Skip to main content

Ranked Predicate Abstraction for Branching Time: Complete, Incremental, and Precise

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 4218))

Abstract

Predicate abstraction frameworks are a powerful means of combating the state explosion problem in model checking as they automatically synthesize abstract models that either verify compliance with a property, give rise to a genuine counter-example or produce a spurious counter-example that drives refinement of the abstract model. Prominent tools for safety (e.g. Blast) and termination (e.g. Terminator) checking rely on this approach. This paper presents such an abstraction framework for all properties of the modal μ-calculus based on ranked predicate abstraction. We show that our framework is incremental and confluent and should therefore allow good refinement heuristics. Moreover, ranked predicate abstractions are proved to be precise (i.e. optimal as abstractions) and also complete in that all properties true in a model are also true in a finite-state, ranked predicate abstraction of that model. This completeness relates to known characterizations of relative completeness for predicate abstraction with branching time.

This work is in part financially supported by the DFG project Refism (FE 942/1-1).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alur, R., Henzinger, Th.A., Kupferman, O.: Alternating-time temporal logic. Journal of the ACM 49(5), 672–713 (2002)

    Article  MathSciNet  Google Scholar 

  2. Ball, Th., Podelski, A., Rajamani, S.K.: Boolean and Cartesian Abstraction for Model Checking C Programs. In: Margaria, T., Yi, W. (eds.) ETAPS 2001 and TACAS 2001. LNCS, vol. 2031, pp. 268–283. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  3. Bruns, G., Godefroid, P.: Model Checking Partial State Spaces with 3-Valued Temporal Logics. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 274–287. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  4. Clarke, E.M., Emerson, E.A.: Synthesis of synchronization skeletons for branching time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981. LNCS, vol. 131, pp. 244–263. Springer, Heidelberg (1982)

    Chapter  Google Scholar 

  5. Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM TOPLAS 16(5), 1512–1542 (1994)

    Article  Google Scholar 

  6. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of programs. In: Proc. of POPL 1977, pp. 238–252. ACM Press, New York (1977)

    Google Scholar 

  7. Dams, D.: Abstract interpretation and partition refinement for model checking. PhD thesis, Technische Universiteit Eindhoven, The Netherlands (1996)

    Google Scholar 

  8. Dams, D., Gerth, R., Grumberg, O.: Abstract interpretation of reactive systems. ACM TOPLAS 19(2), 253–291 (1997)

    Article  Google Scholar 

  9. Dams, D., Gerth, R., Grumberg, O.: A Heuristic for the Automatic Generation of Ranking Functions. In: Proc. of the Workshop on Advances in Verification, Chicago (July 2000)

    Google Scholar 

  10. Dams, D., Namjoshi, K.: The Existence of Finite Abstractions for Branching Time Model Checking. In: Proc. of LICS 2004, pp. 335–344. IEEE Computer Society Press, Los Alamitos (2004)

    Google Scholar 

  11. Dams, D., Namjoshi, K.S.: Automata as Abstractions. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 216–232. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  12. Fang, Y., Piterman, N., Pnueli, A., Zuck, L.D.: Liveness with Incomprehensible Ranking. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 482–496. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  13. Fecher, H., Huth, M.: Complete abstractions through extensions of disjunctive modal transition systems. Technical Report No. 0604, Institut für Informatik und Praktische Mathematik der Christian-Albrechts-Universität zu Kiel, 31 pages (March 2006)

    Google Scholar 

  14. Godefroid, P., Huth, M., Jagadeesan, R.: Abstraction-based Model Checking using Modal Transition Systems. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 426–440. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  15. Graf, S., Saidi, H.: Construction of abstract state graphs with PVS. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)

    Google Scholar 

  16. Huth, M., Jagadeesan, R., Schmidt, D.A.: Modal transition systems: a foundation for three-valued program analysis. In: Sands, D. (ed.) ESOP 2001 and ETAPS 2001. LNCS, vol. 2028, pp. 155–169. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  17. Kesten, Y., Pnueli, A.: Verification by Augmented Finitary Abstraction. Inf. Comput. 163(1), 203–243 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kozen, D.: Results on the propositional μ-calculus. Theoretical Computer Science 27, 333–354 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kupferman, O., Vardi, M.Y.: Complementation Constructions for Nondeterministic Automata on Infinite Words. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 206–221. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  20. Larsen, K.G., Thomsen, B.: A Modal Process Logic. In: Proc. of LICS 1988, pp. 203–210. IEEE Computer Society Press, Los Alamitos (1988)

    Google Scholar 

  21. Larsen, K.G., Xinxin, L.: Equation Solving Using Modal Transition Systems. In: Proc. of LICS 1990, pp. 108–117. IEEE Computer Society Press, Los Alamitos (1990)

    Google Scholar 

  22. Namjoshi, K.: Abstraction for Branching Time Properties. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 288–300. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  23. Park, D.M.R.: Concurrency and automata on infinite sequences. In: Deussen, P. (ed.) GI-TCS 1981. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg (1981)

    Chapter  Google Scholar 

  24. Quielle, J.P., Sifakis, J.: Specification and verification of concurrent systems in CESAR. In: Proc. of the 5th International Symposium on Programming (1981)

    Google Scholar 

  25. Wilke, Th.: Alternating tree automata, parity games, and modal μ-calculus. Bull. Soc. Math. Belg. 8(2), 359–391 (2001)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fecher, H., Huth, M. (2006). Ranked Predicate Abstraction for Branching Time: Complete, Incremental, and Precise. In: Graf, S., Zhang, W. (eds) Automated Technology for Verification and Analysis. ATVA 2006. Lecture Notes in Computer Science, vol 4218. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11901914_25

Download citation

  • DOI: https://doi.org/10.1007/11901914_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-47237-7

  • Online ISBN: 978-3-540-47238-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics