Skip to main content

Grid and HPC Dynamic Load Balancing with Lattice Boltzmann Models

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4276))

Abstract

Both in High Performance Computing and in Grid computing dynamic load balancing is becoming one of the most important features. In this paper, we present a novel load balancing model based on Lattice Boltzmann Cellular Automata. Using numerical simulations our model is compared to diffusion algorithms adopted on HPC load balancing and to agent-based balancing strategies on Grid systems. We show how the proposed model generally gives better performances for both the considered scenarios.

This work has been supported by M.I.U.R. COFIN project “Formal Languages and Automata: Theory and Applications”.

An erratum to this chapter can be found at http://dx.doi.org/10.1007/11914952_55.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angluin, D., Aspnes, J., Chen, J., Wu, Y., Yin, Y.: Fast construction of overlay networks. In: Seventeenth Annual ACM Symposium on Parallelism in Algorithms and Architectures, pp. 145–154 (2005)

    Google Scholar 

  2. Bertzekas, D.P., Tsitsiklis, J.N.: Parallel and distributed computing, 2nd edn. Athena Scientific, NH (1997)

    Google Scholar 

  3. Chen, H., Chen, S., Matthaeus, W.: Recovery of the Navier Stokes equation using a Lattice Gas Boltzmann method. Physical Review A 45, 5339–5342 (1992)

    Article  Google Scholar 

  4. Chopard, B., Droz, M.: Cellular automata modelling of physical systems. Cambridge University Press, Cambridge (1998)

    Book  Google Scholar 

  5. OASIS Consortium, Ws-notification specification 1.3 (pubblic draft 2) (2006), Available at: http://www.oasis-open.org/committees/wsn

  6. Cybenko, G.: Dynamic load balancing for distributed memory multi-processors. Journal of Parallel and Distributed Computing 7, 279–301 (1989)

    Article  Google Scholar 

  7. Diekmann, R., Frommer, A., Monien, B.: Efficient schemes for nearest neighbor load balancing. Parallel Comput. 25, 789–812 (1999)

    Article  MathSciNet  Google Scholar 

  8. Fang, H., Wan, R., Lin, Z.: Lattice boltzmann model with nearly constant density. Physical Review E 66 (2002) (036314)

    Google Scholar 

  9. Foster, I., Kesselman, C., Nick, J.M., Tuecke, S.: The Physiology of the Grid. In: Grid Computing: Making the Global Infrastructure a Reality, pp. 217–249. Wiley, Chichester (2003)

    Google Scholar 

  10. Hu, Y.F., Blake, R.J.: An improved diffusion algorithm for dynamic load balancing. Parallel Computing 25, 417–444 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  11. Karagiorgos, G., Missirlis, N.M.: Accelerated diffusion algorithms for dynamic load balancing. Information Processing Letters 84, 61–67 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Montresor, A., Meling, H., Babaoglu, O.: Messor: Load-balancing through a swarm of autonomous agents, Tech. report, Dept. of Computer Science, University of Bologna (2002)

    Google Scholar 

  13. Gross, E.P., Bhatnagar, P.L., Krook, M.: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one component systems. Physical Review 94, 511–525 (1954)

    Article  MATH  Google Scholar 

  14. Qian, Y.H., D’Humieres, D., Lallemand, P.: Lattice BGK models for Navier-Stokes equation. Europhysics Letters 17, 479–484 (1992)

    Article  MATH  Google Scholar 

  15. Resnick, M.: Turtles, termites, and traffic jams: explorations in massively parallel microworlds. MIT Press, Cambridge (1994)

    Google Scholar 

  16. Rothman, D., Zaleski, S.: Lattice-gas cellular automata: Simple models of complex hydrodynamics. Cambridge University Press, UK (1997)

    Book  MATH  Google Scholar 

  17. Schloegel, K., Karypis, G., Kumar, V.: Multilevel diffusion schemes for repartitioning of adaptive meshes. Journal of Parallel and Distributed Computing 47, 109–124 (1997)

    Article  Google Scholar 

  18. Sterling, J.D., Chen, S.: Stability analysis of Lattice Boltzmann methods. Journal of Computational Physics 123, 196–206 (1996)

    Article  MATH  Google Scholar 

  19. Succi, S.: The lattice Boltzmann equation, for fluid dynamics and beyond. Oxford University Press, UK (2001)

    MATH  Google Scholar 

  20. Wang, Y., Liu, J., Jin, X.: Modeling agent-based load balancing with time delays. In: IAT 2003: Proc. of the IEEE/WIC Int. Conf. on Intelligent Agent Technology, pp. 189–196. IEEE Computer Society, Los Alamitos (2003)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Farina, F., Cattaneo, G., Dennunzio, A. (2006). Grid and HPC Dynamic Load Balancing with Lattice Boltzmann Models. In: Meersman, R., Tari, Z. (eds) On the Move to Meaningful Internet Systems 2006: CoopIS, DOA, GADA, and ODBASE. OTM 2006. Lecture Notes in Computer Science, vol 4276. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11914952_6

Download citation

  • DOI: https://doi.org/10.1007/11914952_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-48274-1

  • Online ISBN: 978-3-540-48283-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics