Skip to main content

Calibration of Omnidirectional Camera by Considering Inlier Distribution

  • Conference paper
Rough Sets and Current Trends in Computing (RSCTC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4259))

Included in the following conference series:

Abstract

This paper presents a new self-calibration algorithm of omnidirectional camera from uncalibrated images by considering the inlier distribution. First, one parametric non-linear projection model of omnidirectional camera is estimated with the known rotation and translation parameters. After deriving projection model, we can compute an essential matrix of the camera with unknown motions, and then determine the camera positions. The standard deviations are used as a quantitative measure to select a proper inlier set. The experimental results showed that we can achieve a precise estimation of the omnidirectional camera model and extrinsic parameters including rotation and translation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fournier, A., Gunawan, A., Romanzin, C.: Common illumination between real and computer generated scenes. In: Proc. of Graphics Interface, pp. 254–262 (1993)

    Google Scholar 

  2. Debevec, P.: Rendering synthetic objects into real scenes: bridging traditional and image-based graphics with global illumination and high dynamic range photography. In: Proc. of Siggraph, pp. 189–198 (1998)

    Google Scholar 

  3. Xiong, Y., Turkowski, K.: Creating image based VR using a self-calibrating fisheye lens. In: Proc. of Computer Vision and Pattern Recognition, pp. 237–243 (1997)

    Google Scholar 

  4. Nene, S.A., Nayar, S.K.: Stereo with mirrors. In: Proc. of Int. Conf. on Computer Vision, pp. 1087–1094 (1998)

    Google Scholar 

  5. Sato, I., Sato, Y., Ikeuchi, K.: Acquiring a radiance distribution to superimpose virtual objects onto a real scene. IEEE Trans. on Visualization and Computer Graphics 5(1), 1–12 (1999)

    Article  Google Scholar 

  6. Bunschoen, R., Krose, B.: Robust scene reconstruction from an omnidirectional vision system. IEEE Trans. on Robotics and Automation 19(2), 358–362 (2003)

    Article  Google Scholar 

  7. Micusik, B., Pajdla, T.: Estimation of omnidiretional camera model from epipolar geometry. In: Proc. of Computer Vision and Pattern Recognition, pp. 485–490 (2003)

    Google Scholar 

  8. Micusik, B., Martinec, D., Pajdla, T.: 3D Metric reconstruction from uncalibrated omnidirectional Images. In: Proc. of Asian Conf. on Computer Vision, pp. 545–550 (2004)

    Google Scholar 

  9. Micusik, B., Pajdla, T.: Omnidirectional camera model and epipolar estimateion by RANSAC with bucketing. In: IEEE Scandinavian Conf. Image Analysis, pp. 83–90 (2003)

    Google Scholar 

  10. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge Univ. (2000)

    Google Scholar 

  11. Kumler, J., Bauer, M.: Fisheye lens designs and their relative performance, http://www.coastalopt.com/fisheyep.pdf

  12. http://www.realviz.com

  13. Oliensis, J.: Extract two-image structure from motion. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(12), 1618–1633 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hwang, Y., Hong, H. (2006). Calibration of Omnidirectional Camera by Considering Inlier Distribution. In: Greco, S., et al. Rough Sets and Current Trends in Computing. RSCTC 2006. Lecture Notes in Computer Science(), vol 4259. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11908029_84

Download citation

  • DOI: https://doi.org/10.1007/11908029_84

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-47693-1

  • Online ISBN: 978-3-540-49842-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics