
R. Meersman, Z. Tari, P. Herrero et al. (Eds.): OTM Workshops 2006, LNCS 4277, pp. 312 – 321, 2006.
© Springer-Verlag Berlin Heidelberg 2006

An Implementation of a Trusted and Secure
DRM Architecture

Víctor Torres, Jaime Delgado, and Silvia Llorente

Universitat Pompeu Fabra, Passeig de Circumval·lació, 8,
08003 Barcelona, Spain

{victor.torres, jaime.delgado, silvia.llorente}@upf.edu
http://dmag.upf.edu

Abstract. Content providers and distributors need to have secured and trusted
systems for the distribution of multimedia content with Digital Rights
Management (DRM) to ensure the revenues derived from their works. This
paper discusses the security mechanisms applied to the implementation of a
DRM architecture, regarding the certification and verification of user tools
integrity during their whole life cycle, the mechanisms for providing a secure
and trusted communication between client tools and the server framework for
authorisation, certification or verification purposes, and the mechanisms for the
secure storage and resynchronisation of the reports that describe the actions
performed by users during the tool offline operation. The presented architecture
is being implemented in the AXMEDIS project, which aims to create an
innovative technology framework for the automatic production, protection and
distribution of digital cross media contents over a range of different media
channels, including PC (on the Internet), PDA, kiosks, mobile phones and i-TV.

Keywords: Secure content management, multimedia content protection, digital
rights management systems.

1 Introduction

In [1] [2] [3] we presented in a general way an architecture to manage multimedia
information taking into account digital rights management (DRM) and protection. The
architecture, called DMAG Multimedia Information Protection and Management
System (DMAG-MIPAMS), whose name is after our group acronym DMAG [4],
consists of several modules or services, where each of them provides a subset of the
whole system functionality needed for managing and protecting multimedia content.
The architecture is depicted in Figure 1.

In this paper we are going to give more details about a real implementation of that
architecture which is being developed in the context of the AXMEDIS European
Project [5]. In particular, we will concentrate on how communications and services in
the architecture can be secured and trusted, and which mechanisms have been
introduced to ensure that client tools act as expected and are not modified by
malicious users.

 An Implementation of a Trusted and Secure DRM Architecture 313

Trusted
client

In
te

rm
ed

ia
ry

Content
Server

Protection
Server

Certification
Server

Supervisor
Server

Governance
Server

Adaptation
Server

Fig. 1. DMAG MIPAMS architecture

In next sections we provide an overview of the AXMEDIS architecture. Then, we
analyse the trust and security aspects and finally we provide a use case to understand
how it works in a real scenario.

2 An Implementation of the Architecture

The architecture implemented in the AXMEDIS project consists on several
independent modules that interact as web services when they are located in different
machines or directly in other situations.

The general description of the AXMEDIS architecture main modules, depicted in
Figure 2, is as follows:

• Protection Processor. This client tool module is responsible for estimating the
client tool fingerprint, enabling or disabling the tool, verifying the tool integrity
and unprotecting protected multimedia objects.

• Protection Manager Support Client (PMS Client). This client tool module manages
and stores protection information, licenses, reports regarding the offline performed
actions and other secured information in a local secure storage system called secure
cache. It is responsible for authorising users to perform actions over objects with
respect to digital licenses during offline operation. It also delivers protection
information to the protection processor, if present in the secure cache, or requests it
to the AXCS after a positive authorisation. It acts also as the intermediary module
used by Protection Processor to contact AXCS to certify and verify tools.

• Protection Manager Support Server (PMS Server). This server side module is
responsible for authorising users to perform actions over objects in an online
environment and requesting protection information to the AXCS if needed. It acts
also as an intermediary module to contact AXCS from PMS Client.

• AXMEDIS Certifier and Supervisor (AXCS). AXCS is the authority in charge of
user and tool registration (Registration Web service), user and tool certification
(AXMEDIS Certification and Verification, AXCV), user and tool management
(e.g. status supervision, automatic blocking, deadline supervision, etc.), user and
tool unique identifier generation and object metadata collection. AXCS is also
responsible for saving the Protection Information related to protected multimedia
objects as well as the actions performed on them (AXMEDIS Supervisor, AXS),
the so-called Action Logs. Action Logs are the particular implementation of
MPEG-21 [6] Event Reports [7] in the AXMEDIS context. AXCS also includes a

314 V. Torres, J. Delgado, and S. Llorente

user Registration service, useful for registering new users in the system from
distribution servers. All these data are stored in the AXCS database, which is
accessed though the AXCS database interface module in order to keep the access
independent from its implementation. Other functionalities provided by AXCS are
those related to reporting and statistical analysis, which are performed by the Core
Accounting Manager and Reporting Tool (CAMART module) by analysing the
information stored in the AXCS database and collected in Action Logs. The
integral modules of AXCS (see Figure 2) have been developed as web services or
libraries.

Fig. 2. AXMEDIS architecture regarding protection, rights management and accounting func-
tionalities

2.1 Security and Trust on User Tools and Communication to Server

As we have mentioned in previous sections, in the client side we have different
modules as Protection Processor and PMS Client which are devised to communicate
with the server part by providing not only security to the transactions but also trust
from the server side perspective. In the following sections we are going to describe
the different mechanisms that the system includes to achieve the security and trust
goals.

2.1.1 Registration of Users
All the users in the system must register, which enables their interaction with the
system and system tools. User information is stored in the server side (AXCS) and is
used for further verification purposes. After the user registration, the corresponding
AXCS issues a user certificate that will be used to authenticate the user when
performing some specific operations as the certification of tools (see section 2.1.2).

AXCSClient

 An Implementation of a Trusted and Secure DRM Architecture 315

Every AXMEDIS user has associated a status that is used to determine whether the
user is blocked or not in the system when interacting with the server part. The user
status can be modified by the AXCS if some critical operation attempt is detected.

2.1.2 Registration of Tools
Tools using AXMEDIS framework must be verified to accomplish a series of
guidelines, which are checked before registration is done. Once verified, each tool is
registered for being used by AXMEDIS users. During registration phase, a fingerprint
of the software tool is estimated so that its integrity can be checked later when the
tool is installed and certified or verified on a specific device, as we will see in next
sections.

2.1.3 Certification of Tools
The certification of a tool that uses AXMEDIS framework is a necessary step for that
tool to work. Before a user is able to run and use a tool, the tool must connect to the
AXCS to be certified as an “installed tool”. Before installation, AXCS verifies the
tool integrity by comparing its fingerprint to the one stored during the tool registration
process and, once installed, extracts some information (tool fingerprint) concerning
the installation of the tool and the device where it is installed.

A malicious user who tries to certify a tool whose fingerprint does not match the
original registered tool fingerprint would be automatically blocked in the system so
that he cannot continue performing other operations within the system. Moreover the
tool would not be certified and thus it would not be operative.

Once a user successfully certifies a tool, any user of the system who owns a valid
AXMEDIS user certificate can use it. Blocked users cannot use tools in the system.

To perform the certification of a tool, the tool connects to the AXCS via PMS
Client and PMS Server web service. In order to have a secure communication, the
client certificate is used to authenticate the user against the PMS Server.

The certification process involves different operations in the AXCS:

• Generation of tool certificate and private key. AXCS Certification Authority
generates a tool certificate. It is used to establish secure communications, via SSL
providing secure web services, to the PMS Server by any user that manages the
certified tool. In this way we ensure that only certified tools can interact with the
server part in an authenticated manner.

• Generation of tool unique identifier. A tool unique identifier is assigned to that
specific installation of the tool and is used to identify it when interacting with the
server side. The identifier is generated following the UUID format [8] and inserted
in the tool certificate.

• Generation of tool activation code. A tool activation code is used to enable the tool
operation. Some cryptographic algorithms that depend on the specific installation
are used to generate it and they are inserted in the tool certificate as a certificate
extension.

• Generation of tool fingerprint. The tool fingerprint, as we have already said,
concerns the installation and the device where the tool is installed. This fingerprint
is used in further verification process to determine if the tool has been manipulated

316 V. Torres, J. Delgado, and S. Llorente

or if the device has changed or, in other words, to ensure the tool is still trusted in
further executions.

• Storage of identifier, activation code, tool fingerprint and certificate. All the
previous information is stored in the AXCS database and will be used to
authenticate the tools that connect to the server part and to verify their integrity, as
we will explain in next sections.

On the other hand, the certification process supposes also different operations in
the client side (PMS Client and Protection Processor):

• Reception of tool certificate, private key, tool identifier and activation code.
Regarding the tool certificate, private key, tool identifier and tool activation code,
tool identifier and tool activation code are included in the tool certificate in the
following manner (see Figure 3): 1) The tool unique identifier is used as the
certificate common name (CN) in the subject distinguished name (DN) field; 2)
The tool activation code is inserted as a certificate extension.

Data:
 Version: 3 (0x2)
 Serial Number: 1000000493 (0x3b9acbed)
 Signature Algorithm: sha1WithRSAEncryption
 Issuer: O=AXMEDIS, OU=AXMEDIS AXCS CA, C=ES, CN=AXMEDIS
AXCS CA/emailAddress=axmedis@axmedis.org
 Validity
 Not Before: …
 Not After: …
 Subject:O=AXMEDIS, CN=ITO_cdecb4a1-dbcb-362c-a30d-bb936342996c
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 RSA Public Key: (1024 bit)
 Modulus (1024 bit): …
 Exponent: 65537 (0x10001)
 X509v3 extensions:
 X509v3 Subject Key Identifier: …
 X509v3 Authority Key Identifier: …
 1.3.6.1.4.1.25576.1.1.1: …
Signature Algorithm: sha1WithRSAEncryption
 …

Fig. 3. AXMEDIS tool certificate fields

The tool activation code extension is identified with the Object Identifier
1.3.6.1.4.1.25576.1.1, where 1.3.6.1.4.1.25576 is the Private Enterprise Number
assigned by IANA to AXMEDIS Organisation and 1.3.6.1.4.1 corresponds to IANA-
registered Private Enterprises [9] (see Figure 4).

Current assignation of the AXMEDIS tree corresponding to the 1.3.6.1.4.1.25576
branch is the following:

 An Implementation of a Trusted and Secure DRM Architecture 317

1.3.6.1.4.1. 25576.0: reserved
1.3.6.1.4.1. 25576.1: AXMEDIS PKI-X.509 related objects
1.3.6.1.4.1. 25576.1.1: AXMEDIS Tool certificate extensions
1.3.6.1.4.1. 25576.1.1.1: AXMEDIS Tool activation code (or enabling code)

Fig. 4. Assignation tree corresponding to the AXMEDIS IANA Enterprise number

The tool certificate and private key are finally packaged by AXCS in a PKCS12
[10] structure protected with a password linked to the user that performed the
certification and delivered over the secure channel established using the user and
server certificates.
• Storage of certificate and private key and tool activation. The PKCS12 structure is

accessed by Protection Processor in order to extract the tool certificate and private
key, which are finally stored in a local keystore, and also to get the activation code
used to enable the tool.

2.1.4 Secure Communication
As we have already mentioned, all communications between client tools and the
server part are performed over a secure channel, which is established by means of
client and server certificates, thus having authentication of both parties. Whereas
before client tool certification client tools need to use user certificates, after
certification they use tool certificates to create the secure channel with PMS Server.
PMS Server also establishes a secure communication with AXCS by means of its own
server certificate issued by the AXCS CA. It is worth noting that the certificates
issued to users, tools and servers have different certificate purposes.

2.1.5 Verification of Tools
Verification of tools is devised to cover two functionalities. First, it provides a means
to ensure that client tools have neither been manipulated nor corrupted. Moreover,
verification is used to resynchronise all the actions performed by users during offline
operation, that were stored in the local secure cache.

Verification of tools is performed periodically by the Protection Processor and
every time the user tool resynchronises the offline performed actions with the server
part. It consists on the verification of the estimated tool fingerprint in the moment of
the verification against the tool fingerprint stored in AXCS database during the
certification of the installed tool.

Regarding the tool integrity verification, if AXCS detects that critical parts of the
tool or the device have been manipulated, it can adopt the pertinent measures as, for
example, blocking the specific installed tool for which the verification failed.

Regarding the resynchronisation of offline performed operations, AXCS executes
an algorithm to determine whether the received list of operations, which are called
Action Logs in the AXMEDIS context, is complete with respect to the previous
received operations. This integrity check is feasible thanks to the calculation of a
fingerprint on the performed Action Logs, which is computed by PMS Client during
the tool operation. This fingerprint is sent to AXCV when resynchronising the offline
Action Logs and is verified by AXCV using the algorithm depicted in Figure 5.

318 V. Torres, J. Delgado, and S. Llorente

Fig. 5. Algorithm to determine the integrity of the received Action Log list in AXCV

The history fingerprint (FP) computation is also performed in the client side for
each action performed in the online or offline operation, so that, once synchronised it
must hold the same value in both PMS Client and AXCS. When an online operation is
performed, this value is immediately synchronised in the server side. When any
offline actions are performed, an Action Log associated to each of them is stored in
the local secure cache, where PMS Client computes and separately stores FP value
after the operation.

3 Use Case

In this section we present a scenario to illustrate how the proposed architecture and
the processing of protected and governed multimedia content are related. It describes
content consumption.

Imagine that a user has purchased online a license that grants him the right to play
a movie during a certain period of time. The acquisition of the license could be
performed in various ways. On one hand, the user could have obtained the license in
the same place where he purchased the content. In this case, if the license needs to be
customised for a particular user, the content distributor must request the license to the
corresponding protection and governance servers. On the other hand, the user could
have obtained the content through a P2P network, or other online or even offline
distribution channels. In this latter case, the content must have some metadata that
identifies the content server with which the user must interact to purchase the
appropriate license.

Does not
match

Matches

 An Implementation of a Trusted and Secure DRM Architecture 319

The aforementioned user has, installed in his device, a specific tool or plug-in that
manages the protected and governed objects of the proposed system and that is able to
display them in the appropriate way.

The use case begins when the user downloads a protected and governed movie,
opens it with his favourite player, which includes the appropriate plug-in and tries to
watch it (Play movie). Although the plug-in has not been manipulated, the system
needs to verify its integrity and certify it before allowing its operation.

Figure 6 shows the steps involved in the content consumption use case, which are
the following:

1. The viewer requires unprotecting the movie to an internal trusted module, the
Protection Processor.
2-3. Protection Processor estimates the installed tool fingerprint and connects to
AXCS through PMS Client and Server in order to certify the tool.
4-5. AXCS successfully verifies user data and status and tool integrity with respect to
registered tool.
6. AXCS sends Protection Processor a PKCS12 structure that contains tool private
key and tool certificate with the tool identifier and activation code.
7-8. Protection processor stores tool certificate and private key in a local repository,
extracts activation code and enables tool operation.
9-11. Before the authorisation, Protection Processor always calls verify method to
check tool integrity and resynchronise offline Action Logs. In order to call it, it must
reestimate the tool fingerprint and extract user and tool information from pertinent
certificates.
12. PMS Client gets action logs from secure cache and contacts AXCS through PMS
Server. (Note that in this case, as it is the first usage, there will not be any action logs)
13-17. AXCS verifies user and tool data with respect to certified tool Fingerprint,
computes and verifies the operation History Fingerprint and stores received action
logs in the AXCS database.
18. The result of the verification is sent to Protection Processor.
19. Protection Processor asks for authorisation and for protection information to PMS
Client. As the user is working online, PMS Client contacts PMS Server.
20-21. PMS Server contacts AXCS to retrieve the object protection information.
22. PMS Server performs the license-based authorisation using its license repository.
23-24. As the authorisation is positive, PMS Server sends the pertinent Action Log to
AXCS, which stores it in its database.
25. PMS Server notifies PMS Client the successful authorisation
26-27. PMS Client updates and stores the operation history hash fingerprint and the
object protection information in the local secure cache.
28. PMS Client notifies Protection Processor the successful authorisation
29-31. Protection Processor requests the Protection Information to PMS Client, which
retrieves it from the local secure cache.
32-33. Protection processor is capable of unprotecting the protected object so that the
player can finally display the film to the user.

It is worth noting that, once the tool is certified, only verification process is done
when the user wants to consume multimedia content. Steps 2 to 10 are no more
executed after tool certification.

320 V. Torres, J. Delgado, and S. Llorente

Fig. 6. Use Case

4 Conclusions

In this paper we have presented a possible implementation of the DRM architecture
presented in [1] [2] [3], which is being developed in the context of the AXMEDIS
European project [5]. In particular, we have concentrated in the aspects that provide
security and trust to the interaction between user tools and the server part of the
system, such as the registration of users and tools, the certification of tools, the
establishment of secure channel communications using both client and server
authentication and the verification of tools during their whole life operation. We have
also provided a use case to illustrate the whole content consumption process.

 An Implementation of a Trusted and Secure DRM Architecture 321

Several demonstrators over different distribution channels (Satellite, PC, Kiosk,
etc.) have been produced within the AXMEDIS project in order to validate the
proposed solution and show its potential usage. Moreover, a public framework will be
provided for the adoption of the AXMEDIS solution. Demonstrations of single tools
and also of the framework are provided at AXMEDIS conferences and sometimes on
the AXMEDIS portal [5]. The framework can be accessed by all affiliated partners.

The next steps to be tackled involve the integration with other existing content
production and distribution tools in order to facilitate interoperability of both content
management systems and multimedia and cross media protected objects.

Acknowledgements. This work has been partly supported by the Spanish
administration (DRM-MM project, TSI 2005-05277) and is being developed within
AXMEDIS [5], a European Integrated Project funded under the European
Commission IST FP6 program. A special mention should be done to DSI-DISIT [11]
for their collaboration in the work presented in this paper.

References

1. Torres, V., Rodríguez, E., Llorente, S., Delgado, J.: Trust and Rights in Multimedia
Content Management Systems. Proceedings of the IASTED International Conference on
Web Technologies, Applications, and Services (WTAS 2005). ACTA Press, Anaheim
Calgary Zurich (2005) 89-94

2. Torres, V., Rodríguez, E., Llorente, S., Delgado, J.: Use of standards for implementing a
Multimedia Information Protection and Management System. Automated Production of
Cross Media Content for Multi-Channel Distribution (AXMEDIS 2005). First
International Conference on. IEEE Computer Society, Los Alamitos Washington Brussels
Tokyo (2005) 197-204

3. Delgado, J., Torres, V., Llorente, S., Rodríguez, E.: Rights and Trust in Multimedia
Information Management. 9th IFIP TC-6 TC-11 Conference on Communications and
Multimedia Security (CMS 2005). Lecture Notes in Computer Science, Vol. 3677.
Springer-Verlag, Berlin Heidelberg New York (2005) 55-64

4. Distributed Multimedia Applications Group (DMAG), http://dmag.upf.edu
5. Automatic Production of Cross Media Content for Multi channel Distribution

(AXMEDIS), IST 2004 511299, http://www.axmedis.org/
6. MPEG 21, http://www.chiariglione.org/mpeg/standards/mpeg-21/mpeg-21.htm
7. ISO/IEC, ISO/IEC FDIS 21000-15 – Event Reporting
8. A Universally Unique IDentifier (UUID) URN Namespace, http://tools.ietf.org/html/4122
9. Internet Assigned Numbers Entity (IANA) Private Enterprise Number, http://www.iana.

org/cgi-bin/enterprise.pl
10. PKCS #12 v1.0: Personal Information Exchange Syntax Standard. RSA Laboratories, June

24, 1999, http://www.rsasecurity.com/
11. Distributed Systems and Internet Technology Lab - Department of Systems and

Informatics DSI-DISIT, University of Florence, http://www.disit.dsi.unifi.it/

	Introduction
	An Implementation of the Architecture
	Security and Trust on User Tools and Communication to Server

	Use Case
	Conclusions
	References

