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Abstract. Recently,LTL extended with atomic formulas built over a constraint
language interpreting variables #hhas been shown to have a decidable satisfi-
ability and model-checking problem. This language alloavsampare the vari-
ables at different states of the model and include perigdotinstraints, compar-
ison constraints, and a restricted form of quantification.te other hand, the
CTL counterpart of this logic (and hence also@3$L* counterpart which sub-
sumes both. TL andCTL) has an undecidable model-checking problem. In this
paper, we substantially extend the decidability bordegdysidering a meaning-
ful fragment of CTL" extended with such constraints (which subsumes both the
universal and existential fragments, as well asHhelike fragment) and show
that satisfiability and model-checking over relationalomodta that are abstrac-
tion of counter machines are decidable. The correctnesshentermination of
our algorithm rely on a suitable well quasi-ordering defiogdr the set of vari-
able valuations.

1 Introduction

Model-checking of infinite-state counter systeffise formal verification of infinite-
state systems has benefited from numerous decidable mioglelking problems. This
is the case for instance of timed automata [AD94], or sukelasf counter systems, see
e.g. [CJ98]. Counter systems are finite state machines tipgeen a finite set of vari-
ables (counters or registers) interpreted as integersighsimple problems like reach-
ability are already undecidable fdrcounter Minsky machines [Min67], many interest-
ing restrictions of counter systems have been studied, iiciwreachability and richer
temporal properties have been shown to be decidable. Ranices, Petri nets represent
the subclass of counter systems obtained by removing thigyabitest a counter for
zero. Other examples include reversal-bounded countehimes [Iba78], flat counter
systems [Boi98,BFLP03,LS04] and constraint automata quidlitative constraints on
Z between the states of variables at different steps of theutiom [DGO05]. “Quali-
tative” means that the relationship between the constlanaeables is not sharp, like
x < y. This last class of systems can be seen as an abstractionrgécgystems where
increments and decrements are abstracted by comparisdnsoagruence relations
modulo some integer. For exampte= y+1 can be abstracted bhy> y A x =4 y+1.
This is very common in various programming languages peifog arithmetic oper-
ations modulo some integer, typically mod@é? or 264 (see [MOSO05]). Periodicity



constraints have also found applications in formalismdingavith calendars [LMO1]
and temporal reasoning in database access control [BBFS98]

Temporal logics extended with Presburger constraiiassical problems studied on
counter systems often reduce to the reachability of someaastate. Recently, richer
temporal properties have been investigated and formalizeihtroducing fragments
of Presburger constraints in temporal logics. In this sgitatomic formulas are Pres-
burger arithmetic constraints over variables (counteisig values irZ. Furthermore,
these formalisms involve an hybrid of temporal logic andstraints, with varying de-
grees of interaction. For instance, one may be allowed tr tefthe value of a vari-
able z on the next time instant, leading to constraints of the farm>- Ox. More
generously, one may be permitted to refer to a future valua @driablex a certain
numbern of steps further. We denote this value 0y .. Ox wherez is prefixed by
n times the symboD (in the following such an expression is abbreviateddyz).
For linear-time temporal logics, such extensions can badao numerous works, see
for instance [BEH95,CC00,DDO03]. However, full Presburgét. is undecidable, and
to regain decidability, one can either restrict the undegdyconstraint language, see
e.g. [DD03,DGO05], or restrict the logical language, see[@gH95,CCO00]. In [DGO05],
full LTL extended with a wide set of qualitative constraints, initilgccomparison and
periodicity constraints, has been shown to haweAZEecomplete satisfiability and
model-checking problems (over constraint automata meati@bove). Similar exten-
sions have also been considered for description logicsevimedels are Kripke struc-
tures, see for instance [Lut04]. On the other hand, to thedfesur knowledge, very
few works deal with decidable fragments of branching-tiemporal logics enhanced
with Presburger constraints. Actually, we can only refah®work K?er93], in which
CTL* extended with only comparison constraints is shown to haverralecidable
model checking problem fdntegral Relational Automatéundecidability already holds
for the CTL-like fragment). However, model-checking for the exisigirand universal
fragments are shown to be decidable. Note that the logicgsexgbin [Cer93] does
not exhibit any form of interaction between the temporalrafms and the comparison
constraints (in particular, atomic formulas of the farmc Oy are not considered).

Our contribution.In this paper, we introduce the logleCTL* as an extension of the
branching—time temporal logiCTL* with a wide set of qualitative constraints includ-
ing periodicity constraints of the form =;, y + ¢, comparison constraints of the form
x < y and a restricted form of quantification. This logic is thermfaing—time coun-
terpart of the constraintTL defined in [DGO05] and extends the logic frorée[r93]
by introducing richer constraints and the possibility tanpare counters at different
states of the model. The operational models on which we cterokoral properties
expressed in this logic are extensions of Integral Relatidwtomata (RA, for short)
[BBK77,Cer93,ACJT96] introduced in [BBK77] as a model for studypuassibilities
of automated complete test set generation for data proxepsdbgrams. Our extension
is obtained by adding periodicity constraints and makestwe formalism an equiv-
alent variant of the constraint automata with qualitatieestrains mentioned above.
However,IRA provide a representation that is more intuitive and clogehé opera-
tional semantics of programs manipulating integers.



Model-checking this extension ¢RA against full CCTL" is undecidable (also for
the CTL-like fragment) as a consequence 6&f93]. Thus, in this paper we investigate
a meaningful fragment, which subsume both the existertidlumiversal fragments as
well as theEF-like fragment. For instance, the formuldJEO(z = Oz) is in this
fragment and states that for any reachable state, thereamputation starting from
it in which the value of counter. remains constant. For this fragment, we show that
both satisfiability and model checking of the proposed esitenof IRA are decidable.
The existential and universal fragments@ETL* are strictly more expressive than the
constrainLTL defined in [DGO05]. Moreover, the symbolic algorithm we désebuilds
a finite representation of the set of states satisfying angigamula, a very substantial
information compared to the symbolic representation us¢BG05].

IRAbelong to the class of well-structured transition systemmiskwhave been inten-
sively studied, see e.g. [ACJT96,FS01]. Hence, one canalafthecidable well-quasi
ordering on the set of states, which is also a simulations phoperty is sufficient to
guarantee decidability of simple problems such as covidsathiut not to decide richer
properties like liveness propertfeghich can be expressed in our logical framework.
Thus, we need to use a more sophisticated approach, whictechaical non-trivial
generalization and refinement of the one useddarpP3] combining automata-based
techniques, theory of well quasi-ordering, and the thedrg specific class of linear
inequality systems (used to represent upward closed setatet). The correctness and
the termination of the algorithm rely on a suitable well de@slering defined over these
inequality systems. Another major contribution consistextending to a larger frame-
work the original and difficult proof from @er93] and in clarifying all the technical
lemmas needed in the last part of the algorithm, which arétedin [éer93].

Due to lack of space, many proofs are omitted and can be foufRI306].

2 Preliminaries

2.1 Language of constraints

Let VAR be a countable set of variables. HorC VAR, avaluationover D is a map
v:D — Z.Forallxz € D, we denote by.x the value assigned toin v.
Thelanguage of constraints, denoted byPC* [DGO05], is defined as follows’

pu=tlz~y[pAp|-p

tu=ax =g [c,e) |l =py+e,c|lz=ylez~c|tAnt]|—t]Ixt
where~e {<,<,>,> =}, 2,y € VAR, k € N\ {0}, andecy,co,c € Z. For a
constraintp and a valuationy over VAR, the satisfaction relation |= p is defined as
follows (we omit the standard clauses for negation, corjancand inequalities):

—vEx =g e, & Jey<c<candmeZ. vz =c+m-k;
—vEx=py+ e, Iy <c<eandmeZ. vae=vy+c+m-k;
—vkEJrt & JeeZ vzt

! For instance, liveness properties in lossy channel systeensndecidable [AJ94].

2 Note that constraints of the ford, = < y are not allowed since they leads to the undecid-
ability already for the corresponding LTL extension (se&[I3]).



wherev[r «— c|.2’ = v.2’ if z # 2’ andvx — c].x = c. A constraintp is atomicif it
has one of the following forms: = ¢ |z ~ y | z ~ ¢, where~€ {<, <, >, >, =}
andxz =; cis an abbreviation fox =, [c, ¢]. Evidently, for a constraing, whether a
valuationv satisfiesp depends only on the values ofover the finite seV ars(p) of
free variables occurring ip. Thus, in the following as interpretations of a constraint
we consider the set of valuations over finite supersetéwfs(p).

Lemma 1 ([DGO5]). AnyIPC* constraint can be effectively converted into an equiva-
lent positive boolean combination atomic IPC constraints.

The translation implies an exponential blowup of the sizéhefformula w.r.t the con-
stants used. However, the results in the following do narref complexity issues.

2.2 The constrained branching-time temporal logic CCTL*)

We introduce theonstrained branching-time temporal logi€CTL*) as an extension
of the standard propositional logicTL* [EH86] where atomic propositions are re-
placed bylPC* constraints between terms representing the value of Jasat differ-
ent sates of the model. We denote these atomic formulagy— O, , ..., z, «—
O’z ], wherep is anlPC* constraint with free variables, . . ., z,. and we substitute
each occurrence of variabtg with O%z;, (corresponding to variable;, preceded by
i; “next” symbols). The expressiddiz represents the value of the variablat thei”
next state. For exampl®y =» x + 1 andx < Oy are atomic formulae ocECTL*.

As for standardCTL*, there are two types of formulas @CTL*: state formulag
whose satisfaction is related to a specific state,matd formulas), whose satisfaction
is related to a specific path. Their syntax is inductivelyrmksdias follows:

E=T |EVEIENE|AY|EY
Y= | plor — 0"y, my — Oty | [V [ Ag | Op | O | U

whereT denotes “true”E (“for some path”) andi (“for all paths”) are path quantifiers,
andO (“next”), U (“until”), and O (“always”) are the usual linear temporal operators.
The set of state formulagsforms the languag€CTL*. For a setX of state formulas, the
set of path formulag defined only from state formulas iX is denoted byPLF'(X).
ForaCCTL* formula¢, letVal(€) be the set of valuations over finite sésC VAR
such thatD contains the variables occurring§nThe interpretations for the formula
are labelled graph8 = (S, —, i), whereS is a (possible infinite) set of vertices (here,
called states);~C S x S is the edge relation, which is total (i.e., for everyc S,
s — ¢ for somes’ € S), andy : S — Val(§) maps each state € S to a valuation
in Val(§). A path is a sequence of states= sg, s1,... such thats;_; — s; for any
1 <i < |r|. We denote the suffix;, s; 1, .. . of w by 7%, and thei-th state ofr by 7 ().
Lets € S andrw be a infinite path ofj. For a state (resp., path) formuldresp.), the
satisfaction relatiortS, s) = £ (resp.,(§, ) = ), meaning that (resp.,»») holds at
states (resp., holds along) in G, is defined by induction. The clauses for conjunction
and disjunction are standard. For the other clauses we have:

3 We have defined a positive normal form of the IoGETL", i.e. negation is used only in atomic
formulae. Moreover, the given syntax is complete since tra d of the until operator can be
expressed in terms of the until and always operatetiy, = v V (2U(¥1 A1h2)).
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— (9,5) = Ay & for each infinite pathr from s, (G, ) = v;

- (9,5) = Ev & there exists an infinite pathfrom s such thai(§, 7) = 1;
- (Gm & & (G,7(0) &

- (S,7) E plzy — Oz, ...,z — OFr; ] &

p(m(0) e — p(m(in))-wjy, - @ = pl(m(in)).xg,] = p;
- (977T)F01/1 %:% (9a7T1)F1/)i _

- (G,7) Oy & foralli >0, (G,7) = v;
= (G,m) F1Ups & 3i>0.(G,7") | ¢ andVj <i. () = n.

G is amodelof ¢, written G |= € iff (G, s) = £ for some state. We denote by¢]sar
the set of valuations overVars(§) such that g, s) = ¢ for some mode§ and states
of G with pu(s) = v. A CCTL* formula¢ is satisfiableiff there exists a model of.

Assumption: By Lemma 1, we can assume w.l.0.g. that BE* constraintg associ-
ated with atomic formulag|z; < O%z;,,...,z, < O z; ] are atomic.

The existential fragmef—CCTL* and the dual universal fragme®tCCTL* of CCTL*

are obtained by disallowing respectively the universaltaedexistential path quantifier.

In order to consider a fragment as large as possible, weratlealiiceCEF™ which sub-
sumesE-CCTL, A-CCTL and thelPC*-constrained counterpart &F logic, a well-
know fragment of standar@TL closed under boolean connectives (see e.g., [May01]).
CEF" is defined as follows (whergz is anE-CCTL* formula):

§:=¢&p [ ~¢1EVE|E(EpUE) | EOE

2.3 Integral Relational Automata

In this section we recall the framework tiftegral Relational Automat@lRA) intro-
duced in [BBK77]. AnIRA consists of a finite-state machine enhanced with a finite
number of counters. The operation repertoiréRoA includes assignment, input/output
operations and guards of the form~ y or x ~ ¢ with ~e {<, <, >, > =}. We ex-
tend this operational model by allowing periodicity coastts as guards. Note that if
we also allow guards of the form < y + ¢, then the resulting formalism is Turing-
complete (since we can easily simulate unrestricted couméehines). LeO P be the

set of operations defined as follows:

p| x| lx|le|z—y|ax—c|NOP

wherep is anatomic IPC constraint,z, y € VAR andc € Z. Informally, 7z assigns a
new integral value to the variable !2 (resp!c) outputs the value of variabte (resp.,
constant), x « y (resp.x « c¢) assigns the value of variabjeg(resp., constani) to z,
andNOP is the dummy operation. The atoniRC* constraints are used as guards.

An Integral Relational AutomatoiRA) is a tupleP = (V(P), E(P),ly,{g),
whereV (P) is the finite set olvertices E(P) C V(P) x V(P) is the set ofedges
ly : V(P) — OP associates an operation to every vertex, gnd E(P) — {+,—}
is a labelling of the edges (used for tests).



LetVars(P) be the set of alP variables (used in the operationsfandCons(P)
C Z be the least set containing all tfieconstants and such that Cons(P) and for
all ¢, co € Cons(P), c1 < ¢ < ¢y impliesc € Cons(P). Moreover, letM od(P) be
the set of thenodulo constants used in the periodicity constrains=;, ¢ of P.

Notation: For convenience, we definec = ¢ for any valuatiorv and constant € Z.

The semantics of alRA P is described by a labelled gragf{P) = (S(P), —, ),
where the set of state$( P) is the set of pairgn, v) such thain € V(P) is a vertex
andv is a valuation ove¥ ars(P), u({n,v)) = v for all (n,v) € S(P), and(n,v) —
(n',v") ifand only ife = (n,n') € E(P) and one of the following conditions holds:

— ly(n) =7z andv’.y = v.y for everyy € Vars(P) \ {z},

— ly(n) =lz orly(n) =lcorly(n) = NOP andv’ = v,

—ly(n) =z« a,v.x =v.a,andv’.y = v.y for everyy € Vars(P) \ {z},

— ly(n) = p, v = v, andeither{g(e) = + andv = p, or £g(e) = — andv - p.

Note thatSG(P) is infinitely-branching because of input operations. Wistory of P
is a path ofG(P). An infinite history is also called aomputation A pathm of P is
a path in the finite—state grapgly (P), E(P)). For a finite pathz of P, two tuples
N = (nqy,...,n,) andN’ = (n},...,n}) of P-vertices, we say that is a path from
NtoN'iff 7| > h+kandn,, ..., ny, (resp.nf, ..., n))isaprefix (resp., suffix) aP.
The notion of pattn from a tuple of vertices is similar. These notions can bereied
to histories ofP in a natural way. Let; be aP path from\; to AV andn, be aP
path fromA\ . We denote byn; + 2] the P path obtained by concatenating with
the path obtained from by eliminating the prefix corresponding.Ad. This notion of
concatenation can be extended to histories in a naturallwalye following, ak-tuple
({n1,v1), ..., (ng,vg)) Of P states is also denoted yn1, ..., ng), (v1,...,,vk)).

We say that atRA P is completdf the edge relatior'( P) is total and for each ver-
texn labelled by anPC* constraint and each flaye {+, —}, there is an edge labelled
by f and havingn as source. W.l.o.g. we assume that fR& under our consideration
are complete (this implies that the edge relatioG () is total).

Extended Integral Relational Automata: for technical reasons, we introduéex-
tended IRAEIRA). An EIRAIs a pair(P, {gxr) whereP is anlIRAand{gxr is an
additional P-vertex-labelling, mapping each vertexc V' (P) to afinite set (interpreted
as conjunction) o£CTL* atomic formulag[z; < O%z;,,...,z, « Oz, | (where
pis an atomidPC* constraint). This labelling induces constraints betwéernvariables
of the current state and the variables of succeeding statwsya computation).
For a (finite or infinite)P-historym = (n1,v1), (na, v2), . . ., we say thatr is fair if
7 is consistent with thé g xr—labelling. Formally, we require that for all< k& < |r|
andp[z, «— O%z;,,...,x, « Oz, ] € lpxr(nk), the following holds:
if £+, <|r|foralll <p <r, thenvg[x1 — Vgti, - ZTjy, ., Tp < Vpti..Tj.| =D
In this paper we are interested in the following problem:

Model checking problem of IRA against CCTL* : given anIRA P, a states, of P,
and aCCTL* formula& with Vars(¢) C Vars(P), does(S(P), sg) = £ hold?



In the following, we denote byj¢]p the set of P statess such that(S(P),s) = &.
Model checkingRAagainst fullCCTL" is undecidable (also for tHeTL-like fragment)
as a consequence cfﬁ{ar93]. Thus, in the following, we analyze the fragmemF".
consider the satisfiability problem f@EF". We start by giving a symbolic model
checking algorithm fotRA againsteE—CCTL*.

3 Symbolic model checking ofRA againstE—CCTL*

In this section we show that given #RA P and arE—CCTL formulag with Vars(§) C
Vars(P), we can compute a finite representatiorfgfp. In the following, we can as-
sume w.l.o.g. thaCons(§) C Cons(P) and Mod(§) € Mod(P), whereCons(§)
(resp.,Mod(&)) denote the set of constants (resp., modulo constantsjratgin .

First, we recall some basic notions. For a Set quasi-ordering(qo, for short) <
over S is a reflexive and transitive (binary) relation ShGiven such a@o, we say that
U C Sisanupward closed setforall x € Sandy € U,y < zimpliesxz € U. We say
that=< is apartial-order (po, for short) iff x < y andy < z imply x = y. Finally, we
say that thejo < is awell quasi-orderingwqa for short) if for every infinite sequence
Ty, 1, T2, . . . Of elements ofS there exist indices < j such thatr; < z;.

Following [Cer93], we define aqoon the setS(P) of P states (that is alsogo).
Then, in order to solve the model-checking problem, we viths that: (1)[(]» is an
upward closed set; (2) we can compute a finite represent&{@f] ») of this set; (3)
we can check whether a given a stateelongs taR([¢] p)-

We start by defining suchvago. Let x be the least common multiple of the constants
in Mod(P)U{1}. We define g0 < over tuples of valuations ovéfars(P) as follows:
(v1,...,0p) 2 V), ..., v,) iff h=kandforalll <i,j <handa,b € Cons(P)U
Vars(P), the following holds: (1p;.a > v;.biff vi.a > v}.b, (2) vi.a =, v}.a, and (3)
if v;.a > v;.b, thenv}.a — v;-.b > ;.0 — vj.b.4 We write simplyv; < v} if h = 1. Note
thaty, < v} forall 1 < i < h does notimply thatvy, ..., v,) = (v1,...,v;). Finally,
for two h-tuples of states\, V), (N, V'), we write (M, V) < (N, V') to mean that
N = N"andV < V’. The proofs of the following two results are given in [BG06].

Proposition 1. For everyh > 1, the partial order=< is awqo over the set ofi-tuples
of valuations ovelV ars(P).

