Skip to main content

An Evolutionary Fuzzy Multi-objective Approach to Cell Formation

  • Conference paper
  • 1444 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4247))

Abstract

Fuzzy mathematical programming (FMP) has been shown not only providing a better and more flexible way of representing the cell formation (CF) problem of cellular manufacturing, but also improving solution quality and computational efficiency. However, FMP cannot meet the demand of real-world applications because it can only be used to solve small-size problems. In this paper, we propose a heuristic genetic algorithm (HGA) as a viable solution for solving large-scale fuzzy multi-objective CF problems. Heuristic crossover and mutation operators are developed to improve computational efficiency. Our results show that the HGA outperforms the FMP and goal programming (GP) models in terms of clustering results, computational time, and user friendliness.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Burbidge, J.L.: The Introduction of Group Technology. John Wiley and Sons, New York (1975)

    Google Scholar 

  2. Chandrasekharan, M.P., Rajagopalan, R.: ZODIAC-An Algorithm for Concurrent Formation of Part-Families and Machine-Cells. Int. J. of Prod. Res. 25(6), 835–850 (1987)

    Article  MATH  Google Scholar 

  3. Chandrasekharan, M.P., Rajagopalan, R.: Groupability: An Analysis of the Properties of Binary Data Matrices for Group Technology. Int. J. of Prod. Res. 27(6), 1035–1052 (1989)

    Article  Google Scholar 

  4. Chu, C.H.: Clustering Analysis in Manufacturing Cellular Formation. OMEGA 17, 289–295 (1989)

    Article  Google Scholar 

  5. Chu, C.H.: Recent Advances in Mathematical Programming for Cell Formation. In: Kamran, A.K., Liles, D.H. (eds.) Planning, Design and Analysis of Cellular manufacturing System, pp. 3–46. Elsevier science BV, The Netherlands (1995)

    Chapter  Google Scholar 

  6. Chu, C.H., Tsai, C.C.: A Heuristic Algorithm for Grouping Manufacturing Cells. In: Proceedings of the 2001 IEEE Congress on Evolutionary Computation, Seoul, Korea, pp. 310–317 (2001)

    Google Scholar 

  7. Gen, M., Cheng, R.: Genetic Algorithms and Engineering Design. Wiley Interscience Publication, MA (1997)

    Google Scholar 

  8. Goldberg, D.E.: Genetic Algorithms: in Search, Optimization & Machine Learning. Addison-Wesley, Inc., MA (1989)

    MATH  Google Scholar 

  9. Gongaware, T.A., Ham, I.: Cluster Analysis Applications for Group Technology Manufacturing Systems. In: Proceedings of the 9th North American Manufacturing Research Conference (NAMRC), pp. 503–508 (1981)

    Google Scholar 

  10. King, J.R.: Machine-Component Group Formation in Group Technology. OMEGA 8(2), 193–199 (1980)

    Article  Google Scholar 

  11. McAuley, J.: Machine Grouping for Efficient Production. The Production Engineering 51, 53–57 (1972)

    Article  Google Scholar 

  12. Shafer, S.M., Kern, G.M., Wei, J.C.: A Mathematical Programming Approach for Dealing with Exceptional Elements in Cellular Manufacturing. Int. J. of Prod. Res. 30, 1029–1036 (1992)

    Article  Google Scholar 

  13. Srinivasan, G.S., Narendarn, T.T., Mahadevan, B.: An Assignment Model for the Part-Families Problem in Group Technology. International Journal of Production Research 28(1), 145–152 (1990)

    Article  Google Scholar 

  14. Tsai, C.C., Chu, C.H.: Fuzzy Multiobjective Linear Programming Model for Manufacturing Cell Formation. In: Proceedings of the National Decision Science Conference, November 1996, pp. 1270–1272 (1996)

    Google Scholar 

  15. Tsai, C.C., Chu, C.H., Barta, T.: Analysis and Modeling of a Manufacturing Cell Formation Problem with Fuzzy Integer Programming. IIE Transactions 29(7), 533–547 (1997)

    Google Scholar 

  16. Wemmerlöv, U., Hyer, N.L.: Procedures for the Part Family, Machine Group Identification Problem in Cellular Manufacturing. J. of Operations Management. 6, 125–147 (1986)

    Article  Google Scholar 

  17. Witte, J.D.: The Use of Similarity Coefficients in Production Flow Analysis. Int. J. of Prod. Res. 18(4), 503–514 (1992)

    Article  Google Scholar 

  18. Wu, X.D., Chu, C.H., Wang, Y.F., Yan, W.L.: Concurrent Design of Cellular Manufacturing Systems: A Genetic Algorithm Approach. Int. J. of Prod. Res. 44(6), 1217–1241 (2006)

    Article  MATH  Google Scholar 

  19. Zimmermann, H.J.: Fuzzy Set Theory and Its Applications. Kluwer Academic Publishers, Boston (1991)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tsai, CC., Chu, CH., Wu, X. (2006). An Evolutionary Fuzzy Multi-objective Approach to Cell Formation. In: Wang, TD., et al. Simulated Evolution and Learning. SEAL 2006. Lecture Notes in Computer Science, vol 4247. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11903697_48

Download citation

  • DOI: https://doi.org/10.1007/11903697_48

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-47331-2

  • Online ISBN: 978-3-540-47332-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics