

This is an electronic reprint of the original article. This reprint may differ from the original
in pagination and typographic detail.

A Language for Modeling Network Availability

Petre, Luigia; Sere, Kaisa; Walden, Marina

Published: 01/01/2006

Document Version
Final published version

Document License
All rights reserved

Link to publication

Please cite the original version:
Petre, L., Sere, K., & Walden, M. (2006). A Language for Modeling Network Availability. (TUCS Technical
Reports; Vol. 752). Turku Center for Computer Science (TUCS).

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

This document is downloaded from the Research Information Portal of ÅAU: 25. Apr. 2024

https://research.abo.fi/en/publications/170e0fb6-232e-4ed0-af7c-8718d50af387

Luigia Petre | Kaisa Sere | Marina Waldén

A Language for Modeling Network Availability

TUCS Technical Report
No 752, March 2006

A Language for Modeling Network Availability

Luigia Petre
Department of Information Technologies
Åbo Akademi University, FIN-20520 Turku, Finland.
luigia.petre@abo.fi

Kaisa Sere
Department of Information Technologies
Åbo Akademi University, FIN-20520 Turku, Finland.
kaisa.sere@abo.fi

Marina Waldén
Department of Information Technologies
Åbo Akademi University, FIN-20520 Turku, Finland.
marina.walden@abo.fi

TUCS Technical Report

No 752, March 2006

Abstract

Computer networks have become ubiquitous in our society and thus, the various
types of resources hosted by them are becoming increasingly important. In this
paper we study the resource availability in networks by defining a dedicated mid-
dleware language. This language is a conservative extension of the action system
formalism, a general state-based approach to modeling and analyzing distributed
systems. Our language formally treats aspects such as replicated and homonym
resources, their mobility, as well as node failure and maintenance in networks.
The middleware approach motivates the separation of the views and formalisms
used by the various user types such as the network user, the application developer,
and the network manager.

Keywords: Formal modeling, middleware, network availability, resource man-
agement

TUCS Laboratory
Distributed System Design Laboratory

1 Introduction

The networks have become an ubiquitous component of our society. Network ap-
plications range from e-commerce and Internet banking to digital TV, video-on-
demand, and network games. Envisioned applications link the existing networks
with more mundane appliances already containing embedded software, such as
microwave ovens, refrigerators, VCRs, or the house clocks. With these appli-
cations it would be possible to check online the contents of the fridge, schedule
the recording of a TV programme from work, or have the clocks automatically
switched to the daylight saving time [17]. As users of such a network-oriented
world, we would like to access all the applications we need at any time, without
having to know about the network functioning mechanisms.

Meeting such a goal requests a high degree of reliance on the correct function-
ing and availability of the networks. Numerous formal frameworks have been de-
veloped to address the former issue, namely to specify a network-oriented applica-
tion and then analyze its properties. Examples of such frameworks are CSP [7, 8]
and CCS [10], UNITY [6], Object-Z [16], and action systems [1]. To partially
address the latter issue of network availability, some formalisms define concepts
such aslocationsandmobility: π-calculus [12, 11], Ambient calculus [5, 4], Mo-
bile UNITY [14, 9], and topological action systems [13]. These formalisms are
mostly targeted to application developers who need the concepts of location and
mobility in their specifications. The proper network availability is to be treated
at a more specialized lower level. Hence, we need to separately analyze the user
requirements, using for this any formal framework dedicated to network-aware ap-
plications. These requirements may need to be expressed more precisely in terms
of locations and mobility using a properly equipped formal framework. Then, at
an even lower layer, we can analyze the capabilities of the network in handling
the functioning of various applications. This layer is commonly referred to as the
middlewarelayer.

In this paper we present a middleware language for supporting resource-centric
computing. Our proposed language is based on topological action systems intro-
duced in [13] as a framework extending the action system formalism conserva-
tively towards location-aware computing. Here we build on this work by provid-
ing an approach dedicated to the network resources and nodes. A resource can
be adata-oriented repository, apiece of codeor a complete application, the latter
referred to as acomputation unit. Our language handles replicated and homonym
resources, their mobility, as well as node failure and maintenance:

• The replication mechanism provides and maintains copies of resources at
various locations in the network. If some nodes are temporarily down, due
to failures or maintenance procedures, the resources stored at these nodes
may still be accessible if they have replicas on other functional nodes.

• Homonym resourceshave the same name but possibly different meanings.

1

It is quite probable that such resources are defined in large networks, hence
we need to have the mechanisms to handle them.

• Resource mobilityrefers to the change of location in the network and, thus,
provides for resource availability in various parts of the network. This fea-
ture can be used by both the network manager and the application developer.

• Due to the increasing network traffic, the nodes need to be verified ormain-
tainedperiodically: before shutting down a node for maintenance, the status
of its resources is saved and when the node is verified, the status of its re-
sources is restored. Nevertheless, the nodes can unexpectedlyfail, losing
all their resources; in this case there is no previous saving of the resource
status.

Due to its applicability, our proposed language promotes the separation of
concerns in network-oriented applications. Thus, the user requirements can be
specified and analyzed in the context of action systems. Topological action sys-
tems as defined in [13] can be used to specify and develop applications that are
location- and mobility-dependent. The management of the network with all its
mechanisms for increased resource availability can then be specified and analyzed
in the context of topological action systems as developed in this paper.

The paper is structured as follows. In Section 2 we present the language of
topological action systems that can be used by a typical application developer;
in Section 3 we show some properties of this language that make the location-
transparent and the location-aware specifications compatible. The following sec-
tions are dedicated to the middleware language: Section 4 introduces the repli-
cated resources, Section 5 the homonym resources, and Section 6 the resource
mobility. In Section 7 we discuss the failure and maintenance of network nodes.
Conclusions and related work are presented in Section 8.

2 Topological action systems

A topological action system is defined based on a connected graph. The nodes
of this graph model the nodes of a network where computation can take place or
where data can reside, i.e., the set of possiblelocationsfor resources. Let therefore
G = (V ,E) be aconnectedgraph, whereV is the non-empty set of nodes in the
graph andE the set of edges.

A topological action system consists of a finite set ofactionsthat can evaluate
and modify a finite set ofvariables. The values of the variables form thestateof
the system. In the following, we first concentrate on the variables and actions and
then define formally the topological action system.

2

Variables Let Var be a finite set ofvariable names. We define avariable of
a topological action system to be a quadruple(v , loc,Val , val) wherev ∈ Var ,
loc ⊆ V , Val is a nonempty set ofvalues, andval ∈ Val . The first fieldv denotes
the name of the variable, the second (loc) its location in the network(V ,E), the
third (Val) the variable type, and the fourth (val) the current value of the variable.
To avoid working with this quadruple in specifications, a few shorthand notations
are introduced. We express the location of a variable calledv by the expression
v .loc and the names of the variables located at a locationα by the expression
α.var . The value of a variable calledv is given by the expressionv .val and the
type of a variable calledv by the expressionv .type. When we are interested
only in the location of a variable, we can express this byv@α, whereα ∈ v .loc
(α ∈ V) or v@Γ, whereΓ ⊆ v .loc (Γ ⊆ V). When|v .loc| > 1 we say that the
variable isreplicated. We assume that the type of a variable is unchangeable.

Actions Let Act be a finite set ofaction names, distinct fromVar . We define
anactionof a topological action system to be a triple(a, loc,A) wherea ∈ Act is
an informal, optional name for the action,loc ⊆ V is its location in the network
(V ,E), andA is its body, i.e., a statement that can model evaluation and updates
of the variables. A set of shorthand notations is introduced to avoid working with
such triples in specifications. We express the location of an action(a, loc,A) by
the expressionA.loc and the bodies of the actions located at a locationα by the
expressionα.action. When we are interested only in the location of an action, this
is given byA@α, whereα ∈ A.loc (α ∈ V) or A@Γ, whereΓ ⊆ A.loc (Γ ⊆ V).
When|A.loc| > 1 we say that the action isreplicated. The name of an action is
unchangeable. The bodyA of an actiona is described by the following grammar:

A ::= abort | skip | v .val : = e | b→ A | A ; A | []i∈IA | if b then A else A fi
(1)

Here(v , loc,Val , val) is a variable so thatv ∈ Var , e ∈ Val , b is a predicate, and
I an index set. Intuitively,abort is the action which always deadlocks,skip is the
stuttering action,v .val : =e is an assignment,b→ A is a guarded action, which can
be executed only whenb evaluates to true,A1 ; A2 is the sequential composition
of two actionsA1 andA2, []IAi is the non-deterministic choice among actionsAi ,
i ∈ I , andif b then A1 else A2 fi is the conditional composition of two actionsA1

andA2.

Action semantics The semantics of the action bodies in a topological action sys-
tem is expressed with theweakest precondition predicate transformer(wp) [3, 2].
Assume an action bodyA and a postconditionq for A, i.e., a predicate describ-
ing the state after the execution ofA. A andq are then mapped into the weakest
predicatewp(A, q) describing the state beforeA was executed, so thatA estab-
lishesq . For the action bodies described by the grammar (1) we give below their

3

correspondingwp expressions:

wp(abort , q) =̂ false
wp(skip, q) =̂ q
wp(v .val : = e, q) =̂ q [e/v .val]
wp(b→ A, q) =̂ (b ⇒ wp(A, q))
wp(A1 ; A2, q) =̂ wp(A1,wp(A2, q))
wp([]IAi , q) =̂ ∀i ∈ I · wp(Ai , q)
wp(if b then A1 else A2 fi, q) =̂ (b ⇒ wp(A1, q) ∧ ¬b ⇒ wp(A2, q)).

We say that an action behaves miraculously when it establishes the postcondi-
tion false, which models an aborting state. Theguard conditiong(A) defined
as g(A) =̂ ¬wp(A, false) gives those states in which an action behaves non-
miraculously. We assume here thatwp is strict, i.e.,wp(A, false) = false, hence
g(A) = true, for every non-guarded action (see (1)). Strictness is not a restric-
tion for wp, since any actionA′ such thatg(A′) = b, b 6= true, can be rewritten
asA′ = b → A, whereg(A) = true. The actionsA that respect the condition
g(A) = true are calledalways enabled.

Topological action systems The computation unit in the network(V ,E) is
modeled by atopological action system, defined in the following form:

A =̂ |[exp y ;
var x ;
imp z ;
do []i∈I Ai od

]|

(2)

The first three sections are for variable declaration and usage, while the last de-
scribes the computation involved inA, whenI is finite. We assume thatx , y
andz are lists of variables whose names are pairwise disjoint, i.e., the name of a
variable is unique in a topological action system.

Theexp section describes theexportedvariablesy declared byA, y = {(yl ,
yl .loc, yl .type, y0

l)}l∈L, whereL is a finite set of indices. They can be used within
A, as well as within other topological action systems that import them. Initially,
they are assigned the valuesy0

l and are located atyl .loc. If the initialization is
missing, arbitrary values from the type setsyl .type are assigned as initial values,
while a default location{λ}, λ 6∈ V is assigned as initial location. As the exported
variables can be imported by other systems, their names are unchangeable.

Thevar section describes thelocalvariablesx declared byA, x = {(xj , xj .loc,
xj .type, x 0

j)}j∈J , whereJ is a finite set of indices. They can be used only within
A. Initially they are assigned the valuesx 0

j and locationsxj .loc, or, if the initial-
ization is missing, some arbitrary values from their type sets and{λ} for location,
respectively. As these variables are local toA, their names can be changed. This

4

change has to respect the requirement of unique names for variables in a topolog-
ical action system and has to be propagated in all the action bodies that access the
respective local variables.

The imp section describes theimportedvariablesz , z = {(zk , αk ,Tk)}k∈K ,
whereK is a finite set of indices. These variables are specified by name (zk),
desired location of import (αk), and desired import type (Tk). They are used in
A and are declared as exported in other topological action systems, thus, mod-
eling the communication between topological action systems. The imported and
the exported variables form theglobal variables ofA. The desired location of
importαk is denoted byzk .iloc and the desired type of importTk by zk .itype. The
locationsαk can also be left unspecified, denoting the need ofA to use variables
with predefined names and types, independently of their location. In this case we
write zk .iloc = ∅. As the imported variables refer to exported variables of other
topological action system, also their names are unchangeable.

Thedo...od section describes the computation involved inA, modeled by a
non-deterministic choice between actions with bodiesAi described by the gram-
mar (1). If some of these actions are replicated,|Ai .loc| > 1, thenAi in the
do...od section stands forAi@ρi1 [] Ai@ρi2 [] ... [] Ai@ρihi

, where|Ai .loc| = hi

andAi .loc = {ρi1 , ρi2 , ..., ρihi
}. Hence, in order to describe the computation of an

action in a topological action system we refer to actions(a, ρ,A), ρ ∈ V .
Assume that the names of all the variables accessed by an action(a, ρ,A)

are in the setvA and the names of the accessed imported variables are in the set
iA, iA ⊆ vA. It can often be the case that the variablesvA and the actiona
are located in different nodes of the network and hence, the accessibility of the
variables from the action is not necessarily guaranteed. To model the network
accessibility of an action(a, ρ,A), ρ ∈ V , we define a function of the action and
its location, calledcell: cell(A, ρ) ⊆ V . The cell comprises the set of accessible
locations for each action at a certain location.

To model that the action(a, ρ,A), ρ ∈ V and its accessed variables are appro-
priately located, we define a predicate calledlocation guard, denotedlg(A@ρ):

lg(A@ρ) =̂ ∀v ∈ vA · (∃α ∈ cell(A, ρ) · v ∈ α.var)∧
(v ∈ iA ∧ v .iloc 6= ∅ ⇒ α = v .iloc)

(3)

Before executing the action, the location guard verifies that, for each variable
calledv , v ∈ vA, there is a locationα in the cell of the action that contains a
variable with this name. If an imported variablev ∈ iA is specified together with
its desired location of import (v .iloc 6= ∅), then the locationα coincides with the
desired location of importv .iloc.

Enabledness Theguard of the action(a, ρ,A) is defined as

gd(A@ρ) =̂ lg(A@ρ) ∧ g(A),

5

whereg(A) is the guard condition. An action(a, ρ,A) of a topological action
system is said to beenabled, if its guardgd(A@ρ) evaluates to true. An action
can be chosen for execution only if it is enabled.

The topological action systemA in formula (2) thus models computation via
the action[]i∈I (Ai@ρi1 [] Ai@ρi2 [] ... [] Ai@ρihi

). Hence,A is a set of actions
with bodiesAi and locationsρij , i ∈ I , j ∈ {1, 2, ..., hi}, operating on local and
global variables. First, the local and exported variables whose values form the
state ofA are initialized. Then, repeatedly, enabled actions at various locations
in V are non-deterministically chosen and executed, typically updating the state
of A. Actions that do not access each other’s variables and are enabled at the
same time can be executed in parallel. This is possible because their sequential
execution in any order has the same result and the actions are taken to be atomic.
Atomicity means that, if an enabled action with bodyA is chosen for execution,
then it is executed to completion without any interference from the other actions
of the system. The computation terminates if no action is enabled, otherwise it
continues infinitely.

3 Scalability, granularity, and compatibility

Parallel composition The topological action system is defined as the basic com-
putation unit. Yet, in order to model complex systems we need to be able to
compose such units. This operation is described using theparallel composition
operator.

Consider the topological action systemsA andB below. Weassumethat the
local variables of these systems have distinct names:{xj1}j1∈J1 ∩ {wj2}j2∈J2 = ∅.
If this is not the case, we can always change the name of a local variable to meet
this requirement. The exported variables declared inA andB arerequiredto have
distinct names,{yl1}l1∈L1 ∩ {vl2}l2∈L2 = ∅:

A = |[exp y ; B = |[exp v ;
var x ; var w ;
imp z ; imp t ;
do []i1∈I1

Ai1 od do []i2∈I2
Bi2 od

]|]|
Theparallel compositionA || B of A andB has the following form:

A || B =̂ |[exp u ;
var s ;
imp r ;
do A [] B od

]|

(4)

whereu = y ∪ v , s = x ∪ w and r is the list obtained by concatenating the
lists of imported variablesz , t and removing those variables that are in the listu:

6

r = (z ∪ t) \ u. Also, A = []i1∈I1
Ai1 andB = []i2∈I2

Bi2. The initial values and
locations of the variables, as well as the actions inA || B consist of the initial
values, locations, and the actions of the original systems, respectively. The well-
definedness ofA||B is ensured by the fact that all its variables have unique names:
the exported variables ofA andB are required to be distinct, the local variables
of A andB are assumed to be distinct, and moreover, these local variables can
always be renamed in order not to collide with the exported variables. The binary
parallel composition operator ‘||’ is associative and commutative and thus extends
naturally to the parallel composition of a finite set of topological action systems.

Scalability Based on the parallel composition operator, our topological approach
is enabled toscale up, i.e., to model larger systems. We can thus specify the
computation of entire networks, including the location of their various resources.
Based on the same operator, more flexibility of this approach has been demon-
strated [13]. Thus we can decompose a topological action system into parallel
‘smaller’ units, so small that they encompass only a variable or an action. If the
topological action systemA in (2) has only two exported variables, two local vari-
ables, one imported variable and two actions (I = {1, 2}), then we rewrite it as
follows:

A = |[exp y1]| || |[exp y2]| || |[var x1]| || |[var x2]| || C1 || C2

C1 = |[imp z , y1, x1 ; do A1 od]|
C2 = |[imp z , y2, x2 ; do A2 od]|

(5)

wherez , y1, x1 are the names of the variables imported byC1, andz , y2, x2 are the
names of the variables imported byC2. Hence, we have a collection of topological
action systems, each describing only one resource and running in parallel with
each other.

Such flexibility provided by the topological action systems approach allows
the computation unit toscale downto fine grains of data and code resources.
This is important because it provides a unique notation for modeling different
kinds of resources in a network. Thus, a topological action system denotes not
only an entire computation unit that acts via actions over a set of variables, but
also a data repository (a variable or a set of variables) or mere code resources (an
action or a set of actions).

Location of systems Topological action systems of the formA1 =|[exp y@Γ1]|,
A2 =|[var y@Γ2]|, andA3 =|[imp z ;do A@Γ3 od]| can be seen as taking the lo-
cation of their declared entities:A1@Γ1,A2@Γ2,A3@Γ3. This rises the question
of defining locations also for the entire computation unit, i.e., the topological ac-
tion system, not only for base resources such as variables and actions. The concept
of location for topological action systems is applicable when mobility and other
features of various resources are modeled, as shown in the following sections.

7

If all the components of a topological action system have the same location,
then this location is propagated to the topological action system. In case the loca-
tions differ, the topological action system gets the default location{λ}. Thus, we
define the location of a topological action systemA,

A = |[exp y1@Φ1, · · · , yn@Φn ;
var x1@Ψ1, · · · , xm@Ψm ;
imp z ;
do []i∈I Ai@∆i od

]|

as:

A.loc =̂

{
Φi , Φi = Ψj = ∆k , ∀i , j , k
{λ}, otherwise.

(6)

We also use the notationA@α or A@Γ for expressing thatα ∈ A.loc or Γ ⊆
A.loc, respectively. The reverse relation, of a topological action system propa-
gating its location to its components holds in the following form. IfA.loc =
{α}, α ∈ V orA.loc = Γ, |Γ| > 1 then the components ofA all have the same
locationA.loc. Yet, if A.loc = {λ} then we cannot say anything about the loca-
tions of the topological action system components.

The default location models the location of a server from which the entire
network is accessible and vice versa, any resource located atλ is accessible to
every other node in the networkV . More precisely, an action with bodyA so
that A.loc = {λ} hascell(A, λ) = V , hencelg(A@λ) = true. This action
is therefore enabled whenever the guard conditiong(A) holds. We also assume
that λ ∈ cell(A, ρ), for every action(a, ρ,A). Thus, if an action requires some
variable located at{λ}, then the variable is accessible. This mechanism of default
location is intended as a compatibility means with the more traditional local area
networks where there is no replication and no significant mobility, and hence no
location information is necessary. Such a local area network can be seen as located
at{λ}, and so, is location-transparent.

4 Replicated Resources

One aspect of our middleware language is the definition and maintenance of repli-
cated resources. The replication mechanism is intended for optimal availability of
resources and, thus, we do not replicate resources located at{λ}. Such resources
are anyway accessible to the whole network as explained above. In the following,
we study the replication of each resource type in turn: first we consider variables,
then actions, and then topological action systems.

8

4.1 Variables

In the previous sections we have seen the impact of variable names, in the defini-
tion of action enabledness as well as in the well-definedness of parallel composi-
tion. We now study variables having the same name.

A replicated variableis by definition a variable whose location has more than
one element. More precisely, the replicas of a variable calledv and located at
Γ = {α1, α2, α3, ...} have the same name, type, and value, but different locations
excluding{λ} (v@α1, v@α2, v@α3, ...). Moreover, it makes no sense to have
different replicas of the same resource at the same location.

Accessing replicated variables depends on whether the access is (only) for
reading or for (reading and) updating the variable. If a variable is only accessed for
reading, then no special rule is needed, hence the location guard in (3) is used. We
can reinterpret this rule as follows: For any variable calledv , v ∈ vA, we choose
a location of one of its replicas so that this location is accessible to the action. If a
variable is accessed also for updating, then we need a special rule: if a replicated
variable is updated, then all its replicas have to be updated simultaneously to the
same value. We model this case in two steps. First, we enforce a more restrictive
form of the location guard than the one in (3):

lg(A@ρ) =̂ ∀v ∈ vA · (∃α ∈ cell(A, ρ) · v ∈ α.var)∧
(|v.loc| > 1 ⇒ v.loc ⊆ cell(A, ρ))∧
(v ∈ iA ∧ v .iloc 6= ∅ ⇒ α = v .iloc)

(7)

This restricted form ensures that we can access all the replicas of a variable called
v that needs to be updated. Second, if the action with bodyA is enabled and
chosen for execution, then every assignment to such a variable is replaced by
the sequential composition of assignments to all its replicas. As an example, the
action in the topological action system

|[exp y@{α, β} ; do (y .val 6= 5 → y .val : = 5)@ρ od]|
first checks the guard conditiony .val 6= 5, then the location guard(∃δ∈cell(y .val
6= 5 → y .val : = 5, ρ) · y ∈ δ.var) ∧ {α, β} ⊆ cell(y .val 6= 5 → y .val : = 5, ρ).
If both conditions evaluate totrue, then bothy@α andy@β are updated to the
value 5. The atomicity property for actions ensures that other computations will
not accessy until all its copies are updated.

Creating replicas There are two ways to create replicas for a variable. We can
either declare the variable as replicated or we can update its location via actions
during the execution of the topological action system. In the latter case, consider
that we have a variable calledv . We can create another replica of this variable at
the locationα 6= λ using a specialcopy action:

A ::= ... | copy(v , α),
copy(v , α) =̂ v .loc 6= {λ} → v .loc : = v .loc ∪ {α} (8)

9

This action is semantically sound, itswp expression having the following form:

wp(copy(v , α), q) = (v .loc 6= {λ} ⇒ q [(v .loc ∪ {α})/v .loc])

Its guard condition isv .loc 6= {λ}. In order to create replicas atα, the actioncopy
needs to have this location accessible to its cell. Hence, the location guard is

lg(copy(v , α)@ρ) = ∃β ∈ cell(copy(v , α), ρ) · v ∈ β.var
∧α ∈ cell(copy(v, α), ρ)

Removing replicas The reverse of thecopy operation is that of removing repli-
cas of a variable calledv :

A ::= ... | remove(v , α),
remove(v , α) =̂ ifv .loc \ {α} 6= ∅ then v .loc : = v .loc \ {α}

else v .loc : = {λ} fi
(9)

This action is semantically sound having the followingwp expression:

wp(remove(v , α), q) = (v .loc \ {α} 6= ∅ ⇒ q [(v .loc \ {α})/v .loc])∧
(v .loc \ {α} = ∅ ⇒ q [{λ}/v .loc]),

while its guard condition istrue and its location guard is similar to the location
guard ofcopy(v , α). If v .loc = {α} and we still want to remove this ‘replica’,
then the copy fromα is indeed removed, but the variable is saved at the default
location{λ}.

4.2 Actions

Actions have a different replication pattern compared to variables. They model
activecode resources, i.e., code which executes itself following its own semantic
rules. We observe that executingA [] A is equivalent to executingA, except that
some of the nodes containingA may be unavailable. Hence, by having replicas of
an action executed in parallel at different locations, we increase the enabledness
of the code modeled by this action, i.e. we ensure a better availability.

A replicated action is by definition an action whose location has more than
one element. More precisely, the replicas of an action(a, loc,A) so thatA.loc =
{ρ1,ρ2,ρ3, ...} have the same name and body, but different locations excluding
{λ}: (A@ρ1, A@ρ2, A@ρ3, ...). It makes no sense to have more than one replica
of an action at the same location.

Creating replicas There are two ways to create replicas for an action. We can
either declare the action as replicated or we can update its location via actions
during the execution of the topological action system. In the latter case, consider

10

that we have an action with bodyA. We can create another replica of this action
at the locationα 6= λ using a specialcopy action:

A ::= ... | copy(A, α),
copy(A, α) =̂ A.loc 6= {λ} → A.loc : = A.loc ∪ {α} (10)

This action is semantically sound, itswp expression having the following form:

wp(copy(A, α), q) = (A.loc 6= {λ} ⇒ q [(A.loc ∪ {α})/A.loc])

Its guard condition isA.loc 6= {λ} and its location guard is

lg(copy(A, α)@ρ) = ∃β ∈ cell(copy(A, α), ρ) · A ∈ β.action
∧α ∈ cell(copy(A, α), ρ)

We note that the action body needs to be appropriately located in order for the
copy operation to succeed. In this case, the action to be copied behaves more like
a data resource.

Removing replicas The reverse of thecopy operation is that of removing repli-
cas of an action with bodyA:

A ::= ... | remove(A, α),
remove(A, α) =̂ ifA.loc \ {α} 6= ∅ then A.loc : = A.loc \ {α}

else A.loc : = {λ} fi
(11)

This action is semantically sound having the followingwp expression:

wp(remove(A, α), q) = (A.loc \ {α} 6= ∅ ⇒ q [(A.loc \ {α})/A.loc])∧
(A.loc \ {α} = ∅ ⇒ q [{λ}/A.loc]),

while its guard condition istrue and its location guard is similar to the location
guard ofcopy(A, α). If A.loc = {α} and we still want to remove this ‘replica’,
then the copy fromα is indeed removed, but the action is saved at the default
location{λ}.

4.3 Topological action systems

Consider a topological action systemA in (2) so thatA.loc 6= {λ}. A is called
replicated if A.loc > 1. This means that all the variables and actions ofA are
replicated atA.loc. Creating and removing replicas ofA is based on creating and
removing replicas for all the variables and actions ofA. We formally extend the

11

action grammar (11) with two more actions:

A ::= ... | copy(α) | remove(α),
copy(α) =̂ A.loc 6= {λ} →

∀l ∈ L · copy(yl , α);
∀j ∈ J · copy(xj , α);
∀i ∈ I · copy(Ai , α)

remove(α) =̂ ifA.loc \ {α} 6= ∅ then
∀l ∈ L · remove(yl , α);
∀j ∈ J · remove(xj , α);
∀i ∈ I · remove(Ai , α)

else A.loc : = {λ} fi

(12)

These actions are semantically sound, having tedious but obviouswp expressions.
The actionscopy(α) andremove(α) refer to the topological action system they
are specified in, hence, we cannot manipulate other systems based on these ac-
tions. Namely, computation units can only duplicate themselves and similarly for
reducing their number of replicas.

5 Homonym variables

Another capability of our middleware language is the treatment of homonym vari-
ables. The more general case of such variables having the same name, but pos-
sibly different types and values, is slightly different with respect to replication.
These resources can be declared in different topological action systems:T1 =
|[exp (zk , {α},T1, a)]| andT2 =|[exp (zk , {β},T2, b)]|, wherezk is their com-
mon name,{α} and{β} their distinct locations,T1 andT2 their types, anda and
b their values. The typesT1 andT2 can be identical or not. The difference with
respect to a replicated variable located at{α, β} is that each homonym variable
has its own update history, i.e., their updates are independent of each other.

Clearly, the systems where homonym variables are declared cannot compose
in parallel with each other. However, another topological action system importing
the variable(zk , αk , zk .type) can compose with either ofT1 or T2. In this case, for
importing a variable both its name and its type have to match with its specification
(zk , αk , zk .type). Hence, the last conjunction in the location guard formula (3)
(v ∈ iA ∧ v .iloc 6= ∅ ⇒ α = v .iloc) becomes(v ∈ iA ⇒ v .type = v .itype ∧
(v .iloc 6= ∅ ⇒ α = v .iloc)). In this way the rightly typed variable is imported.

Besides the above modification, we need to ensure that at a certain location
there is only one variable with a certain namev , ∀v ∈ V . This integrity condition
is modeled by a function that records, for every location inV and every variable
name inVar , the number of variables having that name and located there:∀v ∈
Var ,∀α ∈ V ·α.no(v) ∈ {0, 1}. Thus,α.no(v) = 1 means that a variable called
v is located or has a replica atα andα.no(v) = 0 means that there is no variable

12

calledv located or with a replica atα. When we specify our systems we need
to ensure the well-definedness of this function: a replicated variablev has only
one copy at everyα ∈ v .loc and there are no homonym variables calledv with
common locations,∀v ∈ Var .

Hence, the guards of the actions that could modify the values of the func-
tion during execution have to prohibit this. The actioncopy(v , α) thus becomes:
copy(v , α)=̂v .loc 6= {λ}∧α.no(v) = 0 → v .loc: = v .loc ∪ {α}.

6 Mobility of resources

In addition to replication, mobility is a central feature in network computations
and in our middleware language. We can model data, code, as well as computation
unit mobility using the topological action system framework. Hence, we obtain a
model forresource mobility.

We start by extending the grammar (12) with the following actions:

A ::= ... | move(v , α0, α) | move(A, α0, α) | move(α0, α),
α0, α ∈ V

move(v , α0, α) =̂ α0 ∈ v .loc → v .loc : = v .loc \ {α0} ∪ {α}
move(A, α0, α) =̂ α0 ∈ A.loc → A.loc : = A.loc \ {α0} ∪ {α}
move(α0, α) =̂ α0 ∈ A.loc →

∀l ∈ L ·move(yl , α0, α);
∀j ∈ J ·move(xj , α0, α);
∀i ∈ I ·move(Ai , α0, α)

(13)
Herev is the name of a variable,A is the body of an action, andA is a topological
action system. Themove actions model the movement of resources (variable,
action, topological action system) from the initial locationα0 to a locationα in
the network. These actions are guarded by the condition that the initial location of
the resource contains the locationα0. Themove actions are semantically sound;
the first two have the followingwp expressions and guard conditions:

wp(move(v , α0, α), q) = (α0 ∈ v .loc ⇒ q [(v .loc \ {α0} ∪ {α})/v .loc])
wp(move(A, α0, α), q) = (α0 ∈ A.loc ⇒ q [(A.loc \ {α0} ∪ {α})/A.loc])
g(move(v , α0, α)) = α0 ∈ v .loc
g(move(A, α0, α)) = α0 ∈ A.loc

MovingA from α0 to α is based on moving all the variables and actions ofA. The
corresponding action is also semantically sound, itswp-expression being based on
the above given expressions. The actionmove(α0, α) refers to the topological ac-
tion system it is specified in. Hence, computation units can only move themselves;
we cannot manipulate other systems based on this action.

We can note the role of the guard conditionα0 ∈ r .loc (see (13)) of amove
action for the replicated resourcer , |r .loc| > 1. This condition ensures that only

13

the copy located atα0 is moved toα while the rest of the copies ofr do not change
their location.

Guards In order for themove actions to be executable, the target locationα
needs to be accessible. Furthermore, the variable calledv and the action with
bodyA have to be available in the cell of themove actions. Since these resources
are located atα0 (ensured by the guard condition) the locationα0 also needs to be
available to themove actions. We have the following location guards:

lg(move(v , α0, α), ρ) = {α0, α} ⊆ cell(move(v , α0, α), ρ)
lg(move(A, α0, α), ρ) = {α0, α} ⊆ cell(move(A, α0, α), ρ)
lg(move(α0, α), ρ) = {α0, α} ⊆ cell(move(α0, α), ρ) ∧∧

l∈L lg(move(yl , α0, α), ρl) ∧∧
j∈J lg(move(xj , α0, α), ρj) ∧∧
i∈I lg(move(Ai , α0, α), ρi)

(14)

The location guard of the actionmove(α0, α) also contains the location guards of
themove actions for the variables and actions ofA.

Similarly as for thecopy action, we strengthen the guard condition of themove
action so that∀v ∈Var , ∀α∈ V the functionα.no(v) remains well-defined. The
actionmove(v , α0, α) thus becomes:

move(v , α0, α)=̂α0 ∈ v .loc∧α.no(v) = 0 → v .loc : = v .loc \ {α0} ∪ {α}

7 Node failure and maintenance

The last step in the definition of our middleware language is to handle the failure
and maintenance of nodes. We do this in two steps. First, consider a partition of
the network nodesV into active and inactive nodes,V = Vact ∪ Vinact so that
Vact ∩ Vinact = ∅. We extend the grammar (9) with the following actions:

A ::= ... | fail(α) | begin maint(α) | end maint(α),
fail(α) =̂ α∈Vact → Vact : = Vact \ {α};Vinact : = Vinact ∪ {α}
begin maint(α) =̂ α∈Vact → Vact : = Vact \ {α};Vinact : = Vinact ∪ {α}
end maint(α) =̂ α∈Vinact → Vact : = Vact ∪ {α};Vinact : = Vinact \ {α}

(15)
We assume here thatα ∈ V , α 6= λ, i.e., the server does not fail and does not
need to be maintained. Intuitively, we want to interpret the above actions as fol-
lows. The actionfail(α) models the unexpected failure of nodeα, hence the node
changes its status from active to inactive. The actionbegin maint(α) models that
the nodeα is marked as inactive since some maintenance procedures will be per-
formed for it. The actionend maint(α) models that the nodeα has returned to
normal operation after certain maintenance procedures have been performed for
it.

14

The form of these actions is rather incomplete in (15), hence we proceed to
the second step. We have to model what happens with the resources located at
nodesα that fail or need maintenance, so we slightly refine the actions above.
For maintenance, we would like to ‘save’ the resource information so that we can
restore it when the node functions normally again. For this we further partition
Vinact into nodes under maintenance and failed nodes,Vinact = Vmaint ∪ Vfail so
thatVmaint ∩ Vfail = ∅. The new forms for the maintenance actions are then:

begin maint(α) =̂ α∈Vact → Vact : = Vact \ {α};Vmaint : = Vmaint ∪ {α}
end maint(α) =̂ α∈Vmaint → Vact : = Vact ∪ {α};Vmaint : = Vmaint \ {α}

If α becomes inactive due to failure, then all the variables and actions located
there disappear; hence, the actionfail(α) becomes:

fail(α) =̂ α ∈ Vact → Vact : = Vact \ {α};Vfail : = Vfail ∪ {α};
∀v ∈ α.var · remove(v , α);
∀A ∈ α.action · remove(A, α)

We observe that such a fail operation is relatively safe: in the worst case – when
a resource is only located at the failing nodeα – it saves a copy of each such
resource at the default location{λ}.

All the above actions are simple guarded assignments with obviouswp expres-
sions and guards. Based on this model of failure and maintenance of nodes, we
need to ensure that ordinary actions execute only when their accessed variables
are located at active locations. This is solved by enforcing a small modification to
the location guard. Thus, instead of (∀v ∈ vA · (∃α ∈ cell(A, ρ) ·v ∈ α.var)∧ ...)
we require (∀v ∈ vA · (∃α ∈ cell(A, ρ)∩Vact · v ∈ α.var) ∧ ...).

Due to the possibilities of node failure and maintenance, the location guard
lg(A@ρ) of an action(a, ρ,A) also needs to verify the extra conditionρ ∈ Vact,
and solg(A@ρ) = ρ ∈ Vact ∧ (∀v ∈ vA · ...).

Moreover, the actions that handle locations need to ensure their active status. It
is meaningless to create replicas or move resources to locations that are inactive or
to remove replicas from inactive locations, since the resources there might already
have been removed by the safe failure operation. Hence, the conditionα ∈ Vact

has to be conjuncted with the location guards of the actionscopy , move, and
remove.

8 Conclusions

Topological action systems build conservatively on the earlier action system for-
malism; this is an advantage, since we can use their properties and mechanisms
without having to reinvent them. Independently of this inherent link between the
base and the inheriting formalism, we need to use each for what they are better
equipped. Action systems have been used before to demonstrate their value in

15

modeling and analyzing location-transparent applications [3, 2, 15]. Topological
action systems as shown here concentrate on the management of the network in
applications that are location-aware. Hence, we have presented a precise language
that provides all the needed tools for a middleware network-programmer.

The same principle of inheritance is the basis ofπ-calculus and Mobile UNITY.
CCS systems are represented by parallel compositions of processes that may syn-
chronize and communicate via preestablished links.π-calculus is an extension
of CCS based on the idea that not only values are exchanged over the links, but
links themselves can be communicated. As a result,π-calculus is one of the first
modeling approaches for mobility: the fact that a process varies its links is seen
as if the process moves, in order to attain the respective links.

UNITY [6] is a state-based formalism for modeling distributed systems. Mod-
ularity is modeled by allowing several programs per UNITY system. In this case,
homonym variables declared in distinct programs are shared and the statements
can be executed synchronously or asynchronously. Mobility and computations
based on it are modeled in Mobile UNITY. To coordinate the programs, the con-
ditions of sharing certain variables or of synchronizing certain statements are
given. As programs can move and these conditions can contain location-based
predicates, a dynamic style of computing as well as transient variable sharing or
synchronization are modeled.

As a different approach defined from scratch, Ambient Calculus is dedicated
to modeling computations over the Internet. An ambient is an administrative do-
main where computation happens. It can also have sub-ambients or be contained
in a parent ambient. Sibling ambients can (locally) communicate if they possess
certain complementary capabilities, similarly to CCS andπ-calculus communica-
tion primitives. Mobility is defined as the need to (stepwise) cross barriers and is
the most important feature of an ambient.

We end up by noticing that the main contribution of our middleware language
consists in enforcing conditions (guards) that influence the enabledness of other-
wise always enabled actions. The fact that our non-guarded actions are always
enabled simplifies the understanding of the overall action enabledness. Since our
setting is that of networks, the enforced conditions model the availability of the
network. By carefully defining the status of each network node, we motivate all
the guards defined in this paper.

References

[1] R. J. Back and R. Kurki-Suonio. Decentralization of process nets with centralized control.
In Proceedings of the 2nd ACM SIGACT-SIGOPS Symposium on Principles of Distributed
Computing, pp. 131-142, 1983.

[2] R. J. Back and K. Sere. From Action Systems to Modular Systems. InSoftware - Concepts
and Tools, Vol. 17, pp. 26-39, Springer-Verlag, 1996.

16

[3] R. J. Back and K. Sere. Superposition Refinement of Reactive Systems. InFormal Aspects
of Computing, Vol. 8, No. 3, pp. 324-346, Springer-Verlag, 1996.

[4] L. Cardelli. Mobility and Security. InF. L. Bauer and R. Steinbrüggen (eds), Proceedings
of the NATO Advanced Study Institute on Foundations of Secure Computation, NATO
Science Series, IOS Press, pp. 3-37, 2000.

[5] L. Cardelli. Abstractions for Mobile Computation. InJ. Vitek and C. Jensen (eds). Secure
Internet Programming: Security Issues for Mobile and Distributed Objects. Lecture Notes
in Computer Science, Vol. 1603, pp. 51-94, Springer-Verlag, 1999.

[6] K. M. Chandy and J. Misra.Parallel Program Design: A Foundation. Addison-Wesley,
1988.

[7] C.A.R. Hoare. Communicating Sequential Processes. InCommunications of the ACM,
Vol. 21, No. 8, pp. 666-677, 1978.

[8] C.A.R. Hoare.Communicating Sequential Processes. Prentice Hall International, 1985.

[9] C. Mascolo, G. P. Picco, and G.-C. Roman. A Fine-Grained Model for Code Mobility.
In O. Nierstrasz and M. Lemoine (eds), Proceedings of ESEC99 – The 7th European
Software Engineering Conference, Lecture Notes in Computer Science, Vol. 1687, pp.
39-56, Springer-Verlag, 1999.

[10] R. Milner. A Calculus of Communicating Systems. Lecture Notes in Computer Science,
Vol. 92, Springer-Verlag, 1980.

[11] R. Milner. Communicating and Mobile Systems: theπ-calculus. Cambridge University
Press, 1999.

[12] R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile Processes I and II. InInforma-
tion and Computation, Vol. 100, No. 1, pp. 1-77, 1992.

[13] L. Petre, K. Sere, and M. Waldén. A Topological Approach to Distributed Computing. In
Proceedings of WDS 99 – Workshop on Distributed Systems, Electronic Notes in Theoret-
ical Computer Science, Vol. 28, pp. 97-118, Elsevier Science, 1999.

[14] G.-C. Roman and P. J. McCann. A Notation and Logic for Mobile Computing. InFormal
Methods in System Design, Vol. 20, No. 1, pp. 47-68, 2002.

[15] K. Sere and M. Wald́en. Data Refinement of Remote Procedures. InM. Abadi and T.
Ito (eds.), Proceedings of TACS’97 – International Symposium on Theoretical Aspects
of Computer Software, Lecture Notes in Computer Science, Vol. 1281, pp. 267-294,
Springer-Verlag, 1997.

[16] G. Smith.The Object-Z Specification Language. Kluwer Academic Publishers, 2000.

[17] A. S. Tanenbaum.Computer Networks, fourth edition. Pearson Education, Inc., Prentice
Hall PTR, 2003.

17

Lemminkäisenkatu 14 A, 20520 Turku, Finland | www.tucs.fi

University of Turku
• Department of Information Technology

• Department of Mathematics

Åbo Akademi University
• Department of Computer Science

• Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration
• Institute of Information Systems Sciences

ISBN 952-12-1696-4
ISSN 1239-1891

