Skip to main content

Multimodal Optimisation with Structured Populations and Local Environments

  • Conference paper
Simulated Evolution and Learning (SEAL 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4247))

Included in the following conference series:

Abstract

Spatially-structured evolutionary algorithms are frequently implemented using a homogeneous environment throughout space. Such a configuration does not promote local adaptation of individuals in space. This paper introduces an evolutionary algorithm using space and localised environments to promote speciation. Surprisingly, a randomly generated “rugged” landscape appears to best support speciation by encouraging crossover between niches, while maintaining locally distinct species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dick, G., Whigham, P.A.: The behaviour of genetic drift in a spatially-structured evolutionary algorithm. In: Corne, D., Michalewicz, Z., McKay, B., Eiben, G., Fogel, D., Fonseca, C., Greenwood, G., Raidl, G., Tan, K.C., Zalzala, A. (eds.) Proceedings of the 2005 IEEE Congress on Evolutionary Computation, Edinburgh, Scotland, UK, vol. 2, pp. 1855–1860. IEEE Press, Los Alamitos (2005)

    Chapter  Google Scholar 

  2. Tomassini, M.: Spatially structured evolutionary algorithms. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  3. Sarma, J.: An Analysis of Decentralized and Spatially Distributed Genetic Algorithms. PhD thesis, George Mason University, Fairfax VA, USA (1998)

    Google Scholar 

  4. Murata, T., Ishibuchi, H., Gen, M.: Cellular genetic local search for multi-objective optimization. In: Whitley, D., Goldberg, D., Cantu-Paz, E., Spector, L., Parmee, I., Beyer, H.G. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2000), Las Vegas, Nevada, USA, pp. 307–314. Morgan Kaufmann, San Francisco (2000)

    Google Scholar 

  5. Kirley, M.: MEA: A metapopulation evolutionary algorithm for multi-objective optimisation problems. In: Proceedings of the 2001 IEEE Conference on Evolutionary Computation, Seoul, Korea, IEEE Press, Los Alamitos (2001)

    Google Scholar 

  6. Goldberg, D.E., Richardson, J.: Genetic algorithms with sharing for multi-modal function optimisation. In: Proc of the 2nd Int. Conf. on Genetic Algorithms and Their Applications, pp. 41–49 (1987)

    Google Scholar 

  7. Mahfoud, S.W.: Crowding and preselection revisited. In: Männer, R., Manderick, B. (eds.) Parallel problem solving from nature 2, pp. 27–36. North-Holland, Amsterdam (1992)

    Google Scholar 

  8. Pétrowski, A.: A clearing procedure as a niching method for genetic algorithms. In: Proceedings of the 1996 IEEE International Conference on Evolutionary Computation, pp. 798–803 (1996)

    Google Scholar 

  9. Davidor, Y.: A naturally occuring niche & species phenomenon: The model and first results. In: Belew, R.K., Booker, L.B. (eds.) Proceedings of the Fourth International Conference on Genetic Algorithms (ICGA 1991), pp. 257–263. Morgan Kaufmann Publishers, San Mateo (1991)

    Google Scholar 

  10. Davidor, Y., Yamada, T., Nakano, R.: The ECOlogical framework II: Improving GA performance at virtually zero cost. In: Forrest, S. (ed.) Proc. of the Fifth Int. Conf. on Genetic Algorithms, pp. 171–176. Morgan Kaufmann, San Mateo (1993)

    Google Scholar 

  11. Collins, R.J., Jefferson, D.R.: Selection in massively parallel genetic algorithms. In: Belew, R.K., Booker, L.B. (eds.) Proceedings of the Fourth International Conference on Genetic Algorithms, Morgan Kaufmann, San Mateo (1991)

    Google Scholar 

  12. Doebeli, M., Dieckmann, U.: Speciation along environmental gradients. Nature 421(6920), 259–264 (2003)

    Article  Google Scholar 

  13. Mahfoud, S.W.: A comparison of parallel and sequential niching methods. In: Eshelman, L. (ed.) Proceedings of the Sixth International Conference on Genetic Algorithms, pp. 136–143. Morgan Kaufmann, San Francisco (1995)

    Google Scholar 

  14. Mahfoud, S.W.: Population size and genetic drift in fitness sharing. In: Whitley, L.D., Vose, M.D. (eds.) Foundations of genetic algorithms 3, pp. 185–224. Morgan Kaufmann, San Francisco (1995)

    Google Scholar 

  15. Deb, K., Goldberg, D.E.: An investigation of niche and species formation in genetic function optimization. In: Schaffer, J.D. (ed.) Proc. of the Third Int. Conf. on Genetic Algorithms, pp. 42–50. Morgan Kaufmann, San Mateo (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dick, G., Whigham, P.A. (2006). Multimodal Optimisation with Structured Populations and Local Environments. In: Wang, TD., et al. Simulated Evolution and Learning. SEAL 2006. Lecture Notes in Computer Science, vol 4247. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11903697_64

Download citation

  • DOI: https://doi.org/10.1007/11903697_64

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-47331-2

  • Online ISBN: 978-3-540-47332-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics