
Branching-time Temporal Logic Extended with
Qualitative Presburger Constraints

Laura Bozzelli and Ŕegis Gascon

LSV, CNRS & ENS Cachan, France
{bozzelli,gascon}@lsv.ens-cachan.fr

Abstract. Recently,LTL extended with atomic formulas built over a constraint
language interpreting variables inZ has been shown to have a decidable satisfi-
ability and model-checking problem. This language allows to compare the vari-
ables at different states of the model and include periodicity constraints, compar-
ison constraints, and a restricted form of quantification. On the other hand, the
CTL counterpart of this logic (and hence also itsCTL∗ counterpart which sub-
sumes bothLTL andCTL) has an undecidable model-checking problem. In this
paper, we substantially extend the decidability border, byconsidering a meaning-
ful fragment ofCTL∗ extended with such constraints (which subsumes both the
universal and existential fragments, as well as theEF-like fragment) and show
that satisfiability and model-checking over relational automata that are abstrac-
tion of counter machines are decidable. The correctness andthe termination of
our algorithm rely on a suitable well quasi-ordering definedover the set of vari-
able valuations.

1 Introduction

Model-checking of infinite-state counter systems.The formal verification of infinite-
state systems has benefited from numerous decidable model-checking problems. This
is the case for instance of timed automata [AD94], or subclasses of counter systems, see
e.g. [CJ98]. Counter systems are finite state machines operating on a finite set of vari-
ables (counters or registers) interpreted as integers. Though simple problems like reach-
ability are already undecidable for2-counter Minsky machines [Min67], many interest-
ing restrictions of counter systems have been studied, for which reachability and richer
temporal properties have been shown to be decidable. For instance, Petri nets represent
the subclass of counter systems obtained by removing the ability to test a counter for
zero. Other examples include reversal-bounded counter machines [Iba78], flat counter
systems [Boi98,BFLP03,LS04] and constraint automata withqualitative constraints on
Z between the states of variables at different steps of the execution [DG05]. “Quali-
tative” means that the relationship between the constrained variables is not sharp, like
x < y. This last class of systems can be seen as an abstraction of counter systems where
increments and decrements are abstracted by comparisons and congruence relations
modulo some integer. For example,x = y+1 can be abstracted byx > y ∧ x ≡2k y+1.
This is very common in various programming languages performing arithmetic oper-
ations modulo some integer, typically modulo232 or 264 (see [MOS05]). Periodicity

constraints have also found applications in formalisms dealing with calendars [LM01]
and temporal reasoning in database access control [BBFS98].

Temporal logics extended with Presburger constraints.Classical problems studied on
counter systems often reduce to the reachability of some control state. Recently, richer
temporal properties have been investigated and formalizedby introducing fragments
of Presburger constraints in temporal logics. In this setting, atomic formulas are Pres-
burger arithmetic constraints over variables (counters) taking values inZ. Furthermore,
these formalisms involve an hybrid of temporal logic and constraints, with varying de-
grees of interaction. For instance, one may be allowed to refer to the value of a vari-
able x on the next time instant, leading to constraints of the formx > Ox. More
generously, one may be permitted to refer to a future value ofa variablex a certain
numbern of steps further. We denote this value byO . . .Ox wherex is prefixed by
n times the symbolO (in the following such an expression is abbreviated byOnx).
For linear-time temporal logics, such extensions can be found in numerous works, see
for instance [BEH95,CC00,DD03]. However, full PresburgerLTL is undecidable, and
to regain decidability, one can either restrict the underlying constraint language, see
e.g. [DD03,DG05], or restrict the logical language, see e.g. [BEH95,CC00]. In [DG05],
full LTL extended with a wide set of qualitative constraints, including comparison and
periodicity constraints, has been shown to have PSPACE-complete satisfiability and
model-checking problems (over constraint automata mentioned above). Similar exten-
sions have also been considered for description logics where models are Kripke struc-
tures, see for instance [Lut04]. On the other hand, to the best of our knowledge, very
few works deal with decidable fragments of branching-time temporal logics enhanced
with Presburger constraints. Actually, we can only refer tothe work [Čer93], in which
CTL∗ extended with only comparison constraints is shown to have an undecidable
model checking problem forIntegral Relational Automata(undecidability already holds
for theCTL-like fragment). However, model-checking for the existential and universal
fragments are shown to be decidable. Note that the logic proposed in [̌Cer93] does
not exhibit any form of interaction between the temporal operators and the comparison
constraints (in particular, atomic formulas of the formx < Oy are not considered).

Our contribution.In this paper, we introduce the logicCCTL∗ as an extension of the
branching–time temporal logicCTL∗ with a wide set of qualitative constraints includ-
ing periodicity constraints of the formx ≡k y + c, comparison constraints of the form
x < y and a restricted form of quantification. This logic is the branching–time coun-
terpart of the constraintLTL defined in [DG05] and extends the logic from [Čer93]
by introducing richer constraints and the possibility to compare counters at different
states of the model. The operational models on which we checktemporal properties
expressed in this logic are extensions of Integral Relational Automata (IRA, for short)
[BBK77,Čer93,ACJT96] introduced in [BBK77] as a model for studyingpossibilities
of automated complete test set generation for data processing programs. Our extension
is obtained by adding periodicity constraints and makes thenew formalism an equiv-
alent variant of the constraint automata with qualitative constrains mentioned above.
However,IRA provide a representation that is more intuitive and closer to the opera-
tional semantics of programs manipulating integers.

2

Model-checking this extension ofIRA against fullCCTL∗ is undecidable (also for
theCTL-like fragment) as a consequence of [Čer93]. Thus, in this paper we investigate
a meaningful fragment, which subsume both the existential and universal fragments as
well as theEF-like fragment. For instance, the formulaA�E�(x = Ox) is in this
fragment and states that for any reachable state, there is a computation starting from
it in which the value of counterx remains constant. For this fragment, we show that
both satisfiability and model checking of the proposed extension of IRA are decidable.
The existential and universal fragments ofCCTL∗ are strictly more expressive than the
constraintLTL defined in [DG05]. Moreover, the symbolic algorithm we describe builds
a finite representation of the set of states satisfying a given formula, a very substantial
information compared to the symbolic representation used in [DG05].

IRAbelong to the class of well–structured transition systems which have been inten-
sively studied, see e.g. [ACJT96,FS01]. Hence, one can define a decidable well-quasi
ordering on the set of states, which is also a simulation. This property is sufficient to
guarantee decidability of simple problems such as coverability, but not to decide richer
properties like liveness properties1 which can be expressed in our logical framework.
Thus, we need to use a more sophisticated approach, which is atechnical non-trivial
generalization and refinement of the one used in [Čer93] combining automata-based
techniques, theory of well quasi-ordering, and the theory of a specific class of linear
inequality systems (used to represent upward closed sets ofstates). The correctness and
the termination of the algorithm rely on a suitable well quasi-ordering defined over these
inequality systems. Another major contribution consists in extending to a larger frame-
work the original and difficult proof from [̌Cer93] and in clarifying all the technical
lemmas needed in the last part of the algorithm, which are omitted in [Čer93].

Due to lack of space, many proofs are omitted and can be found in [BG06].

2 Preliminaries

2.1 Language of constraints

Let VAR be a countable set of variables. ForD ⊆ VAR, avaluationoverD is a map
v : D → Z. For allx ∈ D, we denote byv.x the value assigned tox in v.
The language of constraintsp, denoted byIPC∗ [DG05], is defined as follows:2

p ::= t | x ∼ y | p ∧ p | ¬p
t ::= x ≡k [c1, c2] | x ≡k y + [c1, c2] | x = y | x ∼ c | t ∧ t | ¬t | ∃x t

where∼∈ {<,≤, >,≥,=}, x, y ∈ VAR, k ∈ N \ {0}, and c1, c2, c ∈ Z. For a
constraintp and a valuationv overVAR, the satisfaction relationv |= p is defined as
follows (we omit the standard clauses for negation, conjunction, and inequalities):

− v |= x ≡k [c1, c2]
def
⇔ ∃ c1 ≤ c ≤ c2 andm ∈ Z. v.x = c+m · k;

− v |= x ≡k y + [c1, c2]
def
⇔ ∃ c1 ≤ c ≤ c2 andm ∈ Z. v.x = v.y + c+m · k;

− v |= ∃x t
def
⇔ ∃ c ∈ Z. v[x← c] |= t

1 For instance, liveness properties in lossy channel systemsare undecidable [AJ94].
2 Note that constraints of the form∃x, x < y are not allowed since they leads to the undecid-

ability already for the corresponding LTL extension (see [DG05]).

3

wherev[x ← c].x′ = v.x′ if x 6= x′ andv[x ← c].x = c. A constraintp is atomicif it
has one of the following forms:x ≡k c | x ∼ y | x ∼ c , where∼∈ {<,≤, >,≥,=}
andx ≡k c is an abbreviation forx ≡k [c, c]. Evidently, for a constraintp, whether a
valuationv satisfiesp depends only on the values ofv over the finite setV ars(p) of
free variables occurring inp. Thus, in the following as interpretations of a constraintp
we consider the set of valuations over finite supersets ofV ars(p).

Lemma 1 ([DG05]).Any IPC∗ constraint can be effectively converted into an equiva-
lent positive boolean combination ofatomic IPC∗ constraints.

The translation implies an exponential blowup of the size ofthe formula w.r.t the con-
stants used. However, the results in the following do not refer to complexity issues.

2.2 The constrained branching-time temporal logic (CCTL∗)

We introduce theconstrained branching-time temporal logic(CCTL∗) as an extension
of the standard propositional logicCTL∗ [EH86] where atomic propositions are re-
placed byIPC∗ constraints between terms representing the value of variables at differ-
ent sates of the model. We denote these atomic formulae byp[x1 ← Oi1xj1 , . . . , xr ←
Oirxjr

], wherep is anIPC∗ constraint with free variablesx1, . . . , xr and we substitute
each occurrence of variablexl with Oilxjl

(corresponding to variablexjl
preceded by

il “next” symbols). The expressionOix represents the value of the variablex at theith

next state. For example,Oy ≡2 x+ 1 andx < Oy are atomic formulae ofCCTL∗.
As for standardCTL∗, there are two types of formulas inCCTL∗: state formulasξ

whose satisfaction is related to a specific state, andpath formulasψ, whose satisfaction
is related to a specific path. Their syntax is inductively defined as follows:

ξ := > | ξ ∨ ξ | ξ ∧ ξ | A ψ | E ψ
ψ := ξ | p[x1 ← Oi1xj1 , . . . , xr ← Oirxjr

] | ψ ∨ ψ | ψ ∧ ψ | Oψ | �ψ | ψUψ

where> denotes “true”,E (“for some path”) andA (“for all paths”) are path quantifiers,
andO (“next”), U (“until”), and� (“always”) are the usual linear temporal operators.3

The set of state formulasξ forms the languageCCTL∗. For a setX of state formulas, the
set of path formulasψ defined only from state formulas inX is denoted byPLF (X).

For aCCTL∗ formulaξ, letV al(ξ) be the set of valuations over finite setsD ⊆ VAR
such thatD contains the variables occurring inξ. The interpretations for the formulaξ
are labelled graphsG = 〈S,→, µ〉, whereS is a (possible infinite) set of vertices (here,
called states),→⊆ S × S is the edge relation, which is total (i.e., for everys ∈ S,
s → s′ for somes′ ∈ S), andµ : S → V al(ξ) maps each states ∈ S to a valuation
in V al(ξ). A path is a sequence of statesπ = s0, s1, . . . such thatsi−1 → si for any
1 ≤ i < |π|. We denote the suffixsi, si+1, . . . of π byπi, and thei-th state ofπ byπ(i).
Let s ∈ S andπ be a infinite path ofG. For a state (resp., path) formulaξ (resp.ψ), the
satisfaction relation(G, s) |= ξ (resp.,(G, π) |= ψ), meaning thatξ (resp.,ψ) holds at
states (resp., holds alongπ) in G, is defined by induction. The clauses for conjunction
and disjunction are standard. For the other clauses we have:

3 We have defined a positive normal form of the logicCCTL∗, i.e. negation is used only in atomic
formulae. Moreover, the given syntax is complete since the dual eU of the until operator can be
expressed in terms of the until and always operator:ψ1

eUψ2 ≡ �ψ2 ∨
`
ψ2U(ψ1 ∧ ψ2)

´
.

4

– (G, s) |= A ψ
def
⇔ for each infinite pathπ from s, (G, π) |= ψ;

– (G, s) |= E ψ
def
⇔ there exists an infinite pathπ from s such that(G, π) |= ψ;

– (G, π) |= ξ
def
⇔ (G, π(0)) |= ξ;

– (G, π) |= p[x1 ← Oi1xj1 , . . . , xr ← Oirxjr
]

def
⇔

µ(π(0))[x1 ← µ(π(i1)).xj1 , . . . , xr ← µ(π(ir)).xjr
] |= p;

– (G, π) |= Oψ
def
⇔ (G, π1) |= ψ;

– (G, π) |= �ψ
def
⇔ for all i ≥ 0, (G, πi) |= ψ;

– (G, π) |= ψ1Uψ2
def
⇔ ∃i ≥ 0. (G, πi) |= ψ2 and∀j < i. (G, πj) |= ψ1.

G is amodelof ξ, writtenG |= ξ iff (G, s) |= ξ for some states. We denote by[[ξ]]SAT

the set of valuationsv overV ars(ξ) such that(G, s) |= ξ for some modelG and states
of G with µ(s) = v. A CCTL∗ formulaξ is satisfiableiff there exists a model ofξ.

Assumption: By Lemma 1, we can assume w.l.o.g. that theIPC∗ constraintsp associ-
ated with atomic formulasp[x1 ← Oi1xj1 , . . . , xr ← Oirxjr

] are atomic.

The existential fragmentE–CCTL∗ and the dual universal fragmentA–CCTL∗ of CCTL∗

are obtained by disallowing respectively the universal andthe existential path quantifier.
In order to consider a fragment as large as possible, we also introduceCEF+ which sub-
sumesE–CCTL∗, A–CCTL∗ and theIPC∗-constrained counterpart ofEF logic, a well-
know fragment of standardCTL closed under boolean connectives (see e.g., [May01]).
CEF+ is defined as follows (whereξE is anE–CCTL∗ formula):

ξ := ξE | ¬ξ | ξ ∨ ξ | E(ξEUξ) | EOξ

2.3 Integral Relational Automata

In this section we recall the framework ofIntegral Relational Automata(IRA) intro-
duced in [BBK77]. AnIRA consists of a finite-state machine enhanced with a finite
number of counters. The operation repertoire ofIRA includes assignment, input/output
operations and guards of the formx ∼ y or x ∼ c with ∼∈ {<,≤, >,≥,=}. We ex-
tend this operational model by allowing periodicity constraints as guards. Note that if
we also allow guards of the formx ≤ y + c, then the resulting formalism is Turing-
complete (since we can easily simulate unrestricted counter machines). LetOP be the
set of operations defined as follows:

p | ?x | !x | !c | x← y | x← c | NOP

wherep is anatomic IPC∗ constraint,x, y ∈ VAR andc ∈ Z. Informally, ?x assigns a
new integral value to the variablex, !x (resp!c) outputs the value of variablex (resp.,
constantc), x← y (resp.x← c) assigns the value of variabley (resp., constantc) to x,
andNOP is the dummy operation. The atomicIPC∗ constraints are used as guards.

An Integral Relational Automaton(IRA) is a tupleP = 〈V (P), E(P), `V , `E〉,
whereV (P) is the finite set ofvertices, E(P) ⊆ V (P) × V (P) is the set ofedges,
`V : V (P) → OP associates an operation to every vertex, and`E : E(P) → {+,−}
is a labelling of the edges (used for tests).

5

LetV ars(P) be the set of allP variables (used in the operations ofP) andCons(P)
⊆ Z be the least set containing all theP constants and such that0 ∈ Cons(P) and for
all c1, c2 ∈ Cons(P), c1 ≤ c ≤ c2 impliesc ∈ Cons(P). Moreover, letMod(P) be
the set of themodulo constantsk used in the periodicity constrainsx ≡k c of P .

Notation: For convenience, we definev.c = c for any valuationv and constantc ∈ Z.

The semantics of anIRA P is described by a labelled graphG(P) = 〈S(P),→, µ〉,
where the set of statesS(P) is the set of pairs〈n, v〉 such thatn ∈ V (P) is a vertex
andv is a valuation overV ars(P), µ(〈n, v〉) = v for all 〈n, v〉 ∈ S(P), and〈n, v〉 →
〈n′, v′〉 if and only if e = (n, n′) ∈ E(P) and one of the following conditions holds:

– `V (n) =?x andv′.y = v.y for everyy ∈ V ars(P) \ {x},
– `V (n) =!x or `V (n) =!c or `V (n) = NOP andv′ = v,
– `V (n) = x← a, v′.x = v.a, andv′.y = v.y for everyy ∈ V ars(P) \ {x},
– `V (n) = p, v′ = v, andeither`E(e) = + andv |= p, or `E(e) = − andv 6|= p.

Note thatG(P) is infinitely-branching because of input operations. Anhistory of P
is a path ofG(P). An infinite history is also called acomputation. A pathn of P is
a path in the finite–state graph〈V (P), E(P)〉. For a finite pathn of P , two tuples
N = 〈n1, . . . , nk〉 andN ′ = 〈n′

1, . . . , n
′
h〉 of P -vertices, we say thatn is a path from

N toN ′ iff |n| ≥ h+k andn1, . . . , nh (resp.,n′
1, . . . , n

′
h) is a prefix (resp., suffix) ofP .

The notion of pathn from a tuple of vertices is similar. These notions can be extended
to histories ofP in a natural way. Letn1 be aP path fromN1 to N andn2 be aP
path fromN . We denote by[n1 + n2]N theP path obtained by concatenatingn1 with
the path obtained fromn2 by eliminating the prefix corresponding toN . This notion of
concatenation can be extended to histories in a natural way.In the following, ak-tuple
〈〈n1, v1〉, . . . , 〈nk, vk〉〉 of P states is also denoted by〈〈n1, . . . , nk〉, 〈v1, . . . , , vk〉〉.

We say that anIRAP is completeif the edge relationE(P) is total and for each ver-
texn labelled by anIPC∗ constraint and each flagf ∈ {+,−}, there is an edge labelled
by f and havingn as source. W.l.o.g. we assume that theIRA under our consideration
are complete (this implies that the edge relation inG(P) is total).

Extended Integral Relational Automata: for technical reasons, we introduceEx-
tended IRA(EIRA). An EIRA is a pair〈P, `EXT 〉 whereP is an IRA and`EXT is an
additionalP -vertex-labelling, mapping each vertexn ∈ V (P) to a finite set (interpreted
as conjunction) ofCCTL∗ atomic formulasp[x1 ← Oi1xj1 , . . . , xr ← Oirxjr

] (where
p is an atomicIPC∗ constraint). This labelling induces constraints between the variables
of the current state and the variables of succeeding states (along a computation).

For a (finite or infinite)P -historyπ = 〈n1, v1〉, 〈n2, v2〉, . . ., we say thatπ is fair if
π is consistent with thèEXT –labelling. Formally, we require that for all1 ≤ k ≤ |π|
andp[x1 ← Oi1xj1 , . . . , xr ← Oirxjr

] ∈ `EXT (nk), the following holds:
if k + ip ≤ |π| for all 1 ≤ p ≤ r, thenvk[x1 ← vk+i1 .xj1 , . . . , xr ← vk+ir

.xjr
] |= p.

In this paper we are interested in the following problem:

Model checking problem of IRA against CCTL∗ : given anIRA P , a states0 of P ,
and aCCTL∗ formulaξ with V ars(ξ) ⊆ V ars(P), does(G(P), s0) |= ξ hold?

6

In the following, we denote by[[ξ]]P the set ofP statess such that(G(P), s) |= ξ.
Model checkingIRAagainst fullCCTL∗ is undecidable (also for theCTL-like fragment)
as a consequence of [Čer93]. Thus, in the following, we analyze the fragmentCEF+.
consider the satisfiability problem forCEF+. We start by giving a symbolic model
checking algorithm forIRA againstE–CCTL∗.

3 Symbolic model checking ofIRA againstE–CCTL∗

In this section we show that given anIRAP and anE–CCTL∗ formulaξ with V ars(ξ) ⊆
V ars(P), we can compute a finite representation of[[ξ]]P . In the following, we can as-
sume w.l.o.g. thatCons(ξ) ⊆ Cons(P) andMod(ξ) ⊆ Mod(P), whereCons(ξ)
(resp.,Mod(ξ)) denote the set of constants (resp., modulo constants) occurring in ξ.

First, we recall some basic notions. For a setS, a quasi-ordering(qo, for short)�
overS is a reflexive and transitive (binary) relation onS. Given such aqo, we say that
U ⊆ S is anupward closed setif for all x ∈ S andy ∈ U , y � x impliesx ∈ U . We say
that� is apartial-order (po, for short) iff x � y andy � x imply x = y. Finally, we
say that theqo� is awell quasi-ordering(wqo, for short) if for every infinite sequence
x0, x1, x2, . . . of elements ofS there exist indicesi < j such thatxi � xj .

Following [Čer93], we define awqoon the setS(P) of P states (that is also apo).
Then, in order to solve the model-checking problem, we will show that: (1)[[ξ]]P is an
upward closed set; (2) we can compute a finite representationR([[ξ]]P) of this set; (3)
we can check whether a given a states belongs toR([[ξ]]P).

We start by defining such awqo. Letκ be the least common multiple of the constants
inMod(P)∪{1}. We define apo� over tuples of valuations overV ars(P) as follows:
〈v1, . . . , vh〉 � 〈v′1, . . . , v

′
k〉 iff h = k and for all1 ≤ i, j ≤ h anda, b ∈ Cons(P) ∪

V ars(P), the following holds: (1)vi.a ≥ vj .b iff v′i.a ≥ v
′
j .b, (2)vi.a ≡κ v

′
i.a, and (3)

if vi.a ≥ vj .b, thenv′i.a− v
′
j .b ≥ vi.a− vj .b.4 We write simplyv1 � v′1 if h = 1. Note

thatvi � v′i for all 1 ≤ i ≤ h does not imply that〈v1, . . . , vh〉 � 〈v′1, . . . , v
′
h〉. Finally,

for two h-tuples of states〈N ,V〉, 〈N ′,V ′〉, we write〈N ,V〉 � 〈N ′,V ′〉 to mean that
N = N ′ andV � V ′. The proofs of the following two results are given in [BG06].

Proposition 1. For everyh ≥ 1, the partial order� is a wqo over the set ofh-tuples
of valuations overV ars(P).

Lemma 2 (Simulation Lemma).

1. Letπ = 〈n1, v1〉, . . . , 〈nh, vh〉 be an history andv′1 � v1. Then, there is an history
π′ = 〈n1, v

′
1〉, . . . , 〈nh, v

′
h〉 such that〈v′1, . . . , v

′
h〉 � 〈v1, . . . , vh〉;

2. Letπ = 〈n1, v1〉, 〈n2, v2〉, . . . be a computation andv′1 � v1. Then, there is a com-
putationπ′ = 〈n1, v

′
1〉, 〈n2, v

′
2〉, . . . s.t. for allh ≥ 1, 〈v′1, . . . , v

′
h〉 � 〈v1, . . . , vh〉.

Thanks to the Simulation Lemma, we can prove the first important result.

Proposition 2. [[ξ]]P is an upward closed set with respect to�.

4 So, the relation� depends on parametersV ars(P), Cons(P), andκ.

7

Proof. The proof is by structural induction onξ. The casesξ = >, ξ = ξ1 ∨ ξ2, and
ξ = ξ1∧ξ2 are obvious since[[>]]P = S(P), [[ξ1∨ξ2]]P = [[ξ1]]P ∪ [[ξ2]]P , [[ξ1∧ξ2]]P =
[[ξ1]]P ∩ [[ξ2]]P , and upward closed sets are closed under union and intersection.

Now, assume thatξ = Eψ for some path formulaψ. Then, there is a setX of state
sub-formulas ofξ such thatψ ∈ PLF (X). Let s1 ∈ [[Eψ]]P ands1 � s1. We claim
thats1 ∈ [[Eψ]]P . Sinces1 ∈ [[Eψ]]P , there is a computationπ = s1, s2, . . . such that
(G(P), π) |= ψ. Sinces1 � s1, by Property 2 of Simulation Lemma and definition
of �, it easily follows that there is a computationπ = s1, s2, . . . such that for all
i ≥ 1 and atomic formulaψat = p[x1 ← Oi1xj1 , . . . , xr ← Oirxjr

] with constants in
Cons(P) and modulo constants inMod(P): si � si and(G(P), πi) |= ψat if and only
if (G(P), πi) |= ψat. Moreover, for alli ≥ 1 andξ′ ∈ X, by the induction hypothesis
and the fact thatsi � si, we have thatsi ∈ [[ξ′]]P impliessi ∈ [[ξ′]]P . These properties
evidently imply(G(P), π) |= ψ, i.e.s1 ∈ [[Eψ]]P . Therefore, the claim holds. ut

In the following subsection, we introduce the framework ofmodulo–κ Graphose
inequality Systems(κ–GS, for short) as a finite representation of upward closed sets of P
states (w.r.t.�). In Subsection 3.2, we show some technical results on extendedIRAand
finally, in Subsection 3.3, we describe an algorithm to compute aκ-GSrepresentation
of the upward closed set[[ξ]]P .

3.1 Modulo–κ Graphose Inequality Systems

κ-GSextendGraphose inequality Systemsintroduced in [̌Cer93] by allowing to specify
periodicity constraints on the set of solutions. Formally,for κ ≥ 1, aκ–GS is a tuple
G = 〈D,C,w,mod〉, whereD ⊆ VAR is a finite set of variables,C ⊆ Z is a finite set
of integral constants,w : A × A → Z

− for A = D ∪ C andZ
− = Z ∪ {−∞} is a

weight function, andmod is a mapmod : A→ {0, . . . , κ− 1}.
The semantics of aκ–GSG is given by specifying the setSol(G) of its solutions.

A valuationv overD is said to be a solution ofG iff for all a, b ∈ A,

v.a− v.b ≥ w(a, b) and v.a ≡κ mod(a)

where by definition forc ∈ C, mod(c) ≡κ c. Theκ–GSG can be interpreted as a graph
with set of verticesA and such that there is an edge froma ∈ A to b ∈ Awith theweight
w(a, b) wheneverw(a, b) 6= −∞. Finding a solution ofG means assigning integral
values to the variable vertices so that the constraints imposed bymod are satisfied and
for every edge inG, the difference between its source and target vertex valuesis at least
the weight associated with the edge.

A κ-GSG = 〈D,C,w,mod〉 is calledconsistentif it has a solution. Furthermore,
we say thatG is positiveif for all a, b ∈ D∪C, eitherw(a, b) = −∞ orw(a, b) ≥ 0. A
positiveκ-GSis also denoted byκ-PGS. A κ-GSG = 〈D,C,w,mod〉 is normalizediff
for all a, b, c ∈ D ∪ C, (1)w(a, b) ≥ w(a, c) + w(c, b) and (2)w(a, b) 6= −∞ implies
w(a, b) ≡κ mod(a)−mod(b).

Proposition 3 (Effectiveness of theκ-GS representation). We can decide whether
a κ-GSG = 〈D,C,w,mod〉 is consistent. In this case we can build effectively an
equivalentnormalizedκ-GS |G| = 〈D,C, |w|,mod〉, called normal formof G, such

8

that: (1) Sol(|G|) = Sol(G), (2) |G| is positive ifG is positive, (3) every solution of
the restriction of|G| to a subset ofD can be extended to a complete solution of|G|.

Given anIRAP , let κ be the least common multiple of the integers inMod(P) ∪
{1}. A κ-GSH = 〈D,C,w,mod〉 is calledlocal for P iff D = V ars(P) andC =
Cons(P). A set of statesY ⊆ S(P) is said to beκ-GS-representedby a family of
finite sets(Hn)n∈V (P) of localκ-GSif for every state〈n, v〉 ∈ Y we havev ∈ Sol(H)
for someH ∈ Hn. By definition ofwqo�, it easily follows that localpositiveκ-GS
constitute an effective representation of upward closed sets of states inS(P) (see details
in [BG06]).

Proposition 4. κ-GSrepresentations are effectively closed under complementation.

Proposition 5. For every set of statesU ⊆ S(P),U is κ-PGS-representable iffU is an
upward closed set.

Definition 1 (Intersection of κ-GS). Given twoκ-GSG1 = 〈D1, C1, w1,mod1〉 and
G2 = 〈D2, C2, w2,mod2〉, their intersectionG1

⊗

G2 = 〈D1∪D2, C1∪C2, w,mod〉
is defined by:

– G1

⊗

G2 = nil5 if there isa ∈ D1 ∩D2 such thatmod1(a) 6= mod2(a);
– otherwise for alla, b ∈ D1 ∪D2 ∪C1 ∪C2,mod(a) = max{mod′1(a),mod

′
2(a)}

andw(a, b) = max{w′
1(a, b), w

′
2(a, b)} where (fori = 1, 2)

• if a ∈ Di ∪ Ci thenmod′i(a) = modi(a), elsemod′i(a) = −∞
• if a, b ∈ Di ∪ Ci thenw′

i(a, b) = wi(a, b), elsew′
i(a, b) = −∞.

Note that intersection ofκ-GSpreserves positiveness. Moreover, the following holds.

Proposition 6. LetG = 〈D,C,w,mod〉 andG′ = 〈D′, C ′, w′,mod
′〉 be twoκ-GS.

Then, forv : D ∪D′ → Z, v ∈ Sol(G
⊗

G′) iff v|D ∈ Sol(G) andv|D′ ∈ Sol(G′).
In particular, forD = D′, Sol(G

⊗

G′) = Sol(G) ∩ Sol(G′).

3.2 Symbolic Characterization of Fair Computations inEIRA

In this section, we essentially show that given anEIRA, we can compute aPGS-represen-
tation of the set of statess such that there is afair computation starting froms. This
technical result non-trivially generalizes [Čer93, Lemma 5.11] and is used in the fol-
lowing to solve model-checking ofIRA againstE–CCTL∗.

Let 〈P, `EXT 〉 be anEIRA andK the maximal natural numberi such that a term
of the formOix occurs in〈P, `EXT 〉 for some variablex. W.l.o.g., we can assume that
K ≥ 1 and all the constants (resp., modulo constants) occurring in the atomic formulas
of 〈P, `EXT 〉 are inCons(P) (resp.Mod(P)). We denote byκ the least common
multiple of the integers inMod(P)∪{1} andS(P)† be the set of tuples ofP states. In
the following we consider onlyκ-PGSor κ-GSbut we write simplyPGSor GS.

Assume thatU ⊆ S(P) is anupward closed setgiven by aPGS-representation.
For a setF ⊆ V (P) of P vertices, we denote by[[E�FU]]P the set ofP statess
such that there is afair computation froms that only visits states ofU and contains
infinite occurrences of states〈n, v〉 with n ∈ F . The main result of this subsection is
the following:

5
nil denotes some inconsistentκ-PGSoverD1 ∪D2 andC1 ∪ C2

9

Theorem 1. Given a setF ⊆ V (P) ofP vertices, one can build aPGSrepresentation
of the set[[E�FU]]P .

To prove this result, we show two important preliminary results (Theorems 2 and 3).

For two tuples〈N ,V〉 and〈N ′,V ′〉 of P states, aP pathn fromN toN ′, we write:

– 〈N ,V〉
K

U 〈N ′,V ′〉 to mean that there is afair historyπ from 〈N ,V〉 to 〈N ′,V ′〉
visiting only states inU , where|π| = m·K withm ≥ 2 (fair reachability relation);

– 〈N ,V〉 U
n 〈N

′,V ′〉 to mean that〈N ,V〉
K

U 〈N ′,V ′〉 by a fair historyπ whose
projection onV (P) is the pathn.

For all i ≥ 1, let V arsi be a fresh copy ofV ars(P) (we need this notation to formal-
ize access to several copies ofP variables),KV ars =

⋃i=K

i=1 V arsi = {y1 . . . , yp}
andKV ars′ = {y′1, . . . , y

′
p}. Given aK–tupleV = 〈v1, . . . , vK〉 of valuations over

V ars(P), for all x ∈ KV ars such thatx ∈ V arsi (for some1 ≤ i ≤ K) is a copy of
variabley ∈ V ars(P), V .x denotes the value of the componenty of vi.

A GSG = 〈D,C,w,mod〉 is calledK–local for P iff D = KV ars andC =
Cons(P). We denote bySat(G) the set ofK–tuplesV of valuations overV ars(P)
thatsatisfyG, whereV satisfiesG iff the mappingv : D → Z defined asv.x = V .x is a
solution ofG. We useK–local GSto represent sets ofK-tuples ofP states. Intuitively, a
K–local GScontains all the informations needed to evaluate an atomic constraint where
all the terms of the formOix are such thati ≤ K. A setX ⊆ S(P)K of K-tuples of
P states isGS-representedby a family of finite sets(GN)N∈V (P)K of K–localGS if
〈N ,V〉 ∈ X iff V ∈ Sat(G) for someGSG ∈ GN .

A PGSG = 〈D,C,w,mod〉 is calledK–transitional for P iff D = KV ars ∪
KV ars′ andC = Cons(P). A pair 〈V ,V ′〉 of K–tuples of valuations overV ars(P)
satisfiesG iff the mappingv : D → Z defined asv.x = V .x andv.x′ = V ′.x, for each
x ∈ KV ars, is a solution ofG. We denote bySat(G) the set of pairs ofK–tuples of
valuations overV ars(P) that satisfyG. We also extend the operatorSat to sets ofK–
transitionalPGSas follows: for a setG of K–transitionalPGS,Sat(G) =

⋃

G∈G Sat(G).
Given a relation 0⊆ S(P)† ×S(P)†, a pair〈N ,N ′〉 of K-tuples ofP vertices and a
finite setG of K–transitionalPGS, we say thatG characterizes 0 with respect to the
pair 〈N ,N ′〉 iff Sat(G) = {〈V ,V ′〉 | 〈N ,V〉 0 〈N ′,V ′〉}.

Remark 1.Let π1 be afair history from〈N1,V1〉 to 〈N ,V〉 andπ2 be afair history
from 〈N ,V〉 with 〈N ,V〉 ∈ S(P)K. Then,[π1 + π2]〈N ,V〉 is a fair history.

As first result, we show that the fair reachability relation
K

U can bePGS-characterized.

Theorem 2. For each pair〈N ,N ′〉 of K–tuples ofPvertices, one can build effectively
a finite setGU (N ,N ′) of K–transitionalPGSthat characterizes the fair reachability

relation
K

U w.r.t. the pair〈N ,N ′〉. Moreover, for eachG ∈ GU (N ,N ′), {G} char-
acterizes the fair reachability relation U

n for some pathn fromN toN ′.

The algorithm we propose relies on Remark 1, properties of normalized PGS (see
Proposition 3), and its termination is guaranteed by a suitable decidablewqo, which

10

is defined over the set ofPGS6 (for a fixed set of variables and constants). More details
are given in [BG06].

For a setX ⊆ S(P)K, let us definereU (X) = {〈n, v〉 ∈ S(P) | ∃〈N ,V〉 ∈ X.

〈n, v〉
K

U 〈N ,V〉}. By Proposition 3 and Theorem 2, we easily obtain the following
important corollary.

Corollary 1. Given a family ofK–local GS (resp.,PGS) representing a setX ⊆
S(P)K, we can construct aGS(resp.,PGS) representation ofreU (X).

The second preliminary result for the proof of Theorem 1 essentially relies on prop-
erties ofPGS. Its proof is highly technical (full details are given in [BG06]). For a
K-tupleN of vertices and aP pathh from N to N , we define the following sets of
K-tuples of valuations overV ars(P):

– Sp(h) := {V | ∃V ′. 〈N ,V〉 U
h 〈N ,V

′〉 andV ′ � V};
– Rea∞(h) := {V | 〈N ,V〉 U

h∞}.

where〈N ,V〉 U
h∞ means that there is a fairU -computationπ starting from〈N ,V〉

whose projection onV (P) is the pathh∞ (h∞ is the infinite pathh, h1, h1, . . ., where
h1 is obtained fromh by eliminating the prefix corresponding toN). By Simulation
LemmaSp(h) ⊆ Rea∞(h).

Theorem 3. LetN be aK-tuple of vertices,h be a path fromN toN , andG(h) be a
K–transitionalPGSsuch that{G(h)} characterizes the fair reachability relation U

h .
Then, we can construct aK–local PGSHh such thatSp(h) ⊆ Sat(Hh) ⊆ Rea∞(h).

The idea behind this result is that we can build aPGS-representationHh having the
properties needed to prove Theorem 1 instead of consideringSp(h) andRea∞(h) (see
the following proof). Now, we can prove the main result of this subsection.
Proof of Theorem 1. Let FK be the set ofK–tuplesN of vertices such that some
component ofN is inF . By Theorem 2, for eachN ∈ FK, we can construct a finite set

GU (N ,N) of K-transitionalPGScharacterizing
K

U w.r.t. the pair(N ,N). Moreover,
there isfiniteset ofrepresentativepathsh fromN toN , denoted byRepr(N), such that
GU (N ,N) =

⋃

h∈Repr(N){G(h)}, where{G(h)} characterizes U
h . By Theorem 3,

for everyN ∈ FK, we can compute a family{Hh
N }h∈Repr(N) of K–localPGSsuch

thatSp(h) ⊆ Sat(Hh
N) ⊆ Rea∞(h) for everyh ∈ Repr(N). Let us consider the set

X of K-tuples ofP states defined as follows:

X = {〈N ,V〉 | N ∈ FK, ∃h ∈ Repr(N) : V ∈ Sat(Hh
N)}

Note thatX is PGS-represented by the family{HN }N∈FK
of K-local PGS, where

HN =
⋃

h∈Repr(N){H
h
N }. Therefore, by Corollary 1, Theorem 1 directly follows from

the following claim:reU (X) = [[E�FU]]P . It remains to prove this claim.
reU (X) ⊆ [[E�FU]]P : let 〈n, v〉 ∈ reU (X). Then, there isN ∈ FK, h ∈ Repr(N),

andV ∈ Sat(Hh
N) such that〈n, v〉

K

U 〈N ,V〉. SinceSat(Hh
N) ⊆ Rea∞(h), it holds

6 the hypothesis of positiveness is crucial.

11

that 〈N ,V〉 U
h∞ . Sinceh∞ contains infinite occurrences of accepting vertices, by

Remark 1 we deduce that〈n, v〉 ∈ [[E�FU]]P .
[[E�FU]]P ⊆ reU (X): let 〈n, v〉 ∈ [[E�FU]]P . Then, there is a fairU -computation
π starting from〈n, v〉 that visits some vertex inF infinitely many times. Hence, we
deduce the existence of an infinite sequence

〈n, v〉
K

U 〈N0,V0〉
K

U 〈N1,V1〉
K

U 〈N2,V2〉 . . .

with Ni ∈ FK for eachi ≥ 0. Due to well quasi-ordering of�, there arei < j such

thatNi = Nj andVi � Vj . Since〈Ni,Vi〉
K

U 〈Ni,Vj〉, by Properties ofGU (Ni,Ni),
there ish ∈ Repr(Ni) such that〈Ni,Vi〉 U

h 〈Ni,Vj〉. SinceVi � Vj , it follows that

Vi ∈ Sp(h) ⊆ Sat(Hh
N). As 〈n, v〉

K

U 〈Ni,Vi〉, it holds that〈n, v〉 ∈ reU (X). ut

3.3 Symbolic Model-checking Algorithm

We fix anIRAP and anE–CCTL∗ formulaξ such thatV ars(ξ) ⊆ V ars(P),Cons(ξ) ⊆
Cons(P), andMod(ξ) ⊆ Mod(P). Let κ be the least common multiple of the con-
stants inMod(P) ∪ {1}. In the following, by using Theorem 1 and a generalization of
the standard tableau-based construction forLTL model-checking, we show that we can
construct aκ-PGSrepresentation of the set of states[[ξ]]P . Hence, model-checkingIRA
againstE–CCTL∗ is decidable (note that the membership problem forκ-PGSrepresen-
tations is trivially decidable).

Letψ ∈ PLF (X) be a pathE–CCTL∗ formula withX = {ξ1, . . . , ξk}. Theclosure
of ψ, denoted bycl(ψ), is the smallest set containingξ1, . . . , ξk, eachsubformulaof ψ
(consideringξ1, . . . , ξk as atomic propositions), and satisfying: (1) ifψ1Uψ2 ∈ cl(ψ),
thenO(ψ1Uψ2) ∈ cl(ψ), (2) if �ψ1 ∈ cl(ψ), thenO�ψ1 ∈ cl(ψ). An LTL-atomof ψ
is a setA ⊆ cl(ψ) satisfying the following properties:

– for ψ1 ∨ ψ2 ∈ cl(ψ), ψ1 ∨ ψ2 ∈ A iff eitherψ1 ∈ A orψ2 ∈ A;
– for ψ1 ∧ ψ2 ∈ cl(ψ), ψ1 ∧ ψ2 ∈ A iff ψ1 ∈ A andψ2 ∈ A;
– for ψ1Uψ2 ∈ cl(ψ), ψ1Uψ2 ∈ A iff eitherψ2 ∈ A or {ψ1,O(ψ1Uψ2)} ⊆ A;
– for �ψ1 ∈ cl(ψ),�ψ1 ∈ A iff {ψ1,O�ψ1} ⊆ A.

LetAtoms(ψ) be the set ofLTL-atoms ofψ. When an until-formulaψ1Uψ2 is asserted
at a state along a computation, we must make sure that the liveness requirementψ2 is
eventually satisfied. This is done (as forLTL) using a generalized B̈uchi condition, one
for each until formula. Formally, we denote byF(ψ) the family of subsets ofAtoms(ψ)
defined as: for any until formulaψ1Uψ2 ∈ cl(ψ), there is a componentF ∈ F(ψ) that
contains all and only theLTL-atomsA such that eitherψ2 ∈ A orψ1Uψ2 /∈ A.

The main step of the proposed algorithm is represented by thefollowing result.

Lemma 3. Letψ ∈ PLF (X) be a path sub-formula ofξ such thatX = {ξ1, . . . , ξk}
and for each1 ≤ i ≤ k, [[ξi]]P is given by a family(Hξi

n)n∈V (P) of localκ-PGS. Then,
we can construct aκ-PGSrepresentation of[[Eψ]]P .

Proof. We build anEIRA〈P ′, `EXT 〉, a setF ⊆ V (P ′), and a familyH = (Hn′)n′∈V (P ′)

of sets of localκ-PGS(w.r.t.P ′) such thatV (P ′) = V (P)×Atoms(ψ)×{0, . . . , |F(ψ)|},
V ars(P ′) = V ars(P),Cons(P ′) = Cons(P),Mod(P ′) = Mod(P), and

12

Claim 1. for all 〈n, v〉 ∈ S(P), 〈n, v〉 ∈ [[Eψ]]P if and only if 〈〈n,A, 0〉, v〉 ∈
[[E�F

pHq]]P ′ for someLTL-atomA ∈ Atoms(ψ) such thatψ ∈ A (wherepHq
denotes the upward closed subset ofS(P ′) that isκ–PGSrepresented byH).

Evidently, the current Lemma directly follows from the claim above and Theorem 1.
TheEIRA〈P ′, `EXT 〉 andF ⊆ V (P ′) are defined as (whereF(ψ) = {F1, . . . , Fm}):

– V (P ′) = V (P)×Atoms(ψ)×{0, . . . ,m}. A P ′ vertex is a triple〈n,A, i〉, where
n is aP vertex,A is an atom that intuitively represents the set of formulas that
hold atn (along the current computation), andi is a finite counter used to check the
fulfillment of the generalized B̈uchi conditionF(ψ);

– 〈〈n,A, i〉, 〈n′, A′, j〉〉 ∈ E(P ′) if and only if (1) 〈n, n′〉 ∈ E(P), (2) for all Oψ′ ∈
cl(ψ), Oψ′ ∈ A iff ψ′ ∈ A′ (i.e., the next-requirements inA are met inA′), and (3)
j = i if i < m andA′ /∈ Fi+1, andj = (i+ 1) mod (m+ 1) otherwise;

– the labelling`′V and`′E of P ′ are consistent with those ofP , i.e. `′V (〈n,A, i〉) =
`V (n) and`′E(〈〈n,A, i〉, 〈n′, A′, i′〉〉) = `E(〈n, n′〉); `EXT (〈n,A, i〉) is the set of
atomic formulasp[x1 ← Oi1x

j1
, . . . , xr ← Oiqxjq

] in A;
– F = {〈n,A,m〉 ∈ V (P ′)}.

It remains to define the familyH = (Hn′)n′∈V (P ′) of sets of localκ-PGS. Let n′ =
〈n,A, i〉 withA∩X = {ξj1 , . . . , ξjr

}. Intuitively,A∩X represents the set of “atomic”
state formulas asserted atn along the current computation. Thus, we have to require that
Sat(Hn′) = {v | 〈n, v〉 ∈

⋂i=r
i=1[[ξji

]]P }. Formally,Hn′ = {H | H = H1 ⊗ . . .⊗Hr

with Hh ∈ H
ξjh
n for all 1 ≤ h ≤ r}. A full proof of Claim 1 is given in [BG06]. ut

Now, we can prove the desired result.

Theorem 4. We can construct aκ-PGSrepresentation(Hξ
n)n∈V (P) of [[ξ]]P .

Proof. By structural induction onξ. The caseξ = > is obvious. Ifξ = ξ1 ∨ ξ2 (resp.,
ξ = ξ1 ∧ ξ2), then for alln ∈ V (P),Hξ

n = Hξ1

n ∪H
ξ2

n (resp.,Hξ
n = {H1 ⊗H2 | Hi ∈

Hξi
n , i = 1, 2}), where(Hξi

n)n∈V (P) is theκ-PGSrepresentation ofξi with i = 1, 2.
Finally, the caseξ = Eψ follows from the induction hypothesis and Lemma 3. ut

4 Satisfiability and model-checking forCEF+

In this section we show the main result of this paper, i.e. satisfiability and model-
checking forCEF+ are decidable. We need the following preliminary result.

Lemma 4. For an E–CCTL∗ formulaξ, we can construct in polynomial time anIRA
P with a distinguished vertexn0 and a newE–CCTL∗ formulaξ′ such that[[ξ]]SAT =
{v | 〈n0, v

′〉 ∈ [[ξ′]]P where v′.x = v.x for every x ∈ V ars(ξ)}.

Proof. Let V ar(ξ) = {x1, . . . , xk}. TheIRAP is defined as follows:

-n0

aux← 1 - aux← 0 - ?x1
- - ?xk

6

13

This IRAessentially consists of a sequence of inputs operations andwe use an aux-
iliary variableaux to distinguish the state where all the values of the variables have
been updated, which correspond to a new valuation.

Now consider the mapf over E–CCTL∗ formulas defined as:f(Oix ∼ Ojy) =
Oi(k+2)x ∼ Oj(k+2)y, f(Oix ≡k c) = f(Oi(k+2)x) ≡k c, f is homomorphic w.r.t.
the positive boolean operators,f(Oψ) = O(k+2)f(ψ), f(ψUψ′) =

(

(aux = 1) ⇒

f(ψ)
)

U
(

(aux = 1) ∧ f(ψ′)
)

, f(�ψ) = �
(

(aux = 1) ⇒ f(ψ)
)

, f(Eψ) = Ef(ψ).
We can check thatv ∈ [[ξ]]SAT iff there is a valuationv′ overV ars(ξ) ∪ {aux} such
thatv′.x = v.x for everyx ∈ V ars(ξ) and〈n0, v

′〉 ∈ [[f(ξ)]]P . ut

Theorem 5. (1) The model checking problem ofIRA againstCEF+ is decidable.
(2) Satisfiability ofCEF+ is decidable.

Proof. (1) For givenIRA P and CEF+ formula ξ, we prove by structural induction
on ξ that we can build aκ-GS representation of[[ξ]]P (whereκ is defined as in Sec-
tion 3). The cases in whichξ is a E–CCTL∗ formula or a disjunction of formulas
directly follow from Theorem 4, while the caseξ = ¬ξ′ follows from Proposition
4. For the caseξ = E(ξ1Uξ2) whereξ1 is an E–CCTL∗ formula, we observe that
[[ξ]]P = re[[ξ1]]P ([[ξ2]]P), and the result follows from Theorem 4 and Corollary 1 (setting
K = 1). Finally, the caseξ = EOξ′ follows from a simple variant of Corollary 1.
(2) For aCEF+ formulaξ, we construct aκ-GSrepresentation of[[ξ]]SAT (whereκ and
κ-GS representation have an obvious meaning). For the boolean connectives we pro-
ceed as above. The case in whichξ is anE–CCTL∗ formula easily follows from Propo-
sition 3, Lemma 4, and Theorem 4. Finally, we observe that (1)[[E(ξ1Uξ2)]]SAT = ∅
if [[ξ2]]SAT = ∅, and[[E(ξ1Uξ2)]]SAT = [[ξ1]]SAT ∪ [[ξ2]]SAT otherwise, (2)[[EOξ]]SAT

contains all valuations overV ars(ξ) if [[ξ]]SAT 6= ∅, and[[EOξ]]SAT = ∅ otherwise.
ut

5 Conclusion

We have considered an extension of standardCTL∗, calledCCTL∗, whose atomic for-
mulas are constraints fromIPC∗ with comparison of variables at different states. For
this logic, we have addressed two problems: satisfiability and model checking of Inte-
gral Relational Automata [BBK77,Čer93] extended with periodicity constraints. Since
model checkingIRAagainst fullCCTL∗ is undecidable (also for theCTL-like fragment),
we have considered a meaningful fragment ofCCTL∗, namelyCEF+ (which subsumes
both the existential and universal fragment ofCCTL∗ and theEF-like fragment) show-
ing that for this fragment both satisfiability and model checking of IRA are decidable.
Furthermore, using a symbolic approach based on theory ofκ-GS, the theory of well
quasi-ordering, and automata-theoretic techniques, we have shown that it is possible to
compute a finite representation of the set of states of the given IRA that satisfy a given
formula. There are still interesting and non-trivial open questions such as the decidabil-
ity status of satisfiability of fullCCTL∗ and the complexity for the considered decidable
fragment (termination of our algorithm (see Theorem 2) is guaranteed by awqodefined
over the set ofκ-PGSfor a fixed set of variables and constants).

14

References

[ACJT96] P. A. Abdulla, K. Cerans, B. Jonsson, and Yih-Kuen Tsay. General decidability the-
orems for infinite-state systems. InLICS’96, pages 313–321. IEEE Computer Society
Press, 1996.

[AD94] R. Alur and D. Dill. A theory of timed automata.Theoretical Computer Science,
126:183–235, 1994.

[AJ94] P.A. Abdulla and B. Jonsson. Undecidable verification problems for programs with
unreliable channels. InICALP’04, volume 820 ofLNCS. Springer, 1994.

[BBFS98] E. Bertino, C. Bettini, E. Ferrari, and P. Samarati. An access control model supporting
periodicity constraints and temporal reasoning.ACM TODS, 23(3):231–285, 1998.

[BBK77] J. Bardzin, J. Bicevskis, and A. Kalninsh. Automatic construction of complete sample
systems for program testing. InIFIP Congress, pages 57–62, 1977.

[BEH95] A. Bouajjani, R. Echahed, and P. Habermehl. On the verification problem of nonreg-
ular properties for nonregular processes. InLICS’95, pages 123–133. IEEE Computer
Society Press, 1995.

[BFLP03] S. Bardin, A. Finkel, J. Leroux, and L. Petrucci. FAST: Fast Acceleration of Symbolic
Transition systems. InCAV’03, volume 2725 ofLNCS, pages 118–121. Springer, 2003.

[BG06] L. Bozzelli and R. Gascon. Branching-time temporal logic extended with Presburger
constraints. Technical Report LSV-06-10, LSV, May 2006.

[Boi98] B. Boigelot.Symbolic methods for exploring infinite state spaces. PhD thesis, Univer-
sité de Lìege, 1998.

[CC00] H. Comon and V. Cortier. Flatness is not a weakness. InCSL’00, volume 1862 of
LNCS, pages 262–276. Springer, 2000.

[Čer93] K. Čerans. Deciding properties of integral relational automata. Technical Report
No. 73, Dept. of Computer Sciences, Chalmers University of Technology, G̈oteborg,
Sweden, 1993. An extended abstract appeared in Proc. of ICALP’04, LNCS 820.

[CJ98] H. Comon and Y. Jurski. Multiple counters automata, safety analysis and Presburger
arithmetic. InCAV’98, volume 1427 ofLNCS, pages 268–279. Springer, 1998.

[DD03] S. Demri and D. D’Souza. An automata-theoretic approach to constraint LTL. Techni-
cal Report LSV-03-11, 2003. An extended abstract appeared in Proc. of FSTTCS’02.

[DG05] S. Demri and R. Gascon. Verification of qualitativeZ-constraints. InCONCUR’05,
volume 3653 ofLNCS, pages 518–532. Springer, 2005.

[EH86] E.A. Emerson and J.Y. Halpern. Sometimes and not never revisited: On branching
versus linear time.Journal of ACM, 33(1):151–178, 1986.

[FS01] A. Finkel and Ph. Schnoebelen. Well-structured transition systems everywhere!Theo-
retical Computer Science, 256(1-2):63–92, 2001.

[Iba78] O. Ibarra. Reversal-bounded multicounter machines and their decision problems.Jour-
nal of ACM, 25(1):116–133, 1978.

[LM01] U. Dal Lago and A. Montanari. Calendars, time granularities, and automata. In
SSTD’01, volume 2121 ofLNCS, pages 279–298. Springer, 2001.

[LS04] J. Leroux and G. Sutre. On flatness for 2-dimensional vector addition systems with
states. InCONCUR’04, volume 3170 ofLNCS, pages 402–416. Springer, 2004.

[Lut04] C. Lutz. NEXPTIME-complete description logics with concrete domains.ACM Trans-
actions on Computational Logic, 5(4):669–705, 2004.

[May01] Richard Mayr. Decidability of model checking with the temporal logic EF.Theoretical
Computer Science, 256:31–62, 2001.

[Min67] M. Minsky. Computation: Finite and Infinite Machines. Prentice Hall, 1967.
[MOS05] M. Müller-Olm and H. Seidl. Analysis of modular arithmetic. InESOP’05, volume

3444 ofLNCS, pages 46–60. Springer, 2005.

15

