Synthesis for Probabilistic Environments*

Sven Schewe

Universitat des Saarlandes, 66123 Saarbriicken, Germany
schewe@cs.uni-sb.de

Abstract. In synthesis we construct finite state systems from temporal
specifications. While this problem is well understood in the classical set-
ting of non-probabilistic synthesis, this paper suggests the novel approach
of open synthesis under the assumptions of an environment that chooses
its actions randomized rather than nondeterministically. Assuming a ran-
domized environment inspires alternative semantics both for linear-time
and branching-time logics. For linear-time, natural acceptance criteria
are almost-sure and observable acceptance, where it suffices if the prob-
ability measure of accepting paths is 1 and greater than 0, respectively.
We distinguish 0-environments, which can freely assign probabilities to
each environment action, from e-environments, where the probabilities
assigned by the environment are bound from below by some £ > 0.
While the results in case of 0-environments are essentially the same as
for nondeterministic environments, the languages occurring in case of
g-environments are topologically different from the results for nondeter-
ministic and 0-environments (in case of LTL, recognizable by weak alter-
nating automata vs. recognizable by deterministic automata). The com-
plexity of open synthesis is, in both cases, EXPTIME and 2EXPTIME-
complete for CTL and LTL specifications, respectively.

1 Introduction

Among the most important developments in verification is the development of
model-checking algorithms, which test whether or not a finite-state program sat-
isfies a temporal specification. However, this method suffers from two significant
drawbacks: First, it can only be applied after much effort has been invested
to the (manual) construction of the system. And second, model-checking cannot
distinguish unrealizable specifications from erroneous implementations. The nat-
ural approach to circumvent these drawbacks is to construct finite-state systems
directly from the specification. Such an approach is called synthesis.

Early works consider closed systems that do not interact with an environ-
ment [3, 18]. Closed synthesis is in this sense a constructive extension of satisfi-
ability checking. This approach is not suitable for open systems, which interact
with a predefined environment, since the synthesized system cannot restrict the

* This work was partly supported by the German Research Foundation (DFG) as
part of the Transregional Collaborative Research Center “Automatic Verification
and Analysis of Complex Systems” (SFB/TR 14 AVACS).

behavior of its environment. Later works therefore concentrate on the synthe-
sis of open systems from linear-time specifications [15, 16, 1]. These fundamental
works on open synthesis required that the system satisfies its specification for all
possible behaviors of the environment, i.e., an LTL formula ¢ is interpreted as
the CTL* formula Ap. Pnueli and Rosner [15] demonstrated that the LTL syn-
thesis problem is 2EXPTIME-complete in this setting. Kupferman and Vardi [10]
extended open synthesis to branching-time specifications and incomplete infor-
mation, and established EXPTIME and 2EXPTIME-completeness results for
the CTL and CTL* synthesis problem, respectively.

In the view of the attractiveness of synthesis, it is alluring to extend its
applicability as far as possible. A particular interesting extension is the treatment
of probabilistic systems. Probabilistic randomization has, e.g., successfully been
introduced into protocols (cf. [13]). In synthesis, we want to construct systems
which, under reasonable assumptions about the probabilistic behavior of the
environment, satisfy a linear-time specification with probability 1 (almost-surely)
or with probability greater than 0 (observably).

System synthesis is more complex than model-checking probabilistic systems
(Markov decision processes). There, a probabilistic measure is defined a priori
on the set of computations, usually by assigning fixed probabilities to the single
transitions. In synthesis, on the other hand, we do not have a transition-system
to start with (this situation is comparable with the problem occurring in the
treatment of transition fairness in system synthesis, cf. [2]).

When restricting the scope to almost-sure and observable satisfaction of
linear-time properties, the concrete probabilities of single transitions play a mi-
nor role; in finite systems it is only of interest whether or not a probability is
0 or 1. It turns out that these properties are preserved when the probabilities
of the single transitions are uncertain, as long as an (arbitrary) lower bound
€ > 0 on their probability is guaranteed. This allows for considering synthesis
for environments, which only guarantee the existence of some lower bound on
the probability of each single action. We call such environments e-environments.
They are closely related to probabilistic fair systems [5] (with the distinction
that systems discussed in this paper necessarily have a predefined constant set
of environment actions) and inherit their semantical benefits: they provide a
simple way of representing probabilistic choices while abstracting from the nu-
merical value of probability. The LTL synthesis problem remains 2EXPTIME
complete in almost-sure and observable semantics for e-environments.

The decidability of almost-sure and observable acceptance gives rise to a re-
definition of the semantics for the branching-time logic CTL*. CTL* allows for
universal (Am) and existential (Ew) path quantification. A natural analogy is
to interpret universal path quantification as the property that the probability
measure of the paths satisfying 7 is 1 (i.e., that a path almost-surely satisfies),
and existential path quantification as the property that the probability measure
of the paths satisfying 7 is greater than 0 [8]. This paper provides a constructive
method to solve the synthesis problem for CTL* in 3EXPTIME in the length
of the specification, whereas a 2EXPTIME lower bound is inherited from the

LTL synthesis problem. While the exact complexity remains open for CTL*, the
synthesis problem is EXPTIME-complete for CTL.

Under the assumption of stronger environments, which can reduce the prob-
ability of each single event arbitrarily, synthesis for almost-sure/observable se-
mantics is essentially equivalent to synthesis for classical semantics.

2 Preliminaries

Synthesis algorithms automatically construct, for a given class of environments,
systems that are correct by construction from a given specification. The envi-
ronment is an external part of the system, which is not under the control of
the synthesis algorithm. Intuitively, the environment provides the system with
inputs from a finite input-alphabet 7. The system reacts on each input by emit-
ting an output symbol from a finite output-alphabet Y. When the specifications
are provided as temporal logics, the input- and output alphabet consist of the
possible valuations of boolean input- and output-variables, respectively [15, 10,
11], which also serve as atomic propositions in the specification. A system is
modeled as a finite transition-system, which defines a mapping m : 7* — X
from histories of input-signals to output-signals. This paper addresses synthesis
for linear- and branching-time specifications for environments with an uncertain
probabilistic behavior.

Environments. In general, the concrete behavior of the environment is un-
known or too complex to represent. The uncertainty with respect to the concrete
behavior of the environment is expressed by the power of the environment to
choose, in every step, a probability distribution of its single input letters.

An environment is called an e-environment if, in each step, the probability
p(v) € [g,1] that the environment chooses a particular input letter v € 7" is
bound from below by some € > 0. It is called a 0-environment, if the probability
that the environment chooses a particular input letter v € 7" is not bound from
below (p(v) €]0,1] or p(v) € [0,1]).

Transition Systems. A system is implemented as a finite X'-labeled T -transi-
tion-system T = (S, s0,T,1), where S is a set of states with initial state so € S,
7:8 %x7T — S is a transition function and [: S — X is a labeling function. A
XY -labeled T-transition-system is called input-preserving, if ¥’ =1 x X’ for some
X' and the T-projection of I(7(s,v)) is v for all s € S (i.e., the Y-part of the
label reflects the previous input from the environment).

Parity Automata. An alternating automaton is a tuple A = (X, Q, qo, 9, &),
where Y denotes a finite set of labels, (Q denotes a finite set of states, ¢o € Q
denotes a designated initial state, § denotes a transition function, and « : Q —
C C N is a coloring function. The transition function § : @ x X — BT (Q x 1)
maps a state and an input letter to a positive boolean combination of states
and directions. In our context, an alternating automaton runs on X-labeled

T-transition-systems. The acceptance mechanism of alternating automata is de-
fined in terms of run trees.

As usual, a =-tree is a prefixed closed subset Y C =* of the finite words over
a predefined set = of directions. For given sets X and =, a X-labeled =-tree is
a pair (Y, 1), consisting of a tree Y C =* and a labeling function [: Y — X that
maps every node of Y to a letter of X. If T and X' are not important or clear
from the context, (Y,!1) is called a tree.

A run tree (R,r) on a given transition-system 7 = (5, sg,7,1) is a @ x S-
labeled tree where the root is labeled with (qo, so) and where, for each node n
with label (g, s), there is a set 2, C @ x 7" which satisfies §(q,1(s)) such that
(¢',v) € A, iff a child of n is labeled with (¢’, 7(s, v)).

An infinite path fulfills the parity condition, if the highest color of the states
appearing infinitely often on the path is even. A run tree is accepting if all
infinite paths fulfill the parity condition. A transition-system is accepted if it
has an accepting run tree.

The set of transition-systems accepted by an alternating automaton A is
called its language L(A). An automaton is empty, if its language is empty.

The acceptance of a transition-system can also be viewed as the outcome of
a game, where player accept chooses, for a pair (¢,0) € @ x X, a set of atoms
of 6(q, o), satisfying 6(g, o), and player reject chooses one of these atoms, which
is executed. The input tree is accepted iff player accept has a strategy enforcing
a path that fulfills the parity condition. One of the players has a memoryless
winning strategy, i.e., a strategy where the moves only depend on the state of
the automaton and the state of the transition-system, and, for player reject, on
the choice of player accept in the same move.

A nondeterministic automaton is a special alternating automaton, where the
image of ¢ consists only of such formulas that, when rewritten in disjunctive
normal form, contain exactly one element of @ x {v} for all v € 7" in every
disjunct. For nondeterministic automata, every node of a run tree corresponds
to a node in the input tree (the unrolling of the transition-system). Emptiness can
therefore be checked with an emptiness game, where player accept also chooses
the letter of the input alphabet. A nondeterministic automaton is empty iff the
emptiness game is won by reject.

A nondeterministic automaton is called deterministic if the image of 6 con-
sists only of such formulas that, when rewritten in disjunctive normal form,
contain exactly one disjunct. An automaton is called a word automaton if 1°
is singleton; in this case, 7" is omitted in the notation. An automaton is called
weak if, for every path on every run tree for every transition-system, the color
increases monotonously, i.e, if § maps each pair (¢, o) of states and input letters
to positive boolean combination over pairs of states and directions, where the
color of the respective state is not smaller than the color of ¢. An automaton is
called a Biichi automaton iff the image of « is contained in {1,2}.

The Synthesis Problem. For trace languages, we distinguish almost-sure
and observable acceptance of transition-systems. A transition-system 7 satisfies
a specification

— almost-surely iff the probability measure of the set of infinite paths defined
by 7 that satisfy the specification is 1, and

— observably iff the probability measure of the set of infinite paths defined by
T that satisfy the specification is greater than 0.

In case of temporal logics, the input-alphabet 2! and output-alphabet 2©
represent the possible assignments to boolean input and output variables, which
also serve as atomic propositions in the specification.

For CTL* specifications, all subformulas of the form Amw and Em are inter-
preted as state formulas with the semantics that the path formula 7 is satisfied
almost-surely and observably, respectively. The synthesis problem is to either
construct, for a given input-alphabet 7, a given output-alphabet X' and a speci-
fication ¢, an input-preserving 7" x X-labeled 7 -transition-system which satisfies
the specification, or to prove that no such transition-system exists.

3 Synthesis for Trace Languages

Following an automata-theoretic approach to open synthesis, the synthesis prob-
lem is decomposed into two parts: finding an automaton, which accepts a transi-
tion-system iff it is input-preserving and satisfies the specification, and con-
structing a transition-system accepted by this automaton (or demonstrating its
emptiness). In this section, we consider synthesis for specifications provided as
deterministic word automata under the assumption of e-environments.

Structural Acceptance Criteria. Testing whether a transition-system 7°
almost-surely (observably) satisfies a deterministic word automaton D can be
reduced to a simple structural argument over the composition of 7 and D. The
result of their composition is a colored graph, and it suffices to check if the
highest color in all (some) reachable strongly connected components of gg that
are leaves in the SCC-graph of gg is even.

The composition G = 7T||D of a transition-system 7 = (S, so,7,) and
a deterministic word automaton D = (X, Q, qo, 6,) is a colored graph G% =
(SxQ, (s0,q0), 7",) with transition function 7/ : ((s, q),v) — (7(s,v),d(q,1(s)))
and coloring function o’ : (s, q) — a(q).

Lemma 1. AnT-transition-system T almost-surely (observably) satisfies a spec-
ification provided as a deterministic word automaton D iff the highest color in

all (some) reachable leaf-SCCs of GL = T||D is even.

Proof. For all e-environments, the probability of every single transition is bound
from below by some ¢ €]0, 1]. This implies the following attributes of the com-
putations:

— Almost-surely almost all states of a computation are in a single leaf of the
SCC-tree of G, which is reachable from the initial state of GA:
If GL has n states, then, from every state of G, the probability not to reach
some leaf-SCC within the next n steps is bound from above by ¢’ =1 —¢&" <
1, which implies a probability of 0 to stay forever out of reachable leaf-SCCs.

— Every reachable leaf-SCC of gg is reached with some positive probability
(which is bound from below by ™).

— For traces that eventually reach a leaf-SCC L, the highest color occurring
infinitely often is almost-surely the highest color of the states of L:
The probability not to reach some state s in L within the next n steps is
again bound from above ¢/ = 1 — ¢™ < 1. This implies, for every position in
the trace, a probability of 0 that s occurs never again; this holds in particular
for a state s whose color is maximal in L.

The first (second) and third attribute imply the claim for almost-sure (ob-
servable) satisfaction. O

Game Construction. These structural criteria can be transformed into (weak)
acceptance games deciding almost-sure and observable acceptance, respectively.
These games are played on gg , starting in (s, qo), and consist of three phases.
For almost-sure (observable) acceptance the game is played according to the
following rules:

— In the first phase, player reject (accept) either chooses to proceed to the
second phase or picks a transition in gg . Picking a transition means that, in
a state (s, ¢), she chooses a direction v and the game proceeds in 7/((s, ¢),v).
Intuitively, she can use this phase to move to a leaf-SCC of her choice.

— In the second phase, player accept (reject) either picks a transition in gg or
chooses to proceed to the third phase, but with the restriction that he can
only move to the third phase if the color of the current node is even (odd).
In case he moves to the third phase, the color ¢ of the current node is stored.
This phase is to prevent player reject (accept) from “cheating” by terminat-
ing the first phase in a state of G5, which is no element of any leaf-SCC.
Player accept could, in such a case, move on to a vertex with highest color
in a leaf-SCC of his choice (reachable from v), or even pick any arbitrary
state reachable from v.

— In the last phase, player reject (accept) again chooses the transitions. She
wins immediately upon reaching a state with an odd (even) color greater
than c.

Infinite plays of the game are won by player accept (reject) if the game always
stays in the first phase and if the game eventually stays forever in the third phase,
while player reject (accept) wins otherwise.

Lemma 2. The acceptance game on gg is won by player accept if, and only if,
T satisfies D almost-surely (observably).

Proof. To prove the claim for almost-sure acceptance, first assume that 7" does
not satisfies D almost-surely. In this case, the highest color in some reachable
leaf-SCC L of G} is odd by Lemma 1. Player reject can direct the game towards
such a leaf-SCC L and then let the game proceed to the second phase.

If player accept ever moves on to the third phase, he must do so from a state
in L. Since L is cyclic, player reject can then move to a state with maximal (odd)

color and wins directly. If, on the other hand, player accept never moves to the
third phase, player reject wins since the third phase is never reached.

To prove the “if” direction, recall that almost-sure satisfaction of D by 7
entails that the highest color in all reachable leaf-SCCs of GJ is even. If player
reject never leaves the first phase, player accept wins due to the winning condition
for infinite plays. If player reject eventually changes in some state v to the second
phase, then player accept can move to some leaf-SCC L. Since L is cyclic by
definition, he can reach a state v’ in L, whose (even) color is maximal in L.
After having moved on to v’, player accept changes to the third phase (storing
the color of v'). Since the color of v' is maximal in L, player reject cannot win
directly in the third phase, and consequently loses by the winning condition for
infinite plays.

The proof for observable acceptance runs accordingly. ad

From Acceptance Games to Automata. It is only a small step from the
acceptance games of the previous paragraph to weak alternating automata over
transition-systems. A given deterministic word automaton D can be turned into
weak alternating automata, which accept a transition-system iff it satisfies D
almost-surely or observably, respectively. The states of these automata are con-
structed from the states and colors of D, and the transition function reflects the
transitions of the game introduced in the previous paragraph.

Theorem 1. Given a deterministic word automaton D = (X, Q, qo, 0, &) we can
construct weak alterating tree automata Ap and Op which accept a X-labeled T -
transition-system if it almost-surely and observably satisfies D, respectively. If D
has n states and c colors, Ap and Op have at most n - [2 + 5] states.

Proof. Ap = (X,Q’,q),d,a’) is defined as follows:

— The set of states is set to Q' = @ x ({f, s} UC¢) and initial state ¢, = (qo, f),
where C, denotes the set of even colors of D.
— The transition function is defined by:
o & ((0.1),0) = 5((0,9),0) A Aer((6(a,0),)),
o 7 ((0:5),0) = 8((0, a(0), 0) V' oer (5(0, 7).), 0) if () is even and
o 5 ((0:5).0) = V, er (60, 7).), 0) 1 a(g) is odd,
e 5 :((¢q,¢),0) — false if a(q) is an odd number greater then ¢, and
<),

e 0 :((g,¢),0) = N,er((6(q,0),c),v) otherwise.
— The colormg function o maps @ x {f} to 0, @ x {s} to 1, and Q x C. to 2.

Likewise, Op = (X,Q",q},0”,a") is defined as follows:

— The set of states is set to Q" = Q@ x ({f, s}UC,) and initial state ¢ = (qo, f),
where C, denotes the set of odd colors of D.
— The transition function is defined by:
5" (g, f),0) — 5”((5),0)V Vyer((6(g,0), f), v),
: ((q,8),0) = 0" ((¢: (), 0) AN\ ey ((0(g; 0), 5),v) if a(q) is odd and
5” : qu,sg,ag AveT((5(Qv 0),s),v) if a(q) is even,

0" : ((q,¢),0) — true if a(q) is an even number greater then ¢, and

o 55 ((4:6),0) = Ayer((6(a,),), v) otherwise.
— The coloring function ” maps @ x {f} to 1, @ x {s} to 2, and @ x C, to 3.

The states @ x {f} refer to the first phase of the acceptance game, the states
Q@ x {s} to the second and the remaining states @ x C, and @ x C,, respectively,
refer to the third phase of the acceptance game. A winning strategy for either
player in the acceptance game on gg can easily be transformed into a winning
strategy in the acceptance game of the respective alternating automaton. ad

Efficient Nondeterminization. Weak alternating automata are well suited
for model-checking, but synthesis (or its non-constructive equivalent, check-
ing non-emptiness) usually contains an exponential blow-up due to a nonde-
terminization step. A closer look on the special weak alternating automata of
Theorem 1 reveals that this is not the case here: Most decisions can easily be
guessed by a nondeterministic automaton. The crucial point in the nondeter-
minization is the single decision of player reject when to proceed from the first
to the second phase (in case of almost-sure acceptance) and from the second to
the third phase (in case of observable acceptance), respectively. It turns out that
this single decision can be left uncertain in the construction of a nondeterministic
automaton, avoiding the blow-up.

Theorem 2. Given deterministic word automaton D = (X,Q, qo, 0,) we can
construct nondeterministic Biichi tree automata Ap’ and Op’ which accept a
X -labeled T -transition-system if it almost-surely and observably satisfies D, re-
spectively. If D has n states and ¢ colors, Ap' and Op’ have at most 2n-|1+5 |+1
and n - |2 + §| states, respectively.

Proof. The nondeterministic Biichi tree automaton Op’ = (X, Q", ¢f/, 6", a’") for
testing observable acceptance is defined as follows:

— The set of states is set to Q" = Q UQ x C and the initial state ¢ = qo
is the initial state from D. C, denotes the set of odd colors of D, plus an
additional color €, = Omin — 1, where 0., denotes the smallest odd color
of D.

— The transition function is defined by:

e 0" :(q,0)— \/Uer(é(q,a),v) V8" (q, €min),0),
o 8" 5 ((0.€),0) = Ve (30, 0), max{e,a(g)}). v)

A Nosorex ((6(g;0), €min), ’U)) if a(q) is odd,
* 0":((g,0),0) = Nper((6(¢,0), €min), v)
if a(q) > ¢ is even and greater than ¢, and
o 6" ((6:0,0) = Voer (000, 9),€),0) A Ay e (80 0), min))
if a(q) < ¢ is even and smaller than c.

— The coloring function o/’ maps the states @ X {€min } to 2 and the remaining
states to 1.

The states in @ reflect the first phase of the acceptance game on gg : player
accept moves to a position of her choice (\/,c1(d(g,0),v)) and eventually moves
on to the second phase (6”(q, €min),o)). The color 1 for these states reflect the
winning condition on infinite plays (player accept looses if she stays for ever in
the first phase).

In the second phase, the situation is more involved, since rather than guessing
the action of player accept, the automaton needs to cover all possible actions of
player reject. Intuitively, the option of player reject to stay in the second phase
is covered by sending, from a state (q,c), a copy (¢, emin) (with ¢ = d(q,0))
to each direction. Since player reject looses when staying in the second phase
indefinitely, the color of these states is 2. Additionally, if a(gq) is odd, player
reject could move to the third phase, which could be reflected by sending a copy
(g, @(q)) to some direction ((q) denotes the color to be stored). Concurrently, we
must consider the possibility that the game is in the third phase. If «(q) is even
and greater than ¢, then player accept wins immediately (no successor send),
otherwise (¢, ¢) is sent to some successor. Since player accept loses by staying in
the third phase indefinitely, the color of a state (¢, c¢) with ¢ # e is 1. Since
the situation of player reject becomes strictly better when the stored color ¢
increases, we can, instead of sending (¢’,c) and (¢, c’) into the same direction,
send only (¢/,max{c, ’'}). This results in the nondeterministic automaton Op'.

The nondeterministic Biichi tree automaton Ap’ = (X, Q’, ¢b, d’, o) for test-
ing almost-sure acceptance is defined as follows:

— The set of states is set to Q' = Q@ x B x CF U { L} with initial state ¢ =
(qo, true, emaz), where CF denotes the set of even colors of D, plus, if the
highest color of D is an odd number 0,45, Omaz + 1. €mar denotes the highest
number in C.

— The transition function is defined by:

o 8 :((q,%,¢),0) — vveT(((5(q,J), true, c),v)

A Nourer (80, 0), false,), v))
V Aper(0(q, o), false, min{c, a(q)}), v) if a(q) is even,
e 0 :((g,%,¢),0) = Nyer(L,v) if a(q) > ¢ is odd and greater than c,
o 05 ((a,%,0),0) = Voer (((3(a0), true,), v)

A /\U;,éu/ey(@(q, o), false, c), v)) otherwise, and
° (J_,U) = /\UGT(J-vv)'
— The coloring function o’ maps @ x {¢rue} x CF and the error state 1 to 1
and Q x {false} x CF to 2.

In almost-sure acceptance, the situation is slightly more involved. The states
keep three pieces of information: the state of the deterministic word automa-
ton, the information, if the game could be in the second phase, and a color,
which reflects that the third phase could have been entered from a state in this
color. The color is initialized to €,,4;, Which is greater than all odd colors. From
every point of the computation tree, one or no successor can refer to the sec-
ond phase: No successor, if player accept would move to the third phase, and

one successor otherwise. Player accept loses iff there is a trace where he even-
tually stays indefinitely in the second phase, or if there is a trace where he
eventually moves to the third phase in a state (g, *,*) and then reaches a state
(¢, *,*) with odd color a(q’) > a(q). The latter is modelled by moving to the
designated error state L. The remaining information can be handled by storing
the (even) color a(q) every time player accept would move to the third phase
(Aver((6(q,0), false, min{c, a(q)}),v)) or by marking the direction player ac-
cept would choose when staying in the second phase (\/,,c1((6(q, o), true, c),v) A
/\v;éu'e’f((é(% 0'),f(ll$€, C), U))

Obviously, a transition-system is rejected by Ag’ iff the acceptance game on
gg is won by player reject. ad

These automata additionally have the pleasant property that their transition
tables are short (at most |7'| + 1 entries for each state/input-letter pair).

The step to input-preserving transition-systems is a small one. The respective
automaton can be multiplied with a deterministic safety automaton that checks
if the label always agrees with the direction. The small transition table property
is preserved by this transformation.

Theorem 3. [11] Given an alternating tree automaton A over T x X-labeled
T -transition-systems, we can construct an alternating tree automaton A’ over
Y x X-labeled T -transition-systems that accepts a transition-system T iff it is
input-preserving and accepted by A. If A has n states, A" has at most n-|T|+1
states, and if A is a (non)deterministic, weak or Biichi automaton, sois A'. O

4 Temporal Logics

While Section 3 provided basic techniques for trace languages and e-environments,
these results are transferred to temporal logics in this section. For the linear-
time temporal logic LTL the techniques from the previous section can easily be
applied: It suffices to translate an LTL formula into an equivalent deterministic
word automaton, and then use the results of Section 3.

For probabilistic systems, the almost-sure/observable semantics for LTL in-
spire a redefinition of CTL* semantics [8]: Universal path quantification (Am)
can be interpreted as the property that the probability measure of the paths
satisfying 7 is 1, and existential path quantification can be interpreted as the
property that the probability measure of the paths satisfying 7 is greater than 0.

Liner-Time Logic. Converting LTL formulas to deterministic word automata
is well established.

Theorem 4. [15, 7] Given an LTL specification p, we can construct a deter-

ministic word automaton D, that accepts exactly the models of ¢. The number
of states of Dy is doubly exponential in the length of . ad

10

Given an LTL specification ¢, we can, by the Theorems 4, 2 and 3, construct
a nondeterministic Biichi tree automaton N, that accepts an input-preserving
27 x 29-1labeled 2!-transition-system iff it almost-surely (observably) satisfies ¢,
such that the number of states of N, is doubly exponential in the length of ¢.
Checking N, for emptiness and, if NV, is non-empty, constructing a transition-
system accepted by N, reduces to solving a Biichi game, whose states intuitively
consist of the states of N, and the entries in the transition-table of N,,.

Corollary 1. Given an LTL specification ¢ we can, in time doubly-exponential
in the length of @, construct an input-preserving 2° x 2°-labeled 2! -transition-
system which almost-surely (observably) satisfies v, or show that no such transi-
tion-system exists, in time doubly-exponential in the length of . a

It turns out that this upper bound is sharp.
Theorem 5. The LTL synthesis problem is 2EXPTIME complete.

Proof. The upper bound is established by Corollary 1. To establish a matching
lower bound, consider the w-regular trace language

L, = {{0,1,2,3}*-3-{0,1,2}*-2-0-2-{0,1,2}*-3-v-{0,1,2}* | v € {0,1}"}.

While £, can be expressed by an LTL formula with size quadratic in n, any
automaton accepting L, necessarily has at least 2™ states [9] (since it must
continously update the set of subsets of {0,1} words of length n that have
occurred between two 2 symbols since the last 3).

Consider a system with two boolean input variables ¢; and i, and a single
output variable 0. One can use i; and i to encode the letters 0,...,3, and
represent the language £, by a formula ¢,, (of length quadratic in n).

The specification v¢,, = ¢, < FGo can only be satisfied by a transition-
system with at least O(2™) states, regardless if in classical, almost-sure or ob-
servable semantics, since the transition-system always needs to react on an ad-
ditional 3 (e.g., by setting the value of the output variable to true or false n
steps after a 3 was read and keeping it constant otherwise). O

Branching-Time. In the branching-time case, one can use the fact that Evy
and A are state-formulas. We call the strict subformulas of a CTL* specification
¢ of this special form the basic subformulas of ¢, denoted basic(yp). Testing if a
transition-system 7 satisfies a CTL* formula ¢ can be reduced to testing if the
labels of 7 can be extended with suitable truth values for the basic subformulas
of . The correct labels can be guessed on the fly.

Theorem 6. Given a CTL* specification ¢ we can construct a weak alternating
tree automaton A which accepts an 27 x 29-labeled 2! -transition-system iff it
satisfies . The number of states of A is doubly-exponential in the length of p.

Proof. In our construction, the values of the basic formulas are guessed. Let
Ay = (Ew,Q”’,qép,(W,a“’) denote the weak alternating tree automaton that

11

accepts the models of a basic formula ¢v = Ev' or ¢ = Ay’ of ¢ (or of ¢
itself), where the basic subformulas of ¢ are provided as atomic proposions.
Ay can be constructed by the method introduced in Theorem 1. The number
of states of Ay is doubly exponential in the number of states of 1. Let AE =

(v, QY, qg’, §%,a¥) denote the weak alternating automaton dual to Ay.

We assume w.l.o.g. that ¢ is basic (otherwise we can replace the state for-
mula ¢ by Ap or Ey without changing the semantics) and define the weak
alternating tree automaton A = (2! x 29,Q,qo, 6,) as follows: The states

Q=Q%U quebasic(@)(Qw U Qa) are formed by the states of the single weak

alternating automata A, and the initial state gy = ¢¢ is the initial state of A.,,.
The transition function is defined such that

§(¢%,0) = \/ (5¢(q¢,auu7) A /\ 5(qg/,a) A /\ 5(q8/7, U))

¥ Chasic(v) P'ew P’ €basic(P) ¥

holds true. The coloring function maps a state ¢¥ with even (odd) color a¥(g¥)
in Ay to an even (odd) color, such that the weakness criterion is preserved.
Intuitively, the truth of the single basic subformulas is guessed on the fly.
To demonstate that guessing these values is safe, we show that player accept
has a winning strategy in the acceptance game if, and only if, he as a winning
strategy where he always guesses the validity of all basic subformulas correctly.
This can be demonstrated by induction along the structure of ¢: Assume that
player accept has a winning strategy where the truth value of some subformula
is guessed incorrectly. Then there is a basic subformula 1) whose truth value is
eventually guessed incorrectly, but the truth values of the basic subformulas of
1 are always guessed correctly. Then, for a state s in the transition-system 7°
where the truth of ¢ was eventually guessed incorrectly (w.l.o.g. to true), player
accept has a winning strategy from (qg’ ,8) in the acceptance game, such that all
values of basic subformulas of ¢ are guessed correctly. Then player accept has a
winning strategy in Ay, when the labeling of 7" are enriched by the correct values
for the basic subformulas of ¢ (the winning strategy is the winning strategy from
A, with the simplification that the correct values need not be guessed). But in
this case v is valid in s. O

The automaton A, constructed by Theorem 6 can be turned into an equiv-
alent nondeterministic Biichi tree automaton N, [14] with exponentially more
states than A,. The language of NV, can be restricted to input-preserving transition-
systems (Theorem 3). A transition-system accepted by A, can be constructed
via solving the emptiness game for the resulting automaton.

Corollary 2. Given a CTL* specification ¢ we can construct an input-preserving
21 x 29 -labeled 2! -transition-system, or proof that no such system exists, in time
triply exponential in the length of v.

Theorem 5 provides a 2EXPTIME lower bound, which leaves the exact char-
acterization of the complexity of the CTL* synthesis problem open. For its im-
portant sub-logic CTL, the complexity coincides with the synthesis complexity
for classical semantics.

12

Theorem 7. The CTL synthesis problem is EXPTIME complete.

Proof. In CTL, each path quantifier refers to a path formula of the form 1 U)o,
G, or X1)1, where ¢ and 19 are propositional (when basic formulas are viewed
as propositions). For such path formulas (and their negations) acceptance of a
path can be tested by a deterministic word automaton with three, two, or three
states, respectively. The alternating automaton constructed by Theorem 6 is
therefore only linear in the length of the specification, and emptiness can be
checked (via nondeterminization [14] of this automaton) in time exponential in
the length of the specification.

To demonstrate EXPTIME-hardness, we reduce solving the two player game
PEEK-G4 [17] to CTL synthesis. An instance of this game is a four-tuple (X, Y, Z,
©), where X and Y are disjoint sets of boolean variables with the intuition that
X is under the control of the system and Y is under the control of the envi-
ronment. Z C X UY denotes the variables which initially hold true and ¢ is a
propositional formula over the variables X UY. The game is played in rounds
where first the system can change the value of at most one variable in X, followed
by a decision of the environment to change the value of at most one variable in
Y. The system wins the game iff ¢ is eventually satisfied (after the move of the
system). To determine the winner of such games is EXPTIME-hard [17].

An instance of this game can be reduced to the synthesis problem for a
system with one input-variable i, two output variables o, and o2, and a CTL
specification) quadratic in | X |+|Y| and linear in ¢.) = ¥g A1 Aha A Ay,
is a conjunction of the following five CTL formulas:

— 1) requires that the first |X| values of o; reflect (on every path) the initial
truth value of the variables in X (defined by X N Z) and the following |Y|
values of 07 reflect the initial truth value of the variables in Y.

— 1)1 requires that oy is true exactly every |X| 4+ |Y| steps (and initially) on
every path.

—)9 requires that at most one value of the variables o7 within |X| — 1 steps
after o, was last set to true (including the current step) differs from the
value of 01 | X| + |Y| steps earlier.

—)3 states that within |X| to |X| 4 |Y| — 1 steps after oo was set true, the
value of the variable o; is different from its value |X| + |Y| steps earlier iff
(1) the value of the input variable is true and (2) the values of the previous
input variables since | X| steps after oo was last set to true were all false.

— 1, requires that, for all paths, there is eventually a position where o is true
and along the path where i is false for the following |X| + |Y| steps, the
following | X | + |Y| values of o; (including the current value) satisfy .

1o and 13 refer to the changing of at most one assignment for the variables of
X and Y by the system and the environment, respectively, 1 initializes the game
and 1 guarantees that o, can be used as a flag, indicating that a round starts.
), reflects the winning condition of the game. An input-preserving transition-
system that satisfies ¢ (in classical semantics as well as in almost-sure/observable
semantics) defines a winning strategy for (X,Y, Z, p) and vice versa. ad

13

5 0-Environments

0-environments can “emphasize” each single path by assigning a probability
measure of 1 (if the probability of each single action can be chosen from [0, 1])
or arbitrarily close to 1 (if the probability of each single action can be chosen
from]0,1]). For the latter consider an assignment of the probability 1 — 2¢ - ¢
for staying on the path desired by the environment in the i-th step for some
e > 0. Consequently, the LTL synthesis problem coincides for almost-sure and
observable semantics with the LTL synthesis problem for classical semantics,
which is 2EXPTIME-complete [15].

For almost-sure/observable CTL* semantics this implies that existential and
universal path quantifiers coincide. Consequently, a transition-system 7 is a
model of a CTL* specification ¢ iff 7 is a model of a specification ¢’ in classical
semantics, where ¢’ is obtained from ¢ by replacing all existential path quan-
tifiers by universal path quantifiers. This implies EXPTIME and 2EXPTIME
upper bounds for the CTL and CTL* synthesis problem [11], respectively.

