
Verifying χ Models of Industrial Systems with

Spin

Nikola Trčka

Department of Mathematics and Computer Science, Eindhoven University of
Technology, P.O.Box 513, 5600 MB Eindhoven, The Netherlands

Abstract

The language χ has been developed for modeling of industrial systems. To obtain
performance measures, its simulator has been successfully used in many industrial
areas. However, for functional analysis, simulation is less applicable. Such analysis
can be done in other environments. In this paper we present guidelines and tech-
niques for translating χ specifications to Promela, the input language of the well
known model checker Spin. We highlight the differences between the two languages
and show, in a step by step manner, how some of them can be resolved. We conclude
by giving the translation scheme and apply it to a small industrial case study.

Key words: industrial systems, verification, the modeling language χ, the model
checker Spin

1 Introduction

When designing industrial systems (machines, manufacturing lines, warehouses,
factories, etc.) engineers make frequent use of simulation models to detect
flaws and to optimize performance. The language χ has been developed es-
pecially for this purpose. It allows for the specifying of both discrete-event
and continuous aspects of industrial systems and its simulator has been suc-
cessfully applied to a large number of industrial cases, such as a car assembly
line (NedCar [12]), a multi-product, multi-process water fab (Philips [7]), a
brewery (Heineken), a fruit juice blending and packaging plant (Riedel [10])
and process industry plants ([1]). Simulation is a powerful technique for per-
formance analysis, like calculating throughput and cycle time, but it is less
suitable for functional analysis (sometimes called verification). It can for in-
stance reveal that a system has a deadlock (it is unable to proceed) or that
it sometimes has a certain behavior, but it cannot show that the system is
deadlock-free nor that it always has a certain behavior.

A most widely used verification technique today is model checking. This tech-
nique performs an exhaustive search of the state space checking if a certain
property of the system holds. The property is represented as a formula of some
temporal logic, a logic that allows us to say things like: if a machine is given
input then it will eventually produce a correct output. There are many vari-
ants of these logics (consult e.g. [22]). They can be linear (reasoning is about
a single sequence of states) or branching (reasoning involves several different
branches starting from a state), action based (reasoning is about what action
can be performed in a state) or state based (reasoning about the value of vari-
ables in a state), etc. Once the property is stated, model checking becomes a
completely automated process.

To facilitate model checking, χ has to be turned into a formal method. Indeed,
recently, a big part of the discrete-event subset of the language was formal-
ized (the formalization is called χσ); a structural operational semantics and
a notion of equivalence were defined [5]. Moreover, a state space generator, a
tool that generates all possible behaviors of the model, was built. Properties of
the model, represented as alternation free µ-calculus formulas (see [22] again),
can then be verified by the model checker of the CADP toolset [9]. However,
there are some problems concerning this approach. First, the current toolset
is a prototype; to be used in real-world applications, it would need to be op-
timized. Second, χ has (the notion of states of) variables but their values are
not kept in the state space and therefore cannot be used in the temporal logic
formulas, i.e. model checking must be action based. To a large extent, for-
mulas referring to values of variables can be verified with action based model
checking but this always requires big changes of the model, e.g. adding of
actions that notify that a variable has a certain value. In addition, not all of
the temporal logic formulas have equivalents in the alternation free µ-calculus
[18]. The third (and probably the biggest) problem is that the (usually very
large) state space must be generated completely before a verification within
CADP can take place.

To solve some of these problems we consider verification of χ models in some
other environments. Also, an extra motivation is that developers of χ are
currently redesigning and extending the language [21] but have no intention
to build any other tools besides a simulator. In particular, they do not intend
to implement an optimized state space generator. Rather, their idea is to
facilitate the verification of χ models by establishing a connection with other
state-of-the-art verification tools and techniques.

The aim of this paper is to present techniques for translating general χ speci-
fications to Promela, the input language of the popular model checker Spin.
Aspects in which χ and Promela differ from each other are given in a step by
step manner and treated in detail. For each aspect, difficulties of translation
are discussed, pitfalls and solutions presented and explained. We cover many

2

important features of χ such as time, nested parallelism, urgency etc. that
are usually present in models of industrial systems. We also (syntactically)
define a subset of χ models that can be translated to Promela and present
a translation scheme.

Our work can be seen as an extension of that presented in [4] and [3]. In
[4], the authors present a translation of a χ model of a turntable machine to
Promela and verify properties, like the absence of deadlock and no product
loss, with Spin. The focus is on the verification and not on the translation;
general guidelines for translating arbitrary χ models to Promela are not
provided. In [3], a more detailed model of the same machine is translated to
Promela, µCRL [2] and Uppaal timed automata [19]. Even though this
paper shows some techniques and difficulties of the translation to Promela,
its aim is to compare the different approaches for the functional analysis of χ
models, and to a lesser extent on the aspect of translation.

Note that here we take an informal approach to the problem. In [20] we support
a part of our translation with a formal correctness proof. There we define a
notion of equivalence for (a slightly different version of) χ, prove that it is
a congruence and that it preserves validity of temporal logic formulas. Then,
we identify a subset of χ that maps to Promela more straightforwardly and
show how a bigger subset can be reduced, modulo the equivalence, to that
form.

The structure of the paper is as follows. In Section 2 we give an introduc-
tion to χ; its syntax and (informal) semantics. As an illustration we present
a χ model of a small manufacturing line. In Section 3 we briefly introduce
Promela, pointing out features that we need. Section 4 is the main section
of this paper. There we explain how we deal with the aspects of χ that are un-
common to Promela: parallelism, scoping and complex data types, deadlock
and immediate termination, guarded processes and time. For each feature we
show what the problems of translating it to Promela are and how we can
circumvent them. Then, we present a translatable subset of χ and a transla-
tion scheme. At the end of the section we illustrate the translation process by
showing the Promela translation of the model of a manufacturing line intro-
duced in Section 2. We also show the usefulness of our approach by proving a
simple property of the line. In the last section we give some conclusions.

1.0.1 Acknowledgements

I thank Bas Luttik for useful comments.

3

2 The χ Language

The redesign of the χ language (including features to model hybrid behavior)
is still work in progress [21]. Since a large part of the discrete-event subset of
the new version of χ can be expressed in χσ, we take χσ as our starting point.

2.1 Syntax and semantics of χσ

Here we give a short and informal introduction to the language. We refer to
[5] for a complete syntax definition and a formal semantics of the language
constructs.

2.1.1 Data types

The basic data types of χσ are booleans, natural, integer and rational numbers
and (typeless) channels. Real numbers are not supported. Most of the usual
constants, operators and relations are defined for every data type and can be
used together with variables to build expressions. Furthermore, χσ provides
a mechanism to build tuples, lists and sets from the basic types (but not
channels).

2.1.2 Time model

The time domain in χσ is dense, i.e. timing is measured on a continuous
time scale. The weak time determinism principle, sometimes called the time
factorization property (time does not make a choice), is implicitly adopted.
Maximal progress (a process can delay only if it cannot do anything else) can
be enforced by an operator. Time additivity (if a process can delay first t1
and then immediately t2 time units then it can delay t1 + t2 time units from
the start) is not implemented. Delaying is enforced by the delay operator but
some processes can also implicitly delay (see the next paragraph).

2.1.3 Atomic processes

The atomic processes of χσ are process constructors and they cannot be split
into smaller χσ processes. They are:

(1) The empty process (ε), the process whose only option is to terminate
successfully.

4

(2) The deadlock process (δ). It cannot execute any action, it cannot delay
and it does not have the option to terminate successfully.

(3) The skip process. It performs the internal action τ . It cannot delay.
(4) The delay process (∆e). It delays any number of time units less or equal

than the value of the expression e.
(5) The assignment process (x := e). It assigns the value of the expression e

to the variable x. It does not have the possibility to delay.
(6) The send process (m!e). It stores the value of the expression e in the chan-

nel m (which behaves as one-place buffer). It is able to delay arbitrarily
long.

(7) The receive process m?x. If the channel m is not empty, then it assigns
the value in m to the variable x; otherwise it blocks. It is also delayable.

2.1.4 Operators

There are nine operators in χσ. We present each one of them together with
their (informal) semantics.

(1) The guard operator (:→). A process b :→ p behaves as p only if the value
of the boolean expression (guard) b is true, otherwise it deadlocks.

(2) The alternative composition operator (8). A process p 8 q represents a
non-deterministic choice between p and q.

(3) The sequential composition operator (;). A process p ; q behaves as p
followed by the process q.

(4) The repetition operator (∗). A process p∗ behaves as p zero or more times.
(5) The parallel operator (‖). A process p‖q executes p and q concurrently in

an interleaved fashion, i.e. the actions of p and q are executed in arbitrary
order. If one of the processes can execute the send action and the other
one can execute the receive action on the same channel then they can
also communicate; in other words p‖ q can also execute a communication
action on this channel.

(6) The scope operator (|[|]|). A process |[s | p]| behaves as p in a local state
s. The state s is used to define local variables and channels visible only
to the process p. It is recursively defined as the empty state (λs) or as
v : s′ where s′ is a state and v is a variable declaration (x : type[7→ c]) or
a channel declaration (∼m).

(7) The encapsulation operator (∂A). A process ∂A(p) disables all actions of
p that occur in the parameter set A. Most of the time, the set A contains
only send and receive actions to enforce a rendez-vous (synchronous)
communication.

(8) The maximal progress operator (π). A process π(p) behaves as p only
that it can delay only if p can delay and p cannot execute any action.

(9) The abstraction operator (τI). A process τI(p) ’hides’ (renames to τ) all
actions of p that occur in the parameter set I.

5

� �

�

�����

����	

�� ���

�	 ��	

�� �

�

��

��
�

��	

��� ���

��	

���

��	

���

��
	

��

��	

Fig. 1. Components of the manufacturing system

Note that χσ provides process definitions but this part of the language is not
formalized so we do not consider it here.

2.2 A manufacturing line in χσ

To give an impression of the language we give an example, a slight modifi-
cation of the one given in [21]. Consider a manufacturing line that consists
of a generator, a distributor, a rejector, two manufacturing cells, an assembly
machine and an exit process. The generator (G) generates products every 7
time units and delivers them to the distributor. The distributor (D) waits 5
time units for one of the cells to be ready and then sends it a product. If
in 5 time units none of the cells are ready the distributor sends a product
to the rejector. Each manufacturing cell consists of two machines (Mrw and
M) and a 3-place buffer in between (B). Every product is processed by the
cell twice. After processing, products are sent to the assembly machine (Ma)
where they are processed further, combined and sent to the exit process (E).
Every machine takes 4 time units to perform its operation. The whole system
is pictured in Fig. 1.

We now present a χσ model of the line:

π(∂A(|[∼gd :∼dc1 :∼dc2 :∼dr :∼cm1 :∼cm2 :∼me :∼mb1 :∼bm1 :∼mm1 :∼mb2 :∼bm2 :∼mm2 : λs |
|[x : bool 7→ false | (∆7 ; gd!x)∗ ; δ]|
‖ |[x : bool | (gd?x; (dm1!x 8 dm2!x 8 (∆5 ; dr!x)))∗ ; δ]|
‖ |[x : bool | (dr?x)∗ ; δ]|
‖ |[x : bool | ((dm1?x 8 (mm1?x ; x := true)) ; ∆4 ; mb1!x)∗ ; δ]|
‖ |[x : bool | ((dm2?x 8 (mm2?x ; x := true)) ; ∆4 ; mb2!x)∗ ; δ]|
‖ |[x : bool, bf : list[bool] 7→ [] | (len(bf) < 5 :→ (mb1?x ; bf := bf ++(x : []))

8 len(bf) > 0 :→ (bm1!hd(xs) ; bf := tl(bf)))∗ ; δ]|
‖ |[x : bool, bf : list[bool] 7→ [] | (len(bf) < 5 :→ (mb2?x ; bf := bf ++(x : []))

8 len(bf) > 0 :→ (bm2!hd(xs) ; bf := tl(bf)))∗ ; δ]|
‖ |[x : bool | (bm1?x ; ∆4 ; (x :→ cm1!x 8 ¬x :→mm1!x))∗ ; δ]|
‖ |[x : bool | (bm2?x ; ∆4 ; (x :→ cm2!x 8 ¬x :→mm2!x))∗ ; δ]|

6

‖ |[x, y : bool | ((cm1?x ‖ cm2?y) ; ∆4 ; me!(x ∧ y))∗ ; δ]|
‖ |[x : bool | (me?x)∗ ; δ]|]|))

Every parallel component represents a part of the system. The order is: G,
D, R, Mrw1, Mrw2, B1, B2, M1, M2, Ma and E. A global scope is used for
the declaration of channels that represent connection between parts. The set
A contains all send and receive actions. Variable x models products. It is a
boolean variable so that we can distinguish cases when the product was not
processed by the cells yet (x is false) from when it is already processed once
(x is true). Symbol [] denotes an empty list, x : [] means that x is added to
the empty list, and the operator ++ concatenates two lists.

3 Promela/Spin

The full presentation of Promela, a very complex language, is beyond the
scope of this paper. We give here only a brief overview mentioning only those
parts of the language that we are interested in. For more information, see
[15,11,16] or consult Spin’s web page http://spinroot.com.

Promela’s syntax is derived from C [17], with communication primitives
from CSP [14] and control flow statements based on the guarded command
language [8]. It has many language constructs similar to χσ constructs.

A common specification consists of global channel declarations, variable dec-
larations and process declarations with possibly one special init process.
Process declarations specify behavior, channel and variable declarations define
the environment in which the processes run. Promela has a rather limited
set of data types, only bool, byte, short, int (all with the unsigned possi-
bility) and channels. It also provides a way to build records and arrays and to
define C-like macros. Message channels are declared, for instance, as chan m

= [2] of {int} meaning that the channel is buffered and that it can store
(at most) two values of (its field’s) type integer. Channels can be of length
0, i.e. unbuffered, to model synchronous communication. They can also have
more than one field, not necessarily of the same type.

Every variable must be declared before use. The exception is the special
dummy variable ’ ’ which is a predefined, global, write-only variable of type
integer, used to store some input values that are of no importance later. It is
an error to use or reference its value.

Process declarations are of this form:

proctype P(parameters) {

7

local variables and channels;

statement
}

Local variables and channels specify the local state of the process and they are
not visible to other processes. The same rules as for global variables apply here.
Any expression is also a statement, executable precisely if it evaluates to a non-
zero value. Assignments are also statements and have the usual semantics. The
skip statement executes the action (1) and has no effect on variables. The
send statement (m!e 1,...,e n) sends a tuple of values of the expressions e i

to the channel m. The receive statement (m?E 1,...,E n) retrieves a message
from the non-empty channel m, for every E i that is a variable assigns a value
of e i to it and for every other E j makes sure that its value matches the value
of the e j. If the channel is buffered, a send is enabled if the buffer is not full; a
receive is enabled if the buffer is non-empty. On an unbuffered channel, a send
(receive) is enabled only if there is a corresponding receive (send) that can be
executed simultaneously. There are also many variants of these statements.

There are several ways to combine statements. The alternative composition is
defined by the selection statement:

if
:: statement_1
...

:: statement_n
fi .

It nondeterministically selects among its options an executable statement and
executes it. A selection blocks until there is at least one selectable option.

The repetition is achieved by the statement:

do
:: statement_1
...

:: statement_n
od .

It is similar to the selection statement except that the choices are executed
repeatedly, until control is explicitly transferred to outside the statement by
a break or goto statement. The break statement terminates the innermost
repetition statement in which it is executed and cannot be used outside a
repetition.

Another way to combine statements is to use sequential composition denoted
as p;q or b -> p. The latter is usually used to emphasize that a process p is

8

guarded by the conditional expression/statement b.

The original version of Promela/Spin is untimed but there is a discrete time
extension, called DTPromela/DTSpin [6]. The idea is to divide time into
slices and then frame actions into these slices. The time between actions is
measured in ticks of a global digital clock. By having a variable t declared as
timer, setting its value to some expression that evaluates to a natural number
(by doing set(t,e)) and waiting for t to expire (by stating expire(t)) a
process can be enforced to postpone its execution for n time slices (where
n is the value of e). When DTSpin executes the timeout action, all timers
synchronize and time progresses to a next slice. This action is executed only if
no other actions can be executed, meaning that maximal progress is implicit.
Deadlock is recognized when timeout is about to happen and all timers are
off (not set or already expired).

Promela provides two constructs, atomic{stmt 1;...;stmt n} and
d step{stmt 1;...;stmt n} that can be used to model indivisible events and
to reduce a state space. Their purpose is to forbid the statements from inside
to interleave with other statements in the specifications. The difference is
that additionally d step executes all statements as one (one state in the state
space). These constructs are very useful but have limitations: statements other
than the first may not block.

Once declared, every process can be started by the Promela process cre-
ation mechanism, the run statement. The special init process, if present, is
automatically instantiated once, and is often used to prepare the true initial
state of a system by initializing variables and running the appropriate process-
instances. With the prefix active, a process definition is considered initially
active and need not be started by the init process. Processes can be started
with different parameters. Once started they execute in parallel with the inter-
leaving semantics. This is the only way to achieve parallelism because there is
no explicit parallel operator. Processes communicate with each other through
global variables and channels.

Properties of a Promela model are expressed in a state-based linear temporal
logic and verified by Spin using the on-the-fly method of model checking (a
property is checked while the state space is building, not after it is already
built).

4 Translating χσ to Promela

First we introduce some mild assumptions about the χ processes we consider
for translation. Spin is a state based model checker and hiding of actions does

9

not play a role so we assume that our models do not contain the τI operator.
In addition, because the main form of communication in χσ is synchronous,
we assume that the encapsulation operator (∂A, with A the set of all send
and receive actions) is applied to our process. Since there is no explicit encap-
sulation in Promela, we do not allow ∂A to occur anywhere else. The last
assumption concerns timing. Because maximal progress in Spin is implicit,
our process is prefixed also by the π operator. This is the only place where π
is allowed (except for one special case, see Remark 1 below). To summarize,
we consider only processes of the form π∂A(p) where p does not contain ab-
straction, encapsulation nor the maximal progress operator (experience shows
that most χσ specifications of industrial systems are of this shape). From now
on when we refer to the process we translate, we mean p.

4.1 Techniques

Translation of some χσ constructs, like assignments, the skip statement, se-
quential and alternative composition is straightforward since they have direct
equivalents in Promela, but there are several important aspects in which χσ

and Promela differ from each other. Translation of such features requires a
detailed explanation. This will be presented in the following paragraphs.

4.1.1 Parallelism

As said before, process definitions from a Promela specification are implicitly
executed in parallel and there is no (explicit) parallel operator. This means
that our χσ process can have parallelism only on top level, i.e. in general,
we must disallow nested parallel operators. In some cases however, there are
techniques to deal with nested parallelism and we discuss them now.

Note that a sequential composition can be simulated by a parallel composition
at the expense of introducing an extra synchronization variable. Thus process
(p ‖ q) ; r is equal to

|[w : nat 7→ 0 | p ; w := w + 1 ‖ q ; w := w + 1 ‖ w = 2 :→ r]|

and similarly p ; (q ‖ r) is equal to

|[w : bool 7→ false | p ; w := true ‖ w :→ q ‖ w :→ r]| .

This technique can easily be extended from two to an arbitrary number of
parallel components.

If parts of a process that run in parallel do not communicate with each other,
the parallel operator is just an interleaving operator. In both χσ and Promela

10

interleaving of atomic processes can sometimes be achieved with one loop and
a few additional guards (boolean variables). The idea is to associate one guard
to each atomic process. If there is a choice between two atomic processes then
they share the same guard. Only atomic processes available from the start
have their guards initially set to true. When an atomic process is executed,
its guard is put to false and the guard of the atomic process that comes next
is assigned true. This is done in a loop that is exited when all the guards are
false. Note that this does not work when there is a ∗ operator involved.

We illustrate the technique with an example. Suppose a,b,c,d and e are atomic
processes. Then, process a ; b ‖ c ; (d 8 e) is transformed to:

|[b1 : bool 7→ true, b2 : bool 7→ false, b4 : bool 7→ false, b3 : bool 7→ true |
(b1 :→ a ; b1 := false ; b2 := true
8 b2 :→ b ; b2 := false
8 b3 :→ c ; b3 := false ; b4 := true
8 b4 :→ d ; b4 := false
8 b4 :→ e ; b4 := false
) ∗ ;¬(b1 ∧ b2 ∧ b3 ∧ b4) :→ ε]|.

Note that this solution introduces many additional assignments and there-
fore enlarges the state space of a process. When translating the example to
Promela one can put a guarded command and the assignments following in
a d step statement.

So far, when dealing with nested parallelism, we worked mostly within χσ, not
considering features present only in Promela. A good candidate for dealing
with nested parallelism is Promela’s process creation mechanism, i.e. the
run statement. The process p ‖ q is translated to

atomic { run(p); run(q) }

and p and q become separate process definitions in Promela. However, this
must be used with great care. If the parallel composition is in a choice context,
e.g. (p ‖ q) 8 r, then it cannot be translated as:

if
:: atomic { run(p); run(q) }
:: r
fi ,

For in this Promela specification the choice does not depend on the exe-
cutability of p ‖ q; the run statement is always executable.

11

4.1.2 Data Types

From the set of basic data types the χσ specification can contain channels,
booleans, natural numbers and integers. Rational numbers are not supported
by Promela. Every undeclared variable must be translated to the dummy
variable. Translation of bool, nat and int variable declarations is straightfor-
ward but translation of channel declarations requires more explanation. First,
in Promela, forcing the communication on some channel to be handshake
communication is automatically done if the channel is declared of zero length.
Second, since all channels in χσ are typeless, in order to translate (declarations
of) them to Promela we must first determine their type from the type of the
receiving variable. This means, if we declare a channel as ∼m and use it, for
example, as m!1 and m?x, where x is declared as integer, then in Promela
m should be declared as

chan m = [0] of {int}

and used as m!1 and m?x. Using channels to transport data of different types
is therefore not allowed.

Complex data types can be implemented using Promela’s support for records,
arrays and macro definitions. For example, a tuple of an integer and a boolean
value (declared as tuple[int, bool] in χσ) is represented as

typedef TUPLE_INT_BOOL {
int elem_1;
bool elem_2;

} .

To model lists we can use buffered channels (a similar approach was taken in [13]).
A list of length n is defined as a tuple of a channel l of capacity n (the actual list)
and a variable head that holds the first element of the list. Adding an item to a
list is represented as sending it to a channel that represents the list. Transforming
a list into its tail is done by receiving an element from this channel. To keep the
head variable up-to-date, we use a predefined Promela function len that returns
the length of a channel and a variant of the send statement (m?<x>) that behaves
as m?x only that the message from the channel m is not erased upon executing. A
list of n integers is represented as:

typedef LIST_INT {
chan l = [n] of {int};
type head = 0;

} .

To make the usage of lists simpler and closer to χσ syntax we define four
macros. They represent some usual functions on lists (note that χσ has more):
add(x,lst) adds x to the list lst, hd(lst) returns a first element of lst,

12

tail(lst) transforms the list lst into its tail and length(lst) gives the
length of lst.

#define add(x,lst) d_step{ lst.l!x;
if
:: len(lst.l) == 1 -> lst.head = x
:: else
fi

}

#define hd(lst) (lst.head)

#define tail(lst) d_step{ lst.l?_;
if
:: len(lst.l) > 0 -> lst.l?<lst.head>
:: else

fi;
}

#define length(lst) (len(lst.l)) .

4.1.3 Scoping

In Promelathere are only two scope levels. Process local, in process dec-
larations, and global, outside of them. It is not possible to introduce blocks
with block-local variables inside the process declarations. This is not a serious
limitation because for almost every process we can always find an equivalent
one of the form |[s | |[s1 | p1]| ‖ . . . ‖ |[sn | pn]|]| where the pi’s do not contain the
scope operator.

First note that |[λs | p]| is equivalent to p and that |[s1 | |[s2 | p]|]| is equivalent to
|[set(s1, s2) | p]| (where set is a function that adds variables from s 2 to s 1,
overwriting those already present in s 1). This allows us to eliminate scope
when its declaration section is empty or when it is immediately nested.

Further, it is not hard to prove that, when q does not contain free variables
(a variable is free in q if it is not used within a scope that declares it) that
are declared in s, then |[s | p]| ◦q is equivalent to |[s | p ◦ q]| for all ◦ ∈ {;, 8, ‖}.
Similarly, b :→ |[s | p]| is the same as |[s | b :→ p]| when b does not contain vari-
ables also declared in s, and p ; |[s | q]| is the same as |[s | p ; q]| when the free
variables of p are not declared in s.

Elimination of a scope in the context of a repetition is more complicated. Note
that the process |[s | p]|∗ has different behavior than |[s | p∗]|. This is because
p in |[s | p]|∗, when it has finished executing, starts again in the ’fresh’ state
s while p in |[s | p∗]| starts from a possibly changed state. A solution is to

13

Table 1
Elimination of scopes

|[λs | p]| p

b :→ |[s | p]| |[s | b :→ p]|
|[s | p]| ;q |[s | p ; q]|
p ; |[s | q]| |[s | p ; q]|
|[s | p]| 8q |[s | p 8 q]|
|[s | p]| ‖q |[s | p ‖ q]|

|[s1 | |[s2 | p]|]| |[set(s1, s2) | p]|
|[s | p]|∗ |[s | (p ; x1 := c1 ; . . . ; xn := cn)∗]|

make p restore the old state when it is done. In other words, if s is of the
form x1 : type1 7→ c1, . . . , xn : typen 7→ cn, ∼m1, . . . ,

∼mk, we transform |[s | p]|∗
to |[s | (p ; x1 := c1 ; . . . ; xn := cn)∗]|. If some of the xi’s are not initialized (i.e.
the part 7→ ci is missing) we simply omit xi := ci.

The summary of all the transformations that (after adequately renaming vari-
ables) can be used for nested scopes elimination is given in Table 1.

4.1.4 Deadlock and Immediate Termination

The deadlock process δ has an equivalent in Promela, the boolean expres-
sion/statement false. The only difference is that, in Promela, deadlock is
delayable until all timers are off. On the other hand, there is no notation to ex-
press (successful) immediate termination in Promela. Our process, therefore,
cannot contain ε. To illustrate that ε in general cannot simply be translated
to the process skip we give an example. The χσ process skip8ε ;δ must always
execute the skip action while the Promela statement

if
:: skip
:: skip;false
fi

can also execute the second skip and deadlock afterwards.

In some cases it is possible to remove the ε from a specification; using for
instance that ε ; p, p ; ε, p ‖ ε and p ‖ ε are all equivalent to p and that (p 8 q) ; r
is the same as p ; r 8 q ; r.

The problem with immediate termination is also hidden in the repetition. In
χσ, the behavior of the process p∗ is ’execute p zero or more times’ which

14

means that it has an option to terminate immediately. Since p∗ is equivalent
to p ;p∗ 8ε, we can think of it as it has a hidden ε. In Promela, the repetition
operator do :: od cannot terminate without executing an action (break or
goto). Therefore, it is not possible to translate p∗. However, process p∗ ; q
(meaning q or p zero or more times and then q), if q does not terminate
immediately, has an equivalent in Promela:

do
:: p
:: q; break
od .

Hence, in the process we can translate, every occurrence of ∗ must be followed
by the sequential operator.

Note that an infinite repetition of a process p in χσ is expressed as p∗ ; δ. Its
translation to Promela is

do
:: p
:: false; break
od .

Because the expression/statement false is never executable the latter state-
ment is equivalent to

do
:: p
od ,

which is a usual way of presenting an infinite behavior in Promela.

Remark 1 Although break and goto statements should not be considered as
actions but only as control flow mechanisms,

do
:: p
:: break
od

(similarly with goto) is not a right translation of the process p∗. This is because the
break statement is still involved in a choice. The previous example is an illustration
of this. If p∗ ; δ were translated as

do
:: p
:: break
od;
false ,

15

Spin could always decide to change the control to the outside of the loop and dead-
lock.

4.1.5 Delays

DTPromela is a discrete time extension so we require delays to be nat-
ural numbers. For rational ones there is always a number we can multiply
all of them by, and obtain natural delays of the same ratio. The ∆e state-
ment is translated to the DTPromela statement expire(t), where t is of
type timer and is previously set to the value of e. For each ∆ statement
a new timer should be introduced. In cases where ∆e is not involved in a
choice, set(t,e) can be present immediately before the expire(t) (there is
a Promela macro delay(t,e) defined as set(t,e); expire(t) that can be
used instead). However, when there is a choice of ∆e and another process we
have to be more careful. If, for example, we translate ∆e 8 p as

if
:: set(t,e); expire(t)
:: p
fi ,

then, because set(t,e) is always executable, Spin can choose to execute it.
For example, if p can do a send or receive action then we lose an option to
communicate which contradicts the fact that send and receive processes are
delayable and that alternatives delay together. Also, if p can do an assignment
action, Spin should not execute set(t,e) because of the maximal progress.
Similar problem appears in processes of the form ∆e∗ ; p.

To prevent time from making a choice set(t,e) must be moved before the
alternative composition (or repetition in the latter case). This is enough to
assure the right behavior since expire(t) is a boolean expression/statement
that is blocked until (the value of) e time slices later. Therefore, the right
translation of ∆e 8 p is:

set(t,e);
if
:: expire(t)
:: p
fi

and similarly for do :: od statement.

Note that delaying zero time units in χσ is equivalent to ε, while in Promela
it is equivalent to skip, i.e. it does an action. This causes similar problems as
the translation of ε to skip would. For example, the process ∆2 ; p 8 ∆2 ; q

16

waits two time units and then behaves as p 8 q. If we translate this process as

set(t1,2); set(t2,2);
if
:: expire(t1); p
:: expire(t2); q
fi ,

then after two clock ticks the values of t1 and t2 become 0, the statements
expire(t1) and expire(t2) become executable, and choice is made regard-
less of the executability of p and q. Therefore, we can only translate χσ spec-
ifications in which all delay statements are immediately followed by the skip
statement.

Remark 2 We have said already that send and receive processes can implicitly
delay and that we assume that the maximal progress operator is only on top
of the specification. However, when send or receive should be urgent, i.e. not
delayable, we need to use π(m!e) instead of just m!e (same for receive). We
can achieve the same in Promela with:

if
:: m!e
:: atomic { timeout; false }
fi .

This statement says that the send is available but the passage of time leads to
an immediate deadlock.

4.1.6 Guards

Statements of type b :→p, in general cannot be just translated as b -> p. This
is because in Promela operator -> is equivalent to the sequential operator
and the boolean expression b is also a statement. This means, if the value of
b is true, Spin will execute the action (1) (e.g. it will pass the guard) even
though process p cannot execute anything. This is different from χσ which
looks for both b to be true and for p to be executable before taking the step.
For example, in χσ, the process (true :→ δ 8 true :→ skip) will execute skip
because δ is never executable. In Promela however, process

if
:: true -> false
:: true -> skip
fi ,

since it does not look ’behind’ guards, can pick the first true, execute it and
deadlock afterwards. Thus, the Promela statement b -> p actually corre-

17

sponds to the process (b :→ skip) ; p in χσ.

In the special case when p is an atomic process it is always possible to trans-
late process b :→ p. A guarded skip is translated to a Promela expres-
sion/statement b. Guarded delays (b :→ ∆e) are simply translated as b &&

expire(t) provided that t is previously set to the value of e. A guarded as-
signment, b :→ x := e, we translate as d step{b; x = e}. With the d step

operator we force the statement to be executed as one action, like in χσ. If
the value of b is false the statement is blocked, and if it is true, since an
assignment is always executable, the statement will execute only one action.

In order to translate guarded send/receive actions we must apply a different
trick because these actions can block. For a channel that has send/receive
actions involved in guarded statements we first change the declaration by
adding another field argument to it, one of type integer. We need the extra
argument to synchronize on guards and we translate b :→m!e to m!e,b and
B :→m?x to m?x,eval(2-B). We use 2-B instead of just B because we want
to avoid the communication between a guarded send and a guarded receive
to happen when both guards evaluate to false (2-B = b is equivalent to B=1

and b=1). The eval function is used to force the evaluation of the expression
2-B. Spin does not do this automatically in receive statements because the
expression can be a variable in which case it should not serve as a match but
instead it would be assigned the incoming value. If a communication action,
for example m?x, is not used in the guarded context but its counterpart send
is, then it should be translated to m?x,1. This goes similarly for m!e when a
corresponding receive is guarded.

Remark 3 There is another possibility to translate guarded send and receive
statements on unbuffered channels (see page 398 in [15]). Instead of adding a
boolean argument to a channel declaration we could declare an array of chan-
nels of size 3 and then translate b:→m!e to m[b]!e and B:→m?x to m[2-B]?x.
Since b, B ∈ {0, 1} we force all the communication to happen on channels with
index 1. As an array index, expression 2-B evaluates automatically so there is
no need for the eval function.

Like in the case of the scope operator, the restriction to have only guarded
atomic processes is not so serious since most processes have equivalents in that
form. Transformations that simplify guards in the context of other guards,
alternative and sequential composition, and repetition are shown in Table
2 (how guarded scopes are simplified we have shown in the paragraph on
scoping). Note that the solution for a guarded repetition introduces ε, but if
p∗ is followed by the sequential operator the ε is redundant.

In general, b :→ (p ‖ q) is not equivalent to (b :→ p) ‖ (b :→ q). This is because
when the value of b is true, after executing an action (for example from p)

18

Table 2
Simplification of guards

b1 :→ b2 :→ p (b1 ∧ b2) :→ p

b :→ (p 8 q) (b :→ p) 8 (b :→ q)

b :→ (p; q) (b :→ p) ; q

b :→ p∗ (b :→ p) ; p∗ 8 b :→ ε

process b :→(p‖q) proceeds as p′‖q and process (b :→p)‖(b :→q) as p′‖(b :→q)
and the action might have changed the value of b to false. Only when p and q
do not change the value of b, e.g. when they do not contain atomic processes
that influence variables present in b, we can distribute the guard over the
parallel operator.

4.2 Translation scheme

In this section we present the subset of χσ models that can be translated to
Promela code and present the translation scheme. The subset is generated
by the following grammar:

A ::= skip | x := e | m!e | m?x | π(m!e) | π(m?x) | ∆e ; skip

BP ::= δ | b :→BP1 | BP1 ; BP2 | BP1 8BP2 | BP ∗
1 ; BP2 | |[S |BP1]|

P ::= π(∂A(|[S |BP1 ‖ . . . ‖BPn]|)), n ≥ 1

Here S is a state, of the same form as in the explanation of the scope operator of
χσ but with the restricted number of data types that variables can be declared
of. The symbol e represents any expression and the symbol b represents a
boolean expression.

The grammar above allows nested scopes and arbitrary guarded processes.
These statements do not have direct translations to Promela code, but, to
eliminate them, we can perform the transformations from Tables 2 and 1.
In this (preprocessing) step we can also introduce the new symbol ? that
abbreviates the combination ∗; . The reduced processes are generated by the
following grammar (A stays the same):

BP ::= δ | b :→A | BP1 ; BP2 | BP1 8BP2 | BP1 ? BP2

P ::= π(∂A(|[S | |[S1 |BP1]| ‖ . . . ‖ |[Sn |BPn]|]|)), n ≥ 1

We now present the translation scheme:

δ 7−→ false

19

b :→A 7−→





d step{b; x := e} if A≡x := e

b if A≡ skip

m!e,b if A≡m!e

m?x,eval(2 - b) if A≡m?x

set(t,e);
b && expire(t)

if A≡∆e ; skip

if
:: m!e,b
:: atomic {timeout; false}
fi

if A≡π(m!e)

if
:: m?x,eval(2 - b)
:: atomic {timeout; false}
fi

if A≡π(m?x)

BP1 ; BP2 7−→ BP1; BP2

BP1 8BP2 7−→
if
:: BP1
:: BP2
fi

BP1 ? BP2 7−→
do
:: BP1
:: BP2; break
od

P 7−→

S;
active proctype P1() {

S_1
BP_1

}
...
active proctype Pn() {

S_n
BP_n

}

20

S (and Si) 7−→





if S≡λs

type x [= val];
S’

if S≡ (x : type[7→ val]) : S′

chan m[0] of {type,int};
S’

if S≡ (∼m) : S′

TUPLE TYPE1 TYPE2 lst;
S’

if S≡ tuple[type1, type2] : S′

LIST TYPE lst;
S’

if S≡ list[type] 7→ [] : S′

Note that, to correctly translate delays, a postprocessing step that declares
and renames timers and that moves set functions to outside of if :: fi and
do :: od statements, should be performed.

4.3 Manufacturing line in Promela

To illustrate our techniques and translation scheme we present the Promela
translation of the manufacturing line model presented in Section 2.2.

#include "dtime.h"

#include "list.h"

chan gd = [0] of {bool};

chan dm1 = [0] of {bool};

chan dm2 = [0] of {bool};

chan dr = [0] of {bool};

chan cm1 = [0] of {bool};

chan cm2 = [0] of {bool};

chan me = [0] of {bool};

chan mb1 = [0] of {bool,int};

chan mb2 = [0] of {bool,int};

chan bm1 = [0] of {bool,int};

chan bm2 = [0] of {bool,int};

chan mm1 = [0] of {bool};

chan mm2 = [0] of {bool};

active proctype G() {

timer t;

bool x = 0;

do :: delay(t,7); gd!x od;

}

active proctype D() {

timer t;

bool x;

do

:: gd?x; set(t,5);

if

:: dm1!x

:: dm2!x

:: expire(t); dr!x

fi

od

}

active proctype R() {

bool x;

do :: dr?x od

}

active proctype MRW1() {

bool x;

timer t;

do

:: if

:: dm1?x

:: mm1?x; x = 1

fi;

delay(t,4);

mb1!x,1

od

}

21

active proctype MRW2() {

bool x;

timer t;

do

:: if

:: dm2?x

:: mm2?x; x = 1

fi;

delay(t,4);

mb2!x,1

od

}

active proctype B1() {

bool x;

LISTBOOL bf;

do

:: mb1?x,eval(length(bf) < 5);

add(x,bf)

:: bm1!hd(bf),(length(bf) > 0);

tail(bf)

od

}

active proctype B2() {

bool x;

LISTBOOL bf;

do

:: mb2?x,eval(length(bf) < 5);

add(x,bf)

:: bm2!hd(bf),(length(bf) > 0);

tail(bf)

od

}

active proctype M1() {

bool x;

timer t;

do

:: bm1?x,1;

delay(t,4);

if

:: x -> cm1!x

:: !x -> mm1!x

fi

od

}

active proctype M2() {

bool x;

timer t;

do

:: bm2?x,1;

delay(t,4);

if

:: x -> cm2!x

:: !x -> mm2!x

fi

od

}

active proctype MA() {

bool x,y;

timer t;

do

:: if

:: cm1?x; cm2?y

:: cm2?y; cm1?x

fi;

delay(t,4);

me!(x && y)

od

}

active proctype E() {

bool x;

do :: me?x od

} .

Let us now verify that products that are only assembled once do not leave
the system. First note that this is equivalent to saying that, in all states of
the system, the variable x from the process E has the value 1 (if also it was
initially 1). In the linear temporal logic built in Spin this is expressed as []

(x == 1). Since this logic allows reasoning only about global variables, we
have to move x to the global scope (and initialize it to 1). Spin verified this
property almost instantly.

5 Conclusion

In this paper we investigated the possibility to translate χ specifications to
Promela. We found that most χ models have equivalents in Promela, but

22

also that sometimes, what seems to be an obvious translation, can have very
different behavior.

Some constructions that we cannot translate, like e.g. ε and p∗ 8 q, are very
rare in models of industrial systems. On the other hand, terms like (p ‖ q)∗

are quite common in such models. Nested parallelism is a major problem that
we cannot (yet) deal with in a satisfactory way. This is a subject for further
investigations.

We were able to syntactically define a translatable subset and we presented a
translation scheme. We also defined the phases of a translation process. Based
on this we are developing an automatic translator from χ to Promela.

Together, the simulator of χ and a tool that translates χ models into Promela
will constitute an effective environment in which in which performance analysis
and functional analysis of industrial systems are combined.

References

[1] D. A. van Beek, A. van der Ham, and J.E. Rooda. Modelling and control of
process industry batch production systems. In 15th Triennial World Congress
of the International Federation of Automatic Control, Barcelona, Spain, 2002.

[2] S. Blom, W. Fokkink, J.F. Groote, I. van Langevelde, B. Lisser, and J.C. van de
Pol. µCRL: A toolset for analysing algebraic specifications. In Proceedings of
CAV2001, LNCS 2102, pages 250–254, 2001.

[3] E. Bortnik, N. Trčka, A.J. Wijs, S.P. Luttik, J.M. van de Mortel-Fronczak,
J.C.M. Baeten, W.J. Fokkink, and J.E. Rooda. Analyzing a χ model of a
turntable system using Spin, CADP and Uppaal. Technical Report CS-04/23,
Eindhoven University of Technology, 2004. To appear in Journal Of Logic and
Algebraic Programming.

[4] V. Bos and J.J.T. Kleijn. Automatic verification of a manufacturing system.
Robotics and Computer Integrated Manufacturing, 17:185–198, 2001.

[5] V. Bos and J.J.T. Klein. Formal Specification and Analysis of Industrial
Systems. PhD thesis, Eindhoven University of Technology, 2002.

[6] D. Bošnački. Enhancing State Space Reduction Techniques for Model Checking.
PhD thesis, Eindhoven University of Technology, 2001.

[7] E. J. J. van Campen. Design of a Multi-Process Multi-Product Wafer Fab. PhD
thesis, Eindhoven University of Technology, 2000.

[8] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

23

[9] J.-C. Fernandez, H. Garavel, A. Kerbrat, L. Mounier, R. Mateescu, and
M. Sighireanu. CADP - a protocol validation and verification toolbox. In
Proceedings 8th of CAV’96, LNCS 1102, pages 437–440, 1996.

[10] J.J.H. Fey. Design of a Fruit Juice Blending and Packaging Plant. PhD thesis,
Eindhoven University of Technology, 2000.

[11] R. Gerth. Concise Promela reference. Obtainable from: http://spinroot.
com/spin/Man/Quick.html.

[12] J. A. Govaarts. Efficiency in a lean assembly line: a case study at NedCar born.
Master Thesis, October, 1997.

[13] Klaus Havelund, Mike Lowry, and John Penix. Formal analysis of a space-craft
controller using SPIN. IEEE Trans. Softw. Eng., 27(8):749–765, 2001.

[14] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

[15] G. J. Holzmann. The SPIN model checker. Addison-Wesley, 2003.

[16] G.J. Holzmann. The model checker SPIN. IEEE Trans. on Software
Engineering, 23(5):279–295, May 1997. Special issue on Formal Methods in
Software Practice.

[17] B. W. Kernighan and D. M. Ritchie. The C Programming Language, Second
Edition. Prentice-Hall, 1988.

[18] O. Kupferman and M.Y. Vardi. Freedom, weakness, and determinism: From
linear-time to branching-time. In 13th IEEE Symposium on Logic in Computer
Science, Indianapolis, Indiana, USA, 1998.

[19] K.G. Larsen, P. Pettersson, and W. Yi. Uppaal in a nutshell. Int. Journal on
Software Tools for Technology Transfer, 1(1-2):134–152, 1997.

[20] B. Luttik and N. Trčka. Stuttering congruence for χ. Technical Report CS-
05/13, Eindhoven University of Technology, 2005.

[21] R.R.H. Schiffelers, D.A. van Beek, K.L. Man, M.A. Reniers, and J.E. Rooda.
Syntax and consistent equation semantics of hybrid Chi. Technical Report CS-
04/37, Eindhoven University of Technology, 2004.

[22] C. Stirling. Modal and Temporal Properties of Processes. Springer, 2001.

24

