Distributed Abstract Data Types

Gian Pietro Picch Matteo Migliavacca,
Amy L. Murphy?, and Gruia-Catalin Romdn

! Dip. di Elettronica e Informazione, Politecnico di Milaritaly
2 Faculty of Informatics, Univ. of Lugano, Switzerland
3 Dept. of Computer Science and Engineering, Washington.imBt. Louis, USA

Abstract. In this paper we introduce the concepttributed Abstract Data
Type (DADT), a new programming language construct specifically design
support the development of distributed, context-awardieatpns. Through a
DADT instance, a program gains access to both aggregate anddiraliaDT
instances throughout the system. The semantics of dittiband sharing is
specified bypADT operations using dedicated and novel programming coristruc
These include also the ability to declare at run-time garts, calledviews over
the targetaDT instances based on their application or context state,stwice
operation scope.

Interestingly,DADT constructs can be used to specify not only application data,
but also the space where it resides. This leads to a unif@atnent of the data
and space concerns, simplifying the development of coregre applications
and providing the programmer with considerable flexib#tithd expressive power.
We argue thabADTs are amenable to incorporation in existing object-orignte
programming languages, as supported by our prototype imggigation.

1 Introduction

Modern distributed computing places new demands on apigic@arogrammers, not
only because of the increasing scale, decentralizatiahgdgnamicity, but also because
of novel application requirements demanding control asibility of the physical space
where the application executes. A paradigmatic examplehareapplications falling
under the umbrella of pervasive, ubiquitous computing, amdbient intelligence. In
these settings, programmers must derive information titr@imultaneous access to a
plethora of devices, sensors, or application objectsedsgal in the environment, e.g., to
gather aggregated information to base further decisioos.Ugurthermore, the way this
processing is organized is often dependent on applicaticomtextual information—
which s itself distributed (e.g., the mutual position of gntities involved, their residual
power, or their application state).

Despite the popularity of the field, the models and systenadale often treat
the physical space—or context—where the application desas something external
to the application, therefore requiring dedicated and isized constructs increasing
the programming effort. Similarly, the abstractions foaliteg with distribution are
usually quite primitive, often forcing the programmer tatexplicitly with the details
of individual remote accesses.

dat at ype Sensor {
dat a:
i nt sensorType;
bool isActive;
doubl e val ue, resol ution;
oper ati ons:
doubl e read();
void reset();

Fig. 1. ADT interface for a simple sensor.

In the approach we describe here, we provide programmingtamts to simplify
the access to distributed state, by explicitly taking intoaunt physical space as well.
We accomplish this by extending the well-established gogning notion of abstract
data type ADT) into adistributed abstract data typépADT). The state of multiple
ADTs disseminated in the system is made available collectivebugh the interface
of aDADT, whose behavior in terms of distribution is defined by thegpaonmer with
appropriate and dedicated constructs. Inside#wmT interface, properties ovaDT in-
stances enable the definition of partitions, calleslvsover the distributed state, which
can be used to dynamically restrict the scope of distribujgerations according to
the application needs. Interestingly, the definitiorbebTs and views is not limited
to application objects, as in conventional programmingieye, but is extended also
to the representation of space. Our model provides fullgiatiéon of the spatial and
data concerns involved in the definition of context undenglsi, unified programming
framework revolving around the notion oiaDT. Data and space become two differ-
ent, and yet intimately related, perspectives enablingdi&ibuted manipulation of
application entities.

The paper is structured as follows. Section 2 introducesnplsi and yet realistic
example, used throughout the paper for illustration pugpoSection 3 introduces the
reader to the basic concepts of akDT model. Section 4 discusses the constructs
enabling the programming of distributed access, whilei8ed& introduces the notion
of aDADT viewenabling the programmer to specify declaratively and dyinalfy the
scope of an operation. Section 6 reports about the desigingsldmentation of our
proof-of-concept prototype. Section 7 placeeDTs in the context of related work and
Section 8 ends the paper with brief concluding remarks.

2 A Reference Example

This section introduces an example used throughout ther japaake the concepts
we present more concrete. Imagine an environment wheresd®ensors are deployed
to report about some physical parameter (e.g., tempejauraonitoring station may
access the sensors to aggregate raw data (e.g., compugingahage temperature), or
reset the sensor in case of problems.

Interaction with a sensor is naturally modeled by, as shown in Figure 1. In a
conventional setting, this interface is used to accesssoséire., &Sensor instance) at
atime. Even a simple computation such as determining thageeensed value entails
a considerable programming effort. The programmer must haexplicit notion of the

sensor configuration, or at least of their identity, to invtler ead operation remotely
on each of them, fetch the corresponding value, and competaverage locally.

It can be argued that a skilled programmer would probabhyndedinewaDpT, €.g.,
Sensor Pr oxy, that embodies this distributed processing. Howevereciily avail-
able languages do not provide any syntactic or semantigriesd keep track of the fact
that the twoADTS are conceptually related. Moreover, in the absence ofgonayd-
dleware facilities, the behavior of this lattepT (Sensor Pr oxy in our case) must
be redefined from scratch every time. Also, the programmes ot retain any con-
trol over the portion of the system that should be affecteciyperation. Thus, for
instance, there is no easy way to compute the average ongrsoss that are within a
given range.

In the remainder of the paper, we use our sensor examplertwdirde the novel
notion ofdistributed abstract data typ@ADT) which allows the programmer to define
a new, distributed\DT as a refinement of the original one, define how it is possible to
restrain the set obADT instances involved in an operation, and therefore provide a
expressive solution to the problems we just outlined.

3 Basic Concepts

The driving motivations for our work are to manage distribatand context-awareness
while simultaneously minimizing the invasiveness for thegrammer. Therefore, we
decided to cast our ideas into the notiorabiStract data typeas it represents a well-
understood and commonly used programming concept, anchérgleenough to allow
us to present our novel constructs without being distrabtethe idiosyncrasies of a
specific programming language or model.

This latter aspect is reflected in the presentation styledepta TheDADT concept
is illustrated through code examples which allow the reaol@ppreciate directly how
the programmer can expla#aDTs in practice. The syntax, although inspired by mod-
ern programming object-oriented languages, servesriitish purposes and is not tied
to any particular language. We describe an instantiatioth@bADT concept for the
Java language in Section 6.

Data and spaceaDTs. At the core of our model is the notion abT. We draw a sharp
line between the data necessary to the application behavidrthe space where such
data resides. Accordingly, we distinguish between datas and spacebDTs.

DataADTs are conventionalDTs encoding the application logic, like tisensor
ADT shown in Figure 1. Instead, spaseTs (orsite areADTS representing and char-
acterizing an abstract notion of the computational envirent (e.g., a computer, a vir-
tual machine, a car, a person) hosting a dai@. Many notions of space are meaning-
ful, depending on the application. For instance, the ndtwapology may be irrelevant
for an Internet application, but it is fundamental in the teom of mobile ad hoc net-
works. Similarly, physical location in space (e.g., galiethrough a GPS system) is
usually irrelevant, but it becomes fundamental for manytextiaware applications.
Traditionally, the structure of space is somehow hard-dadehe run-time of the dis-
tributed application, and programmers retain only limiteflany—control over it. In-
stead, in our approach we strive to empower the programntértihve ability to use

spacetype GPSSite extends Site {

dat a:
Location |;
oper ati ons:

Location getLocation();
doubl e getBatteryLevel ();

Fig. 2. A spaceaDT representing a physical location.

(and even define) the notion of space that is most approfdoathe application. As
such, the notion of site built in our approach is minimatisind consists of anDT
Si t e, which must be specialized by the programmer with the prapé&on of space.
For instance, Figure 2 shows a spa@er whose position in space is characterized by
a physical location. How the latter is physically acquired aefined (e.g., from GPS)
is entirely encapsulated in thedT implementation. In addition, it returns the current
battery level. One could similarly defineHpst ADT representing a network host, or
any other notion of site, and “export” through the definitamtextual data. Our imple-
mentation, described in Section 6, provides some builttendefinitions.

The only syntactic difference between data and spdares is the use of the key-
wordsdat at ype andspacet ype introducing the declaration, essentially for en-
abling type checking and improving code readability andarstanding.

From ADTs to DADTS. DistributedADTS specialize the notion ofDT by providing
the ability to treat a set of homogeneoAsT instances as a collective unit, accessed
through the operations defined on theDT interface. To make our presentation more
concrete, we return to the reference example introduceckatich 2 and consider a
scenario in which the application programmer frequentydssto compute the average
of sensed values, as well as to reset all the sensors.

Figure 3 is our starting point in illustrating by example firegramming model we
put forth in this paper. The figure contains the declaratiommADT calledDSensor
that enables distributed, collective access to instarfdbeaDT Sensor we definedin
Figure 1. The interface of theaDT specifies the signature of two operations providing
the aforementioned functionality.

The application programmer—which in large developmenredfis likely to be
different from both theaDT andDADT programmer—can then access the distributed
collection of ADTs by creating @ADT instance and using its operations. An instance
of aDADT is created using the constructs for conventiowt's provided by the target
language, e.g., theew operator and the notion of constructor. Thus, the appboati
programmer can write

dat at ype DSensor distributes Sensor with {
oper ati ons:
void resetAll();
doubl e average();

Fig. 3. A dataDADT providing access to multiple sensors.

DSensor ds = new DSensor();
doubl e v = ds. average();

to create &Sensor instance and use it to request the execution of the disgribpito-
cessing encapsulated in @ger age operation, as specified by tbabdT programmer.
Note how the operation invocation above is indistinguishdtmm any invocation on
a conventionahDT instance: the application programmer may even be unawares of
distributed nature of the referends.

Similarly, one could define a spapeDT providing collective access to a set of sites.
For instance, one could definaMar el essNet wor k spaceDADT distributingSi t e
and providing distributed operations to test reachabilfts given site or to change the
properties of the nodes involved, e.g., modify the wirelesge.

The di stri but es relation and the member set.As the reader may have noticed,
the declaration of @ADT is similar to the one of aaDT. This is not surprising, since
DADTS areADTS themselves. The only difference is the presence alittsd r i but es
relation, which extends the range of relations usually @éefiamongabpT types, like
inheritance A distributes B, whereA is aDADT and B an ADT, states that a set
of instances ofB* can be collectively accessed through the operations deiiméds
interface. Clearly, ifA distributes B and A is a spacebADT, B must be a space
ADT, i.e., it must be a subtype & t e.

The set ofADT instances available for distributed computation throughaTt
constitutes thenember sebf the DADT. The member set is effectively contained in
the data structure encapsulated by the@T: everyDADT definition implicitly defines
a member set, whose elements ap instances of the type on the right hand side of
thedi stri but es relation. In principle, the content of the member set is thees
across all theoADT instances in the system. Fulfilling this requirement, havgeis
impractical not only in context-aware applications, whidten involve mobile compo-
nents and other sources of dynamicity, but in general in any distributed system, as
asynchrony and concurrency complicate enormously theafsiaintaining a globally
consistent state. Moreover, different applications mayire different, weaker notions
of consistency of the member set. For this reason, here athe irest of the paper we
assume that the underlying run-time provides only “bestréfiguarantees for what
concerns the consistency of the member set. As a consequiifieeent DADT in-
stances may have different values of thedT member set (e.g., because of transient
disconnections). At the same time, however, as we discuSgation 6, our flexible
architecture of th®ADT run-time provides mechanisms enabling customizationef th
middleware with alternative consistency algorithms.

Binding an ADT into a DADT. Although we defined the notion of member set, we still
did not explain how amDT instance can become part of it. In our model, the binding of
anADT instance into @ADT is requested explicitly by the application programmert (i.e
the “client” of both theaDT and theDADT distributing it) by using the dedicated pro-
gramming construdbi nd. In our examplébi nd(new Sensor (), " DSensor")
binds the newly create&ensor instance to the member set of tbeDbT named

4 Or any other type compatible witB according to the typing rules of the target language.

operation invocation on a data DADT instance

~— (9., ds.average ()

dataDADT
(member set) =

bind

data ADT
instances
(application objects)

place

space ADT

instances —

(sites)

space DADT
(member set)

operation invocation on a space DADT instance’ %
(e.g., wn.increaseRange ())

Fig. 4. Data and space in theaDT model.

DSensor . Thebi nd operation is idempotent. The dual effect of removing a given
ADT instance from the member set is obtainediloypi nd, with the same syntax.

The effect of these two operations is global. However, tloppgation of the state
change, as discussed previously, is not necessarily synchs w.r.t. the operation in-
vocation. Also, note how aADT instance is bound to BADT type not to a specific
DADT instance In fact, it is theDADT name that serves to identify uniquely and col-
lectively a group ofaDT instancespADT instances, instead, serve only to provide an
“entry point” towards this group.

Putting it all together: The interplay of data and space.Figure 4 provides a graphical
representation of the concepts discussed thus far andlirdes some new concepts.

The ADT instances in the figure can be bound t@s0T and therefore become
part of its member set. The latter is represented visually pne, onto whiclaDT
instances (the solid circles and squares) are “projected! eonsequence oftd nd
operation. Note how only thogeTs that are explicitly bound by the programmer (i.e.,
for which an arrow towards the plane exists) become glotedlyessible through the
member set. Collective access to the member set is enabitaehthabADT instance
(represented as a star), which serves as the “portal” tathsimember set.

This allows access to either data or space, but, at this pothie discussion, the
two are not related, meaning application objects are nocéest®gd to sites in space and

therefore no spatial context can be associated with glats. Conventional program-
ming languages implicitly make this association when areatis created, including
it in the local “computational environment”, however, natyis this environment not
formally defined, but the programmer typically has no cantreer object placement.
Our model does both, defining a new operatjpinace, to define the binding between
a dataAaDT and a spacenDT. This operation, represented by the thick lines in Fig-
ure 4, can be performed explicitly by the programmer. Fonga, ifg is aGPSSi t e,
thenpl ace(new Sensor (), g) binds a newly created sensor to the existinggite
While this yields great degrees of flexibility for the progmaer, some applications may
not require it. In this case, a default site can be provideddauntime system and every
newly created databT can be automatically bound to this site. Although this isyver
similar to the conventional approach, the explicit defonitdf a site allows symmetric
treatment of data and space in the model. It is worth notiagplacement of anDT

on a spaceDT is not necessary until thaDT is bound to abADT. Prior to this, the
ADT can only be accessed as a regolajectand no notion of location is needed.

As shown in the figure, multipleDTs can be placed on the same site. Also, the same
ADT can be bound to multiplbADTS; an option that could be represented in the figure
by drawing another plane (data or space) for the pewT. By creating instances of
bothDADTS, the samaDTs can be accessed through multiple application perspsctive
at different times. To see why this is useful for sites, cdesia host with multiple
network interfaces, e.g., Bluetooth and WiFi. One optiorsupport this is to create
two spacebADTS, one for each network interface. Each host supportinginteghfaces
should bind to botlbADTs. However, for the sake of simplicity the remainder of this
paper assumes a site is bound to a single spaca, however the same is not true for
data.

The figure also demonstrates tatT instances can be accessed by going through
instances of either a spabaDT or a databADT, depending on the application needs.
Indeed, the power of the abstractions discussed thus farléashed when we intro-
duce the ability to restrict the scope of invocation by netypnboththe data and space
perspectives. Consider a laptop-based monitoring afijgit#hat needs to obtain the
average sensed value only for temperature sensors anchatdyrnmediate proximity.
Specifying this behavior with conventional programmingstucts tends to be cum-
bersome. Instead, in oOADT language this can be expressed simply and declaratively,
asin

doubl e v = ds.average() on tenperature within proximty;

wheret enper at ure andpr oxi m ty areviewsdefined and computed over the
member sets associated to the datatT DSensor and a spaceADT (e.g.,Net wor k).
Before delving into the details of how this is accomplishieolyvever, we first discuss
which constructs are made available to the programmer fecipng the distributed
processing embodied in the operations oh@T. We return to the topic aADT views

in Section 5.

1 void DSensor::resetAl() {
2 (all in targetset).reset();
3
}
4+ doubl e DSensor::average() {
5 doubl e sum = 0;
6 doubl e[] readings = (all in targetset).read();
7 for(int i=0; i<readings.length; i++)
8 sum += readi ngs[i];
9 return sun readi ngs. | ength;

w0 }

Fig. 5. Aggregating sensor data throughDTS.

4 Distributed Access to ADTs

After the DADT’s interface and targetDT are declared, as shown for instance in Fig-
ure 3, theDADT behavior realizing distributed, transparent access meistdfined by
specifying the body of th®ADT methods. Since @ADT is associated to the mem-
ber set, appropriate constructs are necessary to accessaripulate the state of the
ADTSs in this set both collectively and individually. To accoisplthis, we introduce
two programming constructeperatorsandactions

4.1 Operators

Let us focus on the simple task of implementing tleset Al | method ofbSensor ,
whose intended behavior is simply to reset all the sensdhginystem. Since timaDT
operates on a set @DT instances, one would like to be able to specify the desired
behavior by operating on the set in a declarative way. Fdairte, in a Z-like formal
language, one would express the semantics of the operaitiois@mething like:

Vo |z € Mex.reset()

where M is the member set dSensor . This is expressed in omADT language as
shown in Figure 5, where the expression above is represegttte statement on line
2. In this statement, the invocation target—normally anexiee to amDT instance—is
replaced by an expression denoting the set of instances h Wie method eset is
executed. The semantics of execution is suchttlestet gets invoked independently
and concurrently on each of th@T instances belonging to the set in the invocation
target. Figure 5 also shows the implementation ofdher age method, where the
results of the various invocation are collected and useth®&pADT implementation.

Selection vs. condition operatorsNext we look more closely at the expression repre-
senting the invocation target in line 2 of Figure 5. The Jalgd ar get set , to which
everyDADT operation has implicit access, is the sepofr instances that are available
for distributed processing. At this point of our presematithe target set always co-
incides with the member set, however this is no longer truendnDT views will be
introduced in Section 5. The keywordh plays the role of the mathematical member-
ship operatoe. Finally, the operatoal | allows one to extract a collective reference
to the instances in the target set.

Other operators also make sense. The dual opeaatpy for example, is such that
the effect of

(any in targetset).reset();

is to reset one among the sensors in the target set, chosetetenministically. Both
al | andany areselection operatorsr, shortly,selectorsin that they allow selection
of a subset of the instances contained in the target setelfottowing, we describe
other selectors that add expressive power toorT language.

Selection operators essentially enable the programmepdoify declaratively a
reference to a distributed invocation target constitutechhltiple actualADT instances.
Interestingly, this is achieved transparently, i.e., thegpammer does not require any
knowledge of the actuadentityof the instances. In addition, we also provandition
operators which can be used to make the code abADT method dependent on a
global condition on the target set. The operato® tests whether one set is contained
in another, while# returns the number of elements currently in it. With refeeeto
Figure 5, it would be possible to rewriteeset Al | so that it resets all the sensors only
if a given “master” sensor (whose identifier below we assunmnn) is not available:

if (!'({master} in? targetset)) (all in targetset).reset();

Similarly, we could rewriteaver age so that an average is effectively computed only
if, say, more than 3 sensors are around:

if ((# targetset)>3) readings = (all in targetset).read();

Clearly, other operators could be defined, beyond thoseiskst here. Examples are a
variant ofany that non-deterministically selects a given number of incts (e.g., as
in any(4)), or selectors relying on contextual information (e.gnear est opera-
tor that returns the geographically closest instance).cDurent prototype provides a
built-in implementation for the operators we describedstfar, as well as the required
mechanisms to enable the programmer define her own, as wedlle in Section 6.

Iteration operators. The ability to send multiple, concurrent remote invocasiem-
powers the programmer with a high degree of expressiveHesgver, in some cases it
may lead to inefficient use of communication resources. Eptasmare situations where
only a limited number of the nodes must be contacted, but thuehber is not known in
advance. In these situations, thel selector is clearly overkill. The problem is tack-
led by usingiteratorsand the associated operators. Figure 6 shows an exampleh whi
would return the same valtie@s the one shown in Figure 5, although likely with a
greater latency. The core of the computation is in line 6,nalikenext selector en-
ables iterations over the members of the target set. As Wislelectorsnext operates
by picking one of the instances in the target set and retgraireference on which an
operation can be invoked. The (mandatory) parametereodt is an instance of the

I t erat or ADT (line 4), which embeds the logic used to perform the iteraéis well

as its current state, and is an argument for all iteratiorratpes. These are, besides
next, prev,first,|ast, cur, and the conditional operatomr e? used in the
loop condition of line 5.

5 Provided the network remains stable throughout the cortipnta

1 doubl e DSensor::average() {
doubl e sun¥0;
int nodes=0;
Iterator i = new lterator() on targetset;
while (nmore?(i) in targetset) {
sum += (next(i) in targetset).read(); nodes++;

}

return suntf nodes;

© ® N o o A W N

Fig. 6. Theaver age method rewritten using iterators.

voi d DSensor::reset Max() {
<doubl e data, id source>[] readings;
readings = (all in targetset).read();
int m= 0;
for(int i=1; i<readings.length; i++)
if (readings[m.data < readings[i].data) m=i;
(readings[n.source in targetset).reset();

© N @ o A W NP

Fig. 7. Explicitly accessingpDT instances.

As with other operators, the programmer may provide her awplementations
of iterators as described in Section 6, for instance to séhecrequired iteration item
according to application or physical information (e.gstdnce).

Enabling access to a specifiaDT instance.The notion ofbADT effectively abstracts
from the details of distribution, and enables the programtméreat sets oRADT in-
stances as if they were one. Nevertheless, it is sometin@sabke or necessary, for
application needs or performance reasons, to access aggiveinstance. This requires
a means of identifying—and therefore distinguishing—infr the rest of the set, and
a means to target the instance and manipulate it. Returaoingrtexample, we assume
that a new functionality must be added, namely, the abiitywitch off the sensor cur-
rently reading the maximum value. The task is clearly coredaxf two parts: finding
such sensor, and resetting it.

As for the first problem, we can define a newpT methodnax that returns such
identifier. However, none of the operators described thuarEasuited for specifying its
behavior satisfactorily. We could use iterators, but thatil affect latency linearly in
the scale of the system, which is usually not desirable. ®wther hand, thal | oper-
ator would help in identifying the maximum value, but not #femsor who read it, which
is necessary to solve the second problem. Figure 7 showshuiosn to the problem.
Line 3 usesal | to retrieve all the readings, but this time theadi ngs variable is
an array of pairg doubl e, i d) instead of an array afoubl e. Both alternatives are
available to the programmer, which can therefore requestdtrieval of the bare val-
ues, or of the corresponding source as well. At translafioe,tthe static declaration
is sufficient to perform the necessary translation into ttaper data structures of the
target language.

1 doubl e DSensor::average() {
doubl e[] readings; int tries = 3; bool found; int i;
while (tries > 0) {

readings = (all in targetset).read();

found = false; i = 0;

while (!found &% i < readings.|ength)

found = (readings[i++] == ERROR);
if (found) --tries;
el se break;

}
u if (found) {

12 (all in targetset).reset();
13 readings = (all in targetset).read();
14 found = false; i = 0;
15 while (!found &% i < readings.|ength)
16 found = (readings[i++] == ERROR);
17 }
s if (!found) {
19 doubl e sum = 0;
20 for (int i=0; i<readings.length; i++)
21 sum += readi ngs[i];
22 return sum readi ngs. | ength;
23 } else /xx report fault to the application *x/;
24

}

Fig. 8. Access to remotaDTs: a naive solution.

Once the identifier is obtained, we are left with the probldraazessing explicitly
the corresponding sensor to reset it. This is naturally empassed in our language by
using the identifier of the sensor as a selector (line 7). Imega, a set of identifiers
can be used, thus supporting a specialization ofihle selector where the invocation
target is a subset of programmer-specified instances.

4.2 Actions

The use of the aforementioned operators enables concaceaess to remoteDT in-
stances. Thus far, we have assumed that such access octuterongh one of the
ADT’s operations. However, in many cases, this is not sufficient

For instance, let us assume that ter’s r ead operation is capable of signaling
a malfunction by returning aBRRCR value (e.g., aloubl e value outside the range
of meaningful physical values sensed). In this case, it neaebsonable to circumvent
transient faults (e.g., due to interference of the senstbrp¥iysical phenomenons) with
simple countermeasures. A reasonable behavior could thirrbtry the read operation
a number of times, after which the sensor is reset and thereggted again. If also
this last attempt fails, the fault is reported to the appiara

A naive implementation of thisADT behavior is shown in Figure 8. This solution
is clearly highly inefficient, since every time a fault is cefed, ther ead operation

1 doubl e DSensor::average() {

2 action double reliabl eRead() {

3 doubl e reading; int tries = 3;

4 while (tries > 0) {

5 reading = |l ocal . read();

6 if (reading == ERROR) --tries;
7 el se break;

8
9

}
if (reading == ERROR) {
10 | ocal .reset();
1 reading = |l ocal . read();
12 }
13}
14 double[] readings = (all in targetset).reliabl eRead();
s bool found = false; int i = 0;
s Wwhile (!found & i < readings.|ength)
17 found = (readings[i++] == ERROR);
s if (!found) {
19 doubl e sum = 0;
20 for (int i=0; i<readings.length; i++)
21 sum += readi ngs[i];
22 return sum readi ngs. | ength;
23 } else /xx report fault to the application *x/;
24
}

Fig. 9. Access to remotaDTs using an action.

is retried onall sensors. Explicitly accessing a remote instance, as thestcim Sec-
tion 4.1, would only partially solve the problem by enablifig programmer to limit
communication only towards those sensors that reportkddaiNevertheless, even in
this case a single interaction may result in several exabgagross the network, since
for each sensor theead andr eset operations need be invoked from the (remote)
DADT instance. Moreover, this solution still requires a lot obkkeeping, to keep track
of which sensors are still faulty and need another try anatkvinstead started working
again.

Both solutions are inherently unsatisfactory because thegre a fundamental
point: the sequence of failingead and corrective eset operations do not require in-
tervention of thebADT instance and instead can be controlled local toxthe instance.
In other words, a distinction is necessary between the egain logic that determines
how to recover from a fault (which is entirely local to a sefsand its distribution
across the system.

This separation can be achieved elegantly and efficiently tlie notion ofaction
An action is essentially an operation that is defined inoheT but whose execution
occurs on theaDT instance on which it is invoked. Loosely speaking, actiomsbde
the programmer to writ®ADT code that operates okDT instances as if they were
exporting a richer interface, whose content is under cbofrthe DADT programmer.

Figure 9 illustrates the concept. The action declaratioooistained in lines 2—
13, and is identical to the declaration of a standard progreng language routine,
prepended by the keyworact i on. The only difference is the use of the keyword

| ocal , which is bound at runtime to theDT instance on which the action is currently
being evaluated. Note howocal is different from the traditionat hi s keyword,
pointing in this case to theaDT instance on which the operation containing the ac-
tion (aver age) is being invoked. This should not be surprising, in thabaligh the
actiondefinitionbelongs to theADT and its execution is triggered through one of the
DADT operations, the actioexecutioris entirely local to the sensor, as if it were just
another operatidhof the ADT. These semantics can be “visualized” by considering ac-
tions as mobile code [5] being shipped dynamically and refg@valuated on thept
instances. However, mobile code is only one of the optioadate for their distributed
execution.

The action code in Figure 9 performs the local read and, ifraorés reported,
retries the read and possibly resets the sensoraVlee age DADT operation exploits
this action definition by simply invoking the action over thensors in the target set
using the notation we described in Section 4.1 (line 14).rEneainder of the operation
scans the obtained readings for error codes (returned Bprewith a persistent fault)
and either computes and returns the average as in Figureeports the error to the
application.

Actions declared in an operation block are not visible a#saccording to lexical
scoping rules. However, an action can also be declared imAle interface. The
action becomes visible and can be reused by any obtmer operations and by client
objects calling these operations. The action code becomezgpsulated in theADT,
thus providing a beneficial form of information hiding.

5 Restricting the Scope of Operations

Distributed sharing oADTs as we have defined it thus far is a powerful concept. How-
ever, in many situations the invocation of an operation alethe instances in the
member set may not be desirable. Performance reasons gy ieimpractical. Ap-
plication needs may suggest better policies that resthaireffect of an operation only
to a subset of the instances.

Our reference example helps in clarifying these conceptsut scenario, different
kinds of sensors (e.g., temperature, light, humidity) maypbesent. In Figure 1 this
fact is taken into account by the attribitgensor Type. If the only notion of sharing
available is one where all instances of a given type are tfédg considered for the
distributed computation ohver age, then values belonging to sensors of different
kinds are averaged together, yielding a meaningless résthiis case, we would like to
be able to operate only on a subset of the sensors availabéese-bf a given kind. One
could argue that the sensor kind could (or should) be encadeddifferenDT, e.g.,
inheriting from a supertype representing an abstract naifa sensor. Unfortunately,
the same requirement may hold for other characteristics s#nsor that represent a
portion of its state, as opposed to a static characterik¢he sensor type, e.g., to reset
all the sensors that are currently inactive or to computeattezage only from sensors

8 For what concerns distributed executiemT operations can be regarded as and are effectively
treated as a special case of action.

1 dat at ype DSensor distributes Sensor with {
properties:
bool isActive();
bool isSensorType(int sensorType);
bool isPrecise(double resolution);
acti ons:
doubl e[] reliabl eRead();
oper ati ons:
doubl e average();
10 voi d readAll ();
11 }
12 bool DSensor::isActive() {
13 return | ocal.isActive;
14 }
15 bool DSensor::isSensorType(int sensorType) {
s return | ocal.sensor Type == sensor Type;
17
}
18 bool DSensor::isPrecise(double resolution) {
19 return local .resolution >= resol ution;

2
3
4
5
6
7
8
9

20 }
2 void DSensor::resetAll() {/* ...as in Figure 5... =/}
22 doubl e DSensor: :average() {/* ...as in Figure 5... =/}

Fig. 10.Restricting the scope of operations over data.

that guarantee a given resolution. In essence, in thess oasavould like to be able to
specify something to the effect of

Vo | =(zis activg A z € M e z.reset()

or even

def

A ={z]|zisactive N z € M} Vo |z & Aex.reset()

We provide this level of flexibility and expressivenes®iDTSs by introducing the
notions of property and view. Conceptuallyp@pertyis a characteristic of BADT de-
fined in terms of amDT’s data and operations, and evaluated local ta@n instance.
In programming terms, properties are specified as part obMmer interface as oper-
ations returning a boolean. Figure 10 showsth®T we defined earlier in Figure 3
augmented with properties. For instancsAct i ve returns true if the local value of
the attributd sAct i ve (see Figure 1) on th8ensor instance where the property is
being evaluated is true as well. Similarlys Sensor Type andi sPr eci se return
true if the target sensor is of the kind specified or providesféicient resolution, re-
spectively. The definition of these properties in Figuredli®s on thd ocal keyword
to access thaDT instance they are currently being evaluated upon, singitarhctions
in Section 4.2. Indeed, like actions, properties are deforetheDADT but evaluated
on (remoteDTs.

This simple concept enables the definition of partitionshaf tmember set into
programmer-defined subsets, which we ¢albT views Properties define the mem-
bership function for the elements in such subset. Views afiaed by the programmer

using dedicated constructs. For instance Ahgubset in the formula above effectively
represents a view, which can be declared as:

dat avi ew acti ve on DSensor as isActive();

In this case, the viewct i ve is defined as the subset of the member s@S#nsor

and contains only thos&énsor) instances for which the evaluation of the property

i sActi ve yields true. ThebADT name is used to refer implicitly to its member set.
Properties can have parameters. For instance, the viewinorg all temperature

sensors can be defined as:

dat avi ew t enperature on DSensor as isSensor Type(TEMP);

After a view is defined, it can be used for restricting the scofpaDADT operation.
For instance, the following code snippet

ds.resetAll () on lactive;

resets all the sensors that are currently inactive. Thesigrsaf execution is such that
thet ar get set in line 2 of Figure 5, which in Section 4.1 was bound to the memb
set, is here bound at invocation time to the identifiers ofaibe instances belonging to
the view. Of course, the resulting view may be empty, i.einstance satisfies the view
definition. In this case no operation is performed.

Note how in the statement above the boolean negation opésatsed to obtain the
subset of instances that amet in the viewact i ve. This is an example of the more
general ability to compose views by connecting their progeusing boolean opera-
tors. The mechanics are trivial, since the properties ddfittie views are essentially
logic predicates over the state of abnT instance. Yet, this feature is powerful as it
allows one to express views using set union and intersedtmrinstance the following
definition
dat avi ew preci seOn on DSensor

as isPrecise(0.1) &% isActive();

captures the subset of sensors that are active and prowgelation greater than 10%.
Itis worth noting how all the views we defined thus far are syatnm, i.e, regardless
of the specifioOADT instance requesting the operation whose scope is resthgtéhe
view, the latter always contains the same elements. In saseschowever, it is useful
to define views that depend on thateof the DADT instance target of the distributed
operation. As we briefly mentioned in Sectiont3DTs may define attributes, e.g., to
store intermediate, aggregated data. Imagine a variatitre@eclaration obSensor
in Figure 10 where an attributeast Aver age of type doubl e is declared. This
attribute may be used to cache the last average value readithaver age, and can
be exploited to define a property

bool DSensor::isBel owAverage() {
return local.read() < this.|astAverage;

}

which returns true for all sensors whose currently read evadubelow this cached
average value. Any view involving this property is asymrnueetin that the subset of
the member set it denotes depends on the valleast Aver age associated to the

spacetype Wrel essNetwork distributes WrelessSite with {
properties:
bool i sReachabl e(int hops);
oper ati ons:
voi d nodi f yRange(doubl e percent);

Fig. 11. A spaceDADT providing distributed access to sites.

DSensor instance involved in the distributed computation, whiclm ¢ee different
since different instances may have involeacer age at different times. The semantics
of execution is such that the value of the attribute accewedight hi s is “frozen”
at invocation time, as this enables a straightforwarditisted implementation without
losing significant expressive power. The use oftie s keyword, however, must be
limited to enabling access to attributes of th&DT, sinceDADT operations cannot be
performed from within the property, as its evaluation tagke on theadT and not
on theDADT instance. Both theDdT data and operations can instead be accessed freely
throughl ocal .

Multiple views may coexist in the same code fragment, and del wat different
times on the sameADT instance. For example, based on some of the previous declara
tions, one could write:

ds.resetAll () on tenperature;
doubl e v = ds.average() on (preci seOn && tenperature);

The statements above operate on the saam®T instance, but on different target sets
and with different operations. Moreover, the definitions eSet Al | andaver age
are unchanged from those we provided in Section 4.

If no view is specified at invocation time, the operation isfpemed on the whole
member set, as we discussed in Section 4.1. Indeed, the meethdefines the most
general view containingDT instances bound to theAaDT. Moreover, all the constructs
we discussed in Section 4 can be used with views, as thesdtianataly sets ofaDT
instances. This holds not only for tlEADT programmelinside the definition of an
operation, but also for the application programmer andefiloeeoutsidethe DADT defi-
nition. For instance, the following program fragment reljeretrieves the values sensed
by all the active temperature sensors using the action wiue appeared in Figure 9,
provided that there are at least three of these sensorgdgrsufficient resolution:

if ((# (preciseOn && tenperature)) >= 3)
(all in (active && tenperature)).reliabl eAverage();

All the considerations we made thus far clearly hold not dolydata viewdlike
those we used in our examples, but alscsfmaice viewd.e., views that are defined over
spaceDADTS. At different times, it may be necessary to access difteyets of sensors
based on the configuration of the space where they resideeboarce-constrained en-
vironment, for instance, most of the operations may invekesors that are close, e.g.,
two hops away from the object requesting the probe. Figurshbivs the definitioh

" Note how, contrary to Figure 9, in Figure 10 the action hachteclared in the interface of
theDSensor .
8 We omit the definition of r el essSi t e for the sake of brevity.

of theW r el essNet wor k spaceDADT we briefly mentioned at the end of Section 3,
addressing this requiremeli¥.r el essNet wor k defines a propertys Reachabl e
that yields true if the target host is within a specified nundféops. Similarly to data
views, the programmer can now define a space view, e.g.,

spaceview proximty on Wrel essNetwork as i sReachabl e(2);

and use it to restrict an operation’s scope over the spaceg, e.g., to reduce by 10%
the communication range of “nearby” hosts as in

wn. nodi f yRange(-0.1) within proximty;

Note howpr oxi ni ty is asymmetric, as it depends on the implicit location of the
DSensor instance on which it is invoked.

Analogously toDADT types, data views are syntactically distinguished fronirthe
space counterparts usidgt avi ewandspacevi ew. This enables type checking to
preventincorrect use of properties in a view definition (auging a property on a space
DADT to define a data view), or incorrect use of a view in an opemnatigocation (e.g.,
using a data view in place of a space view).

Data views and space views can be used together. For instance

doubl e v = ds.average() on tenperature within proximty;

returns the average value of all temperature sensors irptieegegion defined by the
view pr oxi m ty. Similarly,

wn. nodi f yRange(-0.1) on tenperature within proximnty;

reduces the wireless communication range of all the neasigsmhosting a temperature
sensor. The content dfar get set inside the body of the invoked (data or space)
DADT operation is computed as the intersection of the subsetseddfiy the two views.
Figure 12 illustrates the concept w.r.t. the first of the thadements above. Differently
from Figure 4, data and spageT instances are not shown—only their “projection” on
the member sets is. The arrow between a data (circle) and a site (square) means
that the former is placed on the latter. The black componamthe left make explicit
the fact thaDADT instances are themselvesT instances and reside on a site, which
can be relevant for the definition of asymmetric views, gagoxi mty.

As we mentioned in Section 3, onADT model provides a unified representation of
data and space, where they are simply two different perspsdbr accessing and ma-
nipulating the applicatioaDTs. The notion obADT provides the mechanism for defin-
ing the application behavior manipulating the distributeate, as well as the observable
state that can be used to define viemwsDT instances are instead the dynamic entities
through which distributed access is effected, and whosessisarestricted dynamically
by means of views. The programmer is free to decide what ibdlse “vantage point”
for accessing the distributed system. She can use adatainstance to operate on the
distributed data and yet restrict the scope using predicatg are based on character-
istics of data, space, or both, depending on the needs optieation. Similarly, she
can use any kind of view to access the distributed representa space. In our model,
data and space become easily interchanged during the progng practice, with our
model coherently maintaining their semantic interaction.

ds.average() on temperature within proximity
temperature \

« DSensor
i (member set)

temperature :
&&

proximity |

(target set) |

data

DSensor

: instance (ds) space

i site where
i dsresides WirelessNetwork

(member set)

proximity
Fig. 12.DADT views.

6 Prototype Implementation

To verify the feasibility of theoADT model we developed a proof-of-concept prototype,
providing theDADT constructs described thus far in the context of the Javaulzge
The prototype, currently nickname@DADT, is divided into two parts: a translator
and a run-time. Th&anslatortakes care of translating a Java program augmented with
statements from oupADT language into a conventional Java program, through a pre-
compilation step. The code generated by the translatoemehts theADT constructs

by using the classes defined in than-timelibrary. Once the translation is generated,
the resulting code can be directly executed on any Javeavimachine where the run-
time packages are deployed.

The translator for the source-to-source transformatioimiglemented using the
ANTLR [1] parser generator. The source grammar is a modifinadf the Java 1.5
grammar by Studman [13] with extensions for DADT construétsien launched, the
ANTLR generator builds the Abstract Syntax Tree (AST) witisitom nodes for DADT
constructs which are next modified tige walkerdo reconstruct a plain Java AST. This
AST is emitted with a standard ANTLR Java emitter into codg tontains invocations
to the run-time as detailed next.

The run-time architecture is composed of several companérg main classes of
which are outlined in Figure 13. The top layer is constitubgdapplication classes,
like those we used in our example. While the definition of detas andDADTS is
entirely up to the programmer, our implementation providbigi-in notions ofHost
andNet wor k.

The layer below constitutes the APl of obDADT run-time. This API is not di-
rectly accessible to the programmer who codes using thercetswe defined earlier.
Instead, it is used by the translator, to maph®T constructs into the appropriate run-
time objects and invocations. The cld38DTMyr provides the methods handling the
binding of ADTS toDADTS (used to executei nd andunbi nd), to specify theSi t e

Sensor

<<distributes>>

DSensor

w

<<distributes>>

Network

T
— 1

Property

DADTMgr

i

<<abstract>>

<<abstract>>

InvocationData ’

‘ ResultData

AN

Operator
<<abstract>> 4

Iterator
<<abstract>>

BindingRegistry

Action
<<abstract>>

[
‘ IPMulticastDADTMgr ’ ‘ IPMulticastAny ’

‘ IPMulticastAll l

‘ . l ‘ IPMulticastlterator

Fig. 13. The architecture of thgZ DADT run-time.

instance abstracting theod€ where the run-time executes, as well as other auxiliary
methods managing configuration aspects of the run-timerelisenly oneDADTMyr
instance per node.

The abstract classd operty andAct i on represent the corresponding con-
cepts, and are similar in that both are essentNpT methods whose execution takes
place on a (remotedDT. To understand the translation strategy, let us focus on the
i sPreci se property shown in Figure 10. The translator can straightéodly gener-
ate the following corresponding class:
class isPrecise_Property extends Property {

doubl e resol uti on;
i sPreci se_Property(doubl e resol ution) {

this.resolution = resol ution;
}
bool ean eval uat e(Obj ect 0) {

Sensor | ocal = (Sensor) o;

return local.resolution >= resol ution;
}

}
where the property parameter is now a class attribute, angrtperty body is contained
in the eval uat e method. The latter accepts as a parameter an instance abthe

® Hereafter, we use the ternmodeto represent the physical computational environment where
the run-time executes. In our implementation, the node i¥M,Jand its identifier a pair
host : port. The node should not be confused witkite which is a node’s abstract repre-
sentation as a spae®T.

distributed by theDADT (Sensor in our case), which can be safely substituted for
the keywordl ocal we used in Figure 10. A similar strategy is used for transtati
actions like the one in Figure 9 into &ct i on classPr operty andAct i on objects
are created upon action invocation or view definition, $ed, and once deserialized
on the node of the targetbT instance (e.g., the object) theireval uat e method

is executed by using such object as a parameter. In doingvtieiurrently assume
that all the corresponding code is pre-deployed, togetligr thve DADT class, on the
interested nodes. A more dynamic and open design can by ebsiined using a code
on demand mobile code paradigm [5], to dynamically relottaenvolved classes only

if and when really needed.

A view (data, space, or a mixture thereof) is represented Wyeaw object, which
contains the set dPr operty objects associated with the view definition. To easily
manage the composition of properties through boolean tgrsrahe property objects
are arranged in an abstract tree representing the logiedigate defining the view,
where the leaves are the property objects and the nodeseabedtean operators used
to compose them. To determine whether a giw®T instance belongs to the view,
the method sMenber (Obj ect 0) navigates the tree from the leaves to the top,
invoking theeval uat e method of each property and composing it with others through
the boolean operator in each node. The process terminates atot, (i.e., the view
object) with the boolean result of the evaluation. Viewseaasily composed by similarly
merging their property trees by means of boolean operdtarally, Vi ew provides a
methodappl y that allows execution of an action on theT instances selected by an
operator.

Oper at or is the superclass of any of tikaDT operators described in Section 4.1.
I t er at or specializesOper at or by providing directly the iteration operators (e.g.,
next) as methods. The programmer can provide new operatorsexathbits by simply
subclassing the aforementioned classes. The correctingpliation can be built-in by
the translator or retrieved at run-time frddADTMyr , designed using the Factory pat-
tern. The behavior of an operator is specified by overridimg methods. The method
per f or rTRenot e(Vi ew v) is invoked on the node where the program requests the
evaluation of an operator, and embeds the logic for diginguhe information nec-
essary to the collective evaluation of the operator on tee/vand the retrieval of the
invocation results. Insteager f or m_ocal (I nvocat i onDat a d) is performed
on all the other nodes involved in the computation, and donsatthe logic for evalu-
ating the operator local to a single node and sending thétsdsack to the initiator.
Oper at or essentially embeds all the distribution logic, as discddster.

I nvocat i onDat a is used for communication and contains the components nec-
essary to perform an invocation, i.e., the view specificgtibe operator to be applied,
the action to be executed, and the initiator’s identifiRrsul t Dat a contains an ar-
ray of pairs ofSer i al i zabl e andADT identifiers®, and is the type of return values
for per f ormLocal andper f or nRenot e. Finally, theBi ndi ngRegi stry ob-
ject associated to tHRADTMgr singleton contains the information about which node’s
ADT is bound to whichbADT, and provides methods to determine the logair in-

10 These are global. In our implementation they are the Jawecolijentifier with the node iden-
tifier where the object is created.

stances that satisfy a given view specification. Finallg, biottom layer contains the
classes specializing our framework.

An example helps understand how the various componentecaigp Consider the
program statements

dat avi ew preci seOn on DSensor as isPrecise(0.1) && isActive();
spaceview proximty on Network as i sReachabl e(2);
ds. average() on preciseOn within proximty;

with the fault-tolerant definition o&ver age in Figure 9. The translator would first
generate thér oper t y subclasses for the properties defining the two views, create
the corresponding objects, and insert them in the abstreet either directly or by
invoking the methodsand, or) for logically composing properties:

Vi ew preci seOn = new View(new i sPreci se_Property(0.1)
.and(new i sActive_Property()));
View proximty = new View(new i sReachabl e_Property(2));

Moreover, the translator modifies the signaturawér age into
doubl e average(Vi ew targetset)

so that the representation of the view specification (castjan of pr eci seOn and
pr oxi m t y) which effectively becomes the operation target set canassex upon
method invocation as in

ds. aver age(new Vi ew preci seOn).and(proxinmty));

Note how a new/i ewinstance is generated on the fly to represenbtie. . wi t hi n. . .
portion of the invocation by merging the data view and thecepdaew. In our imple-
mentation, both are represented usWigew objects, which are then composed like
properties. Different constructors &f eware provided to create a view out of its prop-
erties or based on already existing views. Moreover, thestador generates a subclass
of Act i on representing the actionel i abl eRead in the figure, translated as we
described earlier. Line 14 of Figure 9, containing the arctivocation in conjunction
with theal | operator, is therefore translated as

doubl e[] readings =
(doubl e[]) view apply("all",new reliabl eRead_Action());

The body of theappl y method retrieves from the nod@ADTMyr instance the proper
implementation of the operator based on the name being ghassa parameter, and
starts its distributed execution on the bowmfrs, as shown in the following excerpt

hj ect apply(String name, Action a) { ...
Oper ator op = DADTMyr. get Oper at or (nane) ;
ResultData d = op. perfornRenot (
new | nvocationData(this, nane,a,initiator));

}

wheret hi s is theVi ew instance requesting the invocation angli t i at or is the
identifier of the corresponding node.

As we mentioned earlier, the actual implementation of trerajfpr manages directly
the communication between the initiator node and thosergsbTs. In our proto-
type, for instance, the implementation of thiel operator leverages off UDP unicast
and multicast sockets. Multicast is exploited for disttibg information to theaDT in-
stances bound to a giveraDT. The implementation dfPMul t i cast Al | . perfo-

r mRenot e, therefore, simply sends tHenvocat i onDat a object to the multicast
group associated to theadbT name (e.g.PSensor). On the remote\DT nodes, the
communication run-time (which is initialized by our own sjadization ofl PMul t i -
cast DADTMgr) receives this object and, based on the information it dostare-
ates the appropriate instance of thlel operator and delegates per f or m_ocal

the processing of thénvocat i onDat a object. This latter method takes care of
the local processing, i.e., it queries the loBalndi ngRegi st ry to obtain all the
ADTS that are bound to theaDT and whose state satisfies the view specification in
I nvocat i onDat a. Moreover, it performs the action invocatian eval uat e(s)

on eachaDT instance returned. The results are packed Reaul t Dat a object and
sent back to the initiator. InPMul t i cast Al | this is done using UDP unicast.

The design we just described is conceivedfrasnework in the object-oriented
sense and can be customized by changing a limited numbernsded, most impor-
tantlyOper at or subclasses afdADTMyr . For instance, in our implementation when
abi nd operation is issuetdPMul t i cast DADTMyr takes care of joining the multi-
cast group corresponding to the boursbT. Moreover, note how each operator can
potentially define its own way to manage communication. Retance, while thal |
operator dispatches directly thavocat i onDat a using multicast, the implementa-
tion of iterators effectively uses multicast to build theget set and then uses unicast
communication for contacting eaelnT.

Although our7DADT run-time is a proof-of-concept prototype, its designlam-
plementation are still non-trivial. Itis fully decentradéid and, although we tested it thus
far only in a fixed environment, its reliance only on the maasib network facilities
leaves open the opportunity for a seamless migration to mhgmamic ones, using the
appropriate routing algorithms (e.g., MAODV [11]). Nevwatess, it can clearly be im-
proved in many respects. Most notably, we are currentlystgddistributed algorithms
for managing more efficiently the distributed disseminaid actions and results, and
for maintaining views. In doing this, we are supported by previous work on data
sharing middleware for mobile computing (e.giME [9] and EgoSpaces [8]).

