109 33453 4.72 10128 9367 7.51
LinkedList 7 1235317 70962644 24157788 578847 553095 4.45 175267 151016 13.84

TreeMap 5 187 92740 7586 1841 1735 5.76 364 201 44.78
TreeMap 6 534 361600 25864 2532 2293 9.44 761 410 46.12
TreeMap 7 1480 1223256 79470 4294 3490 18.72 1738 988 43.15
TreeMap 8 4552 4629574 277476 10489 7556 27.96 5718 2805 50.94
TreeMap 9 13816 16681289 952976 32254 20897 35.21 20096 9424 53.11
TreeMap 10 39344 54581750 3008954 98633 62162 36.98 66336 29887 54.95

Fig. 9. Comparison of JPF without and with mixed execution.

marked for mixed execution. All times appear in milliseconds. The columns
labeled JPF and mixed represent the runs of JPF without and with mixed
execution, respectively. The speedup columns show the improvement obtained
by using mixed execution.

The results show that mixed execution can reduce the overall state explo-
ration time up to 36.98%, while reducing the method execution time up to
69.15%. Note that for very short executions (such as DisjSet for bound 5), mixed
execution may actually slow down JPF as the overhead of translation outweighs
the benefit of execution on the host JVM. However, the more important cases
are when the execution is long. As the results show, the longer the execution
gets, the more benefit mixed execution brings.

All above experiments with mixed execution use lazy translation. Figure 10
shows the benefit of this optimization. For two subjects and several sizes, we tab-
ulate the overall execution time for state exploration and the time for execution
of methods marked for mixed execution. Lazy translation reduces the overall
time up to 25.02% while reducing the method execution time up to 63.27%.
Note again that the longer the execution gets, the more benefit lazy translation
provides.

5.2 The AODV Case Study

We next present the evaluation of mixed execution on Ad-Hoc On-Demand Dis-
tance Vector (AODV) routing [24], a widely used network protocol for wireless



total time method exec. only
name bound # states eager lazy speedup eager lazy speedup

[ms] [ms] [%] [ms] [ms] [%]

Trie 5 129 1785 1748 2.07 234 202 13.68
Trie 6 257 2118 2052 3.12 393 295 24.94
Trie 7 513 2842 2650 6.76 635 465 26.77
Trie 8 1025 4958 4574 7.75 1660 833 49.82
Trie 9 2049 10150 7911 22.06 3595 1446 59.78
Trie 10 4097 20678 15730 23.93 8217 3018 63.27

TreeMap 5 187 1842 1820 1.19 305 218 28.52
TreeMap 6 534 2685 2651 1.27 571 403 29.42
TreeMap 7 1480 3901 3498 10.33 1338 962 28.10
TreeMap 8 4552 9089 7548 16.95 4308 2864 33.52
TreeMap 9 13816 27595 21014 23.85 15235 9425 38.14
TreeMap 10 39344 83744 62789 25.02 49212 29600 39.85

Fig. 10. Comparison of eager and lazy translations.

AODV # bytecodes total time method exec. only
# nodes path len. # states JPF mixed JPF mixed speedup JPF mixed speedup

[ms] [ms] [%] [ms] [ms] [%]

8 8 5806 24571290 17425293 61347 54384 11.35 9107 3457 62.04
9 9 7960 37106325 26683825 92266 82231 10.88 13520 4892 63.82
10 10 10585 54077303 39272619 161578 110132 31.84 19495 6578 66.26

Fig. 11. Model checking AODV with mixed execution.

multihop ad hoc networks. We consider an implementation of AODV based on
the AODV Draft (version 11) [23] and implemented in J-Sim [1,30], a component-
based network simulator written entirely in Java. AODV is a fairly complex
network protocol whose J-Sim implementation (not including the J-Sim library)
has about 1200 lines of code.

We first give an overview of AODV and its loop-free safety property. We then
explain the details of the driver for AODV and an error that we injected in the
AODV code. We finally present the code instrumentation that enables mixed
execution and the improvements obtained by using mixed execution for finding
the error.

Overview of AODV. An ad hoc network is a wireless network that comes to-
gether when and where needed, as a collection of wireless nodes, without relying
on any assistance from an existing network infrastructure such as base stations
or routers. Due to the lack of complete connectivity and routers, the nodes are
designed to serve as routers (i.e., relays) and assist each other in delivering data
packets. Hence, the route between two nodes may consist of multiple wireless
hops through other nodes; this is called multihop routing.

In AODV, each node n in the ad hoc network maintains a routing table. A
routing table entry (RTE) at node n to a destination node d contains, among
other fields: a next hop address nexthopn,d (the address of the node to which n

forwards packets destined for d), a hop count hopsn,d (the number of hops needed
to reach d from n), and a destination sequence number seqnon,d (a measure of
the freshness of the route information). Each RTE is associated with a lifetime.



Periodically, a route timeout event is triggered invalidating (but not deleting)
all the RTEs that have not been used (e.g., to send or forward packets to the
destination) for a time interval that is greater than the lifetime. Invalidating a
RTE involves incrementing seqnon,d and setting hopsn,d to ∞.

Each node n also maintains two monotonically increasing counters: a node se-
quence number seqnon and a broadcast ID bidn. When node n requires a route to
a destination d, if it does not already have a valid RTE to d, it creates an invalid
RTE to d with hopsn,d set to ∞. Node n then broadcasts a route request (RREQ)
packet containing the following fields 〈n, seqnon, bidn, d, seqnon,d, hopCountq〉
and then increments bidn. The hopCountq field is initialized to 1. The pair
〈n, bidn〉 uniquely identifies a RREQ packet. Each node m, receiving the RREQ
packet from node n, keeps the pair 〈n, bidn〉 in a broadcast ID cache so that it
can later check if it has already received a RREQ with the same source address
and broadcast ID. If so, the incoming RREQ packet is discarded. If not, node m

either satisfies the RREQ by unicasting a route reply (RREP) packet back to n

if it has a fresh enough route to d (or it is d itself) or rebroadcasts the RREQ
to its own neighbors after incrementing the hopCountq field if it does not have
a fresh enough route to d (nor is it d). An intermediate node m determines
whether it has a fresh enough route to d by comparing the destination sequence
number seqnom,d in its own RTE with the seqnon,d field in the RREQ packet.
Each intermediate node also records a reverse route to the requesting node n;
this reverse route can be used to send/forward route replies to n. The requesting
node’s sequence number seqnon is used to maintain the freshness of this reverse
route. Each entry in the broadcast ID cache has a lifetime. Periodically, a broad-
cast ID timeout event is triggered causing the deletion of entries in the cache
that have expired.

A RREP packet, which is sent by an intermediate node m, contains the
following fields 〈hopCountp, d, seqnom,d, n〉. The hopCountp field is initialized
to 1 + hopsm,d. If it is the destination d that sends the RREP packet, it first
increments seqnod and then sends a RREP packet containing the following fields
〈1, d, seqnod, n〉. The unicast RREP travels back to the requesting node n via the
reverse route. Each intermediate node along the reverse route sets up a forward
pointer to the node from which the RREP came, thus establishing a forward
route to the destination d, increments the hopCountp field and forwards the
RREP packet to the next hop towards n.

If node m offers node n a new route to d, n compares seqnom,d (the destina-
tion sequence number of the offered route) to seqnon,d (the destination sequence
number of the current route), and accepts the route with the greater sequence
number. If the sequence numbers are equal, the offered route is accepted only if it
has a smaller hop count than the hop count in the RTE; i.e., hopsn,d > hopsm,d.

Safety property. An important safety property in a routing protocol such as
AODV is the loop-free property. Intuitively, a node must not exist at two points
on a path; therefore, at each hop along a path from a node n to a destination
d, either the destination sequence number must increase or the hop count must



decrease. Formally, consider two nodes n and m such that m is the next hop of
n to some destination d; i.e., nexthopn,d = m. The loop-free property can be
expressed as follows [3, 20]:

seqnon,d < seqnom,d ∨ (seqnon,d == seqnom,d ∧ hopsn,d > hopsm,d)

The test driver. We wrote a test driver for the J-Sim implementation of
AODV. The driver produces an environment that executes all sequences of pro-
tocol events up to a configurable bound N . The set of events, when each event
is enabled, and how each event is handled are as follows [27]:

T0 Initiation of a route request to a destination d: This event is enabled if the
node does not have a valid RTE to the destination d. The event is handled
by broadcasting a RREQ.

T1 Restart of the AODV process at node n: This event may take place because
of a node reboot. The event is always enabled and is handled by reinitializing
the state of the AODV process at node n.

T2 Broadcast ID timeout at node n: This event is enabled if there is at least one
entry in the broadcast ID cache of node n. The event is handled by deleting
this entry.

T3 Timeout of the route to destination d at node n: This event is enabled if n

has a valid RTE to d. The event is handled by invalidating this RTE.
T4 Delivering an AODV packet to node n: This event is enabled if the network

contains at least one AODV packet such that n is the destination (or the next
hop towards the destination) of the packet and n is one of the neighbors of
the source of the packet. The event is handled by removing this packet from
the network and forwarding it to node n in order to be processed according
to the AODV implementation.

T5 Loss of an AODV packet destined for node n: This event is enabled if the
network contains at least one AODV packet that is destined for node n. The
event is handled by removing this packet from the network.

Since JPF could not execute the code for the entire J-Sim simulator and the
AODV protocol, we created a simplified version of the networking layer used by
AODV. This version does not have the full generality of the J-Sim simulator but
provides the functionality needed to run AODV.