On the other hand, in classical semantics each specification ¥ can be trans-
lated to an equivalent specification 7' by replacing each occurrence of an exis-
tential path quantifier F by the sequence —A—. Since the length of 1)’ is linear
in the length of 1) and the classical semantics for ¢/’ coincides with the almost-
sure/observable semantics, the matching lower bounds for the CTL and CTL*
synthesis problem [11] are preserved as well.

6 Conclusions

This paper suggests constructive decision procedures for the LTL, CTL and
CTL* synthesis problems under the assumption of 0-environments and e-environ-
ments. While the semantics for O-environments essentially reflect the classical
semantics and practically all established results trivially carry over, the results
for e-environments provide interesting new insights.

The results of this paper show that the complexity of synthesizing transition-
systems satisfying an LTL or CTL specification ¢ in almost-sure/observable se-
mantics is, under the assumption of e-environments, equivalent to the complexity
in classical semantics. While the complexity coincides, the language classes for
LTL are at the same time simpler and more involved than for classical seman-
tics: They are simpler in the sense that the languages are recognizable by weak
alternating automata, and more involved since they cannot be recognized by
deterministic automata.

Two interesting questions deserve further study: the exact complexity of
CTL* synthesis in almost-sure/observable semantics, and the influence of in-
complete information on the complexity of the LTL? synthesis problem. These

! The probability measure of the path is, in this case, greater than 1 — ¢, and can
therefore be chosen arbitrarily close to 1 by the O-environment.

2 For CTL and CTL* synthesis, incomplete information can be handled using estab-
lished automata-based techniques [10].

14

problems may be closely interrelated: In classical semantics, both problems can
be solved through the existence of alternating automata that are only exponen-
tial in the length of a CTL* formula ¢, which accept the models of ¢. It does
not seem unlikely that similar solutions exist for almost-sure/observable seman-
tics, taking into account that model-checking remains PSPACE-complete (Yan-
nakakis PSPACE result for LTL model-checking [4] trivially extends to CTL*).

An interesting side effect of using an automata-based synthesis algorithm

is the possibility to extend the results for single-process synthesis directly to
multi-process synthesis [12, 6].

References

1.

2.

3.

10.

11.

12.

13.

14.

15.

16.

17.

18.

M. Abadi, L. Lamport, and P. Wolper. Realizable and unrealizable concurrent
program specifications. In Proc. ICALP, pages 1-17. Springer-Verlag, July 1989.
A. Anuchitanukul and Z. Manna. Realizability and synthesis of reactive modules.
In Proc. CAV, pages 156—168. Springer-Verlag, June 1994.

E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skele-
tons using branching time temporal logic. In Proc. IBM Workshop on Logics of
Programs, pages 52-71. Springer-Verlag, 1981.

C. Courcoubetis and M. Yannakakis. The complexity of probabilistic verification.
J. ACM, 42(4):857-907, 1995.

L. de Alfaro. From fairness to chance. In Proc. PROBMIV’98, 1999.

B. Finkbeiner and S. Schewe. Uniform distributed synthesis. In Proc. LICS, pages
321-330. IEEE Computer Society Press, June 2005.

Y. Gurevich and L. Harrington. Trees, automata and games. 14:60-65, 1982.

H. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal
Aspects of Computing, 6(5):512-535, 1994.

O. Kupferman and M. Vardi. Freedom, weakness, and determinism: From linear-
time to branching-time. In Proc. LICS, June 1995.

O. Kupferman and M. Y. Vardi. Synthesis with incomplete informatio. In Proc.
ICTL, pages 91-106, Manchester, July 1997.

O. Kupferman and M. Y. Vardi. Church’s problem revisited. The bulletin of
Symbolic Logic, 5(2):245-263, June 1999.

O. Kupferman and M. Y. Vardi. Synthesizing distributed systems. In Proc.
LICS’01, pages 389-398. IEEE Computer Society Press, July 2001.

D. Lehmann and M. O. Rabin. On the advantages of free choice: a symmetric and
fully distributed solution to the dining philosophers problem. In Proc. POPL ’81,
pages 133-138. ACM Press, 1981.

D. E. Muller and P. E. Schupp. Simulating alternating tree automata by non-
deterministic automata: new results and new proofs of the theorems of Rabin,
McNaughton and Safra. Theor. Comput. Sci., 141(1-2):69-107, 1995.

A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proc. POPL,
pages 179-190. ACM Press, 1989.

A. Pnueli and R. Rosner. On the synthesis of an asynchronous reactive module.
In Automata, Languages and Programming, pages 652-671. Springer-Verlag, 1989.
L. J. Stockmeyer and A. K. Chandra. Provably difficult combinatorial games.
SIAM J. Comput., 8(2):151-174, 1979.

P. Wolper. Synthesis of Communicating Processes from Temporal-Logic Specifica-
tions. PhD thesis, Stanford University, 1982.

15