7 Related Work

The closest works are probably in the context of paralldksys. SharedbdTs (SADTS) [6]
focuses on providing implementations of several standatd ty/pes, whose imple-
mentation is designed to scale well in the parallel envirentnConcurrent Aggregates
(CAs) [4] provides language-level support for defining biite ADT interface and the
implementation of its distributed components. Each corepois defined in terms of
message processing and is explicitly enabled to send nessadellow components,
creating aggregate behavior. In comparison to these sgsteshonlyDADTS target the
more general distributed setting, but they also provideiguenand uniform treatment

of data and space, as well as the increased flexibility corfiorg the view concept.
In the other systems, not only is the view the same at all tiroesthe components
contributing to it cannot change during execution.

DADTS are also somehow related to software distributed sharedonye(SDSM)
models, which aim at masking entirely distribution, whiteaur approach distribution
is under the control of the programmer. Recently, SDSM has bgplied to embedded
systems in the Spatial Programming model [2] by making afogiydoetween space and
memory and exposing space to applications through speafeences, which enable the
definition of regions determining the components intekstea given computation. In
contrast, the main advantageefD T stem from the clean separation between data and
space, and its ability to provide access to multiple instarthrough a singleADT ref-
erence, instead of access to a single object. Moreoveistascomplished by defining
a data view, further restraining the spatial constraints.

Some aspects of our work may look reminiscent of distribudbfbct platforms
(e.g., CORBA or Emerald [7]). However, these platforms @hremote method invo-
cation as a means to access explicitly identified, singleatlipstances. Instead, in our
DADT model the identity of remote objects remains hidden (undagdicitly needed),
enabling transparent access. Moreover, collective acmess's through a singleADT
interface, while the same aggregation would require exteqsogramming effort in a
distributed object system. Finally, distributed objedtsyns hide the object location in
references, whil®ADTSs foster a clean separation between data and space, hiding lo
cation when dealing with data, but enabling its (direct aliriect) access when dealing
with space.

Another research connection is with process calculi expithe representation of
locality in concurrent and distributed systems. For insgaithe Ambient calculus [3]
represents space as a hierarchical composition of scopds€ats) where processes
dwell. Processes can dissolve ambients as well as migmatedne ambient to another.
However, while a hierarchical structure of space is easgason about, is easily mir-
rored in the language syntax, and may be well-suited to mibeelogical mobility of
agents, it is too rigid to represent the physical mobilityhokts, as physical space is
rarely best modeled as a hierarchy. Similar consideratiaid for other works that
also adopt a hierarchical representation of space, eg.extension to join calculus
supporting context-awareness described in [14]. A morerneand flexible proposal is
TKLAIM [10], which assumes processes communicating and migratingss a (flat)
network, whose dynamic changes can be described and enssatpia the calculus.
DADTS currently do not have a formal model, although its definitsoamong our cur-
rent research goals. Nevertheless, we maintain that thheraémtioned languages are
less expressive thamaDTs in terms of their manipulation of data and space. Namely,
they capture distribution at a lower level of abstractiod do not provide the ability
to scope the execution of operations and actions based ttragylpredicates over data
and/or space. Moreover, the distance of all these theatatfmproaches from main-
stream programmers is large. We contend that by integratimgnodel in the main-
stream abstraction afDT and by embodying it in the popular Java language and im-
plementation we reduce the semantic gap between our afistimand their real use by
the programmer.

Finally, the idea of using sets as a programming abstragtas pioneered in the
early 70’s (e.g., [12]). However, the goal was to use setsligprogramming tasks. In
our context, we use the set abstraction only to deal with saspects of distribution
and therefore we do not need the full power provided by thesafientioned languages.
Instead, our goal is to blend our set-based programmingans into those of modern
languages.

8 Conclusion

Developing distributed applications is a complex task,eegily when the physical
space is involved in the application requirements and |aggan the case of context-
aware computing.

In this paper, we proposanADTs as a novel distributed programming model en-
abling collective access to data and space entities by nwfamserations whose dis-
tributed behavior is encapsulated in thedT using dedicated constructs, and whose
invocation scope can be dynamically defined based on atiplicand contextual infor-
mation. We conjecture that the unified treatment of data padesconcerns inside the
model, together with our choice to embed these features ielakiwown and widely
used programming technique, is likely to improve progranmgrpractices in modern
distributed and context-aware computing.

Future work will address both the model and the implemesnath formalization
of the syntactic and semantic aspectoabTs is among our immediate goals. More-
over, we will continue improving and refining our prototyjreestigating efficient al-
gorithms for view maintenance and action dissemination.

References

1. ANTLR Web pagewww. ant|r. org.

2. C.Borcea et al. Spatial programming using smart messBgsgyn and implementation. In
Proc. of the 24" Int. Conf. on Distributed Computing Systems (ICDQ&arch 2004.

3. L. Cardelli and A. D. Gordon. Mobile ambients. Foundations of Software Science and
Computation Structures: First International ConferenE&SSACS '98Springer-Verlag,
Berlin Germany, 1998.

4. A. Chien and W. Dally. Concurrent Aggregates (CA).Proc. of the 2¢ ACM SIGPLAN
Symp. on Principles & practice of parallel programmijrmages 187-196. ACM Press, 1990.

5. A. Fuggetta, G.P. Picco, and G. Vigna. Understanding Qddbility. |IEEE Trans. on
Software Engineering®24(5), 1998.

6. D.Goodeve et al. Toward a model for shared data abstraetth performancel. of Parallel
and Distributed Computingt9(1):156-167, 1998.

7. E.Jul, H. Levy, N. Hutchinson, and A. Black. Fine-graifdbility in the Emerald System.
ACM Trans. on Computer Systerb$2):109—-133, Feb. 1988.

8. C. Julien and G.-C. Roman. Active Coordination in Ad Hoawks. InProc. of COOR-
DINATION 2004

9. G.P.Picco, A. Murphy, and G.-C. RomanMe: Linda Meets Mobility. InProc. of the 21
Int. Conf. on Software Engineeringages 368-377, May 1999.

10. R.D. Nicola, D. Gorla, and R. Pugliese. Pattern Matclowey a Dynamic Network of Tuple
Spaces. IProc. of the 7 Int. Conf. on Coordination Models and Languages (COORDI-
NATION) LNCS 3454, Namur (Belgium), April 2005.

11. E. Royer and C. Perkins. Multicast Operation of the Ad-@m-Demand Distance Vector
Routing Protocol. IrfProc. of MobiCom1999.

12. J. T. Schwartz et aProgramming with sets; an introduction to SET&pringer, 1986.

13. M. Studman et al. Java 1.5 Grammanw. ant | r. or g/ gr ammar/ 1109874324096/
javal. 5. zi p.

14. P. Zimmer. A Calculus for Context-Awareness. TechriRgbort RS-05-27, BRICS: Basic
Research in Computer Science, August 2005.