Finding errors. We consider an initial state of an ad hoc network consisting of
K nodes: n0, n1, . . . , nK−1 (where nK−1 is the only destination node) arranged
in a chain topology where each node is a neighbor of both the node to its left
and the node to its right (if they exist). In the initial state, nodes ni for all
0 ≤ i ≤ K − 2 have valid routing table entries to the destination nK−1. We
manually injected an error as follows: a RTE is deleted (instead of invalidated)
when a route timeout event occurs. Consider the case of K = 3. A routing loop
may occur because if nexthop0,2 = 1 and a route timeout event takes place at
n1, if n1 is later offered a route to n2 by n0, this route will be accepted because



seqno0,2 > seqno1,2. The case of K > 3 is similar. The interested reader can find
a detailed explanation of this injected error elsewhere [26]. We made JPF stop
the exploration as soon as it finds this error.

Mixed execution. To apply mixed execution on AODV, we needed to de-
termine which parts of the AODV code to execute on the host JVM. We first
marked for host execution the data structures, such as vectors, that AODV uses
to represent protocol data, including routing tables and queues. We then used
profiling to find that AODV spends a lot of execution in the methods of the
J-Sim library class Port that handles sending and receiving of packets between
network nodes [30], so we also marked those methods for host execution. Fig-
ure 11 shows the improvements obtained with mixed execution on AODV. We
tabulate, for a range of number of nodes and length of the event path, the overall
state-space exploration time and the method execution time. Mixed execution
improves the overall exploration from 10.88% to 31.84%, and method execution
from 62.04% to 66.26%.

6 Related Work

Traditional model checkers such as SPIN [13], SMV [16], or Murphi [7] have
been extensively used in formal reasoning of both hardware and software sys-
tems. These tools analyze the models written in the special modeling languages.
To analyze a system, the user thus needs either to manually write a model of the
system in the modeling language understood by the tools [3, 36] or to automat-
ically translate an implementation of the system from a programming language
(e.g., Java) into the input modeling language of the model checkers [5,8,12,22].
Our work considers model checkers that can directly analyze the system written
in a programming language.

Verisoft [11] was the first model checker to directly analyze the implemen-
tation code, specifically code written in the C language. Several recent model
checkers such as CMC [20], BogorVM [25], or JPF [32] also focus on analyzing
the actual code written in a programming language (C or Java). For example,
CMC has been used to model check Linux implementations of networking code
(e.g., AODV and TCP) and file systems [19, 20, 39]. We have also developed a
model checker [27] tailored for the J-Sim network simulator [1] and used it to find
errors in the J-Sim implementation of AODV [27]. The model checker extends
J-Sim with the capability to explore the state space created by a network pro-
tocol, whose simulation code is written in Java. The model checker operates on
the concrete memory state and clones/copies large portions of the state for each
transition. Our current work targets model checkers that operate on a special
representation of state such as JPF, BogorVM, or SpecExplorer.

Handling state is a central issue in explicit-state model checkers [13–15, 18].
Work in this area focuses on efficient implementation of state operations, in-
cluding updating, storing, restoring, and comparing states. For example, JPF
implements techniques such as efficient encoding of Java program state and



symmetry reductions to help reduce the state-space size [15]. As another exam-
ple, Musuvathi and Dill recently proposed an algorithm for incremental heap
canonicalization [18], which speeds up the hashing of states and thus state com-
parisons. While these techniques focus on speeding up the operations on state (or
the overall state-space exploration), we propose mixed execution that focuses on
speeding up the executions that operate on the state that can be translated be-
tween the special (JPF) and the host (JVM) representation. Our technique is
thus orthogonal to the techniques for state operations and can be combined with
them to achieve even higher speed ups.

Our evaluation of mixed execution uses data-structure subjects and the
AODV case study. The data-structure subjects have been used in other projects
on testing and model checking [6, 21, 28, 37, 38], including in the context of
JPF [33–35]. The most recent work in the context of JPF [34,35] proposes test-
input generation techniques that depend on the abstract state matching to avoid
the generation of redundant tests. Our experiments rely on that work because
our drivers match the state of the data structure (reachable from a root) and
not the entire heap. As the results show, however, mixed execution still achieves
significant improvements even when used with abstract matching. Finally, the
AODV case study presented in this paper is, to the best of our knowledge, one
of the largest case studies that have been model checked using JPF.

7 Conclusions

We have presented mixed execution, a technique that improves the execution
time of deterministic blocks in Java PathFinder (JPF). Mixed execution lever-
ages the fact that JPF is a special JVM that runs on top of a regular, host
JVM; mixed execution translates the state between the special JPF representa-
tion and the host JVM representation. We have also presented lazy translation,
an optimization that speeds up mixed execution by translating only the parts
of the state that an execution dynamically depends on. Our evaluation shows
that mixed execution can significantly improve the time for overall state-space
exploration and the time for execution of deterministic blocks.

Mixed execution points out the importance of studying the trade-offs in state-
space explorations used in model checking and software testing. We plan to
further investigate these trade-offs, focusing on the differences between stateful
and stateless search (i.e., between backtracking and re-execution). We also plan
to consider the use of memoization and incremental computation in speeding up
re-execution. We believe that the straight-line execution in model checkers can
be further improved, building on the ideas of mixed execution.
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