Lemma 2 (Simulation Lemma).

1. Letr = (n1,v1), ..., (ny,v,) be an history and > v;. Then, there is an history
' = (n1,v}), ..., (ny,vy) such that(v], ..., v}) = (vi,...,0p);

2. Letr = (ny,v1), (n2,ve), ... be acomputation and; = v;. Then, there is a com-
putationt’ = (n1,v}), (ne, v4),...st.forallh > 1, (v, ..., v},) = (v1,...,vp).

Thanks to the Simulation Lemma, we can prove the first imporesult.

Proposition 2. [¢] p is an upward closed set with respectto

* So, the relation< depends on parameteraurs(P), Cons(P), andx.



Proof. The proof is by structural induction ch The caseg = T, £ = & V &, and
§ = &iN& areobvious sincgT]p = S(P), [&1VE&]p = [G]pU[S2] P, [S1 A &) =
[€1] P N [€2] P, and upward closed sets are closed under union and intersect

Now, assume that = E'y for some path formula. Then, there is a seY of state
sub-formulas of such that) € PLF(X). Lets; € [EY]p ands; = s;. We claim
thats; € [Ev]p. Sinces; € [Evy]p, there is a computation = sy, sa, ... such that
(G(P),m) = 1. Sinces; = s;, by Property 2 of Simulation Lemma and definition
of =, it easily follows that there is a computatiGh = 51,55, ... such that for all
i > 1 and atomic formulap,; = p[z; <« O"'z;,,...,x, « O z; ] with constants in
Cons(P) and modulo constants i od(P): 5; = s; and(G(P), 7') & 1, if and only
if (G(P),®) = ta:. Moreover, for alli > 1 and¢’ € X, by the induction hypothesis
and the fact that; > s;, we have that; € [¢'] p impliess; € [¢'] p. These properties
evidently imply(G(P),7) | v, i.e.31 € [Ey]p. Therefore, the claim holds. O

In the following subsection, we introduce the frameworkneddule-« Graphose
inequality System&—GS for short) as a finite representation of upward closed $&ts o
states (w.r.tx). In Subsection 3.2, we show some technical results on dgt#RA and
finally, in Subsection 3.3, we describe an algorithm to cor@u-GSrepresentation
of the upward closed séf] p.

3.1 Modulo—+ Graphose Inequality Systems

k-GSextendGraphose inequality Systerimroduced in Cer93] by allowing to specify
periodicity constraints on the set of solutions. Formdly,x > 1, ax—GSis a tuple
G = (D, C,w, mod), whereD C VAR is a finite set of variables; C Z is a finite set
of integral constantay : Ax A — Z~ for A= DUC andZ™ = ZU {—oc}isa
weight functionandmod is a mapmod : A — {0,...,k — 1}.

The semantics of a-GSG is given by specifying the sefol(G) of its solutions
A valuationv over D is said to be a solution af iff for all a,b € A,

v.aa—v.b > w(a,b) and v.a =, mod(a)

where by definition for: € C, mod(c) =, ¢. Thek—GSG can be interpreted as a graph
with set of verticesA and such that there is an edge frare Atob € A with theweight
w(a, b) wheneverw(a,b) # —oo. Finding a solution ofG means assigning integral
values to the variable vertices so that the constraints sepdymod are satisfied and
for every edge iz, the difference between its source and target vertex vadusdeast
the weight associated with the edge.

A k-GSG = (D, C,w, mod) is calledconsistentf it has a solution. Furthermore,
we say thati is positiveif for all a,b € DUC, eitherw(a, b) = —oco orw(a,b) > 0. A
positivex-GSis also denoted by-PGS A k-GSG = (D, C, w, mod) is normalizedff
foralla,b,c € DUC, (1) w(a,b) > w(a,c) + w(c,b) and (2)w(a, b) # —oo implies
w(a, b) =, mod(a) — mod(b).

Proposition 3 (Effectiveness of thex-GS representation). We can decide whether
ak-GSG = (D,C,w,mod) is consistent. In this case we can build effectively an
equivalentnormalizedx-GS |G| = (D, C, |w|, mod), called normal formof G, such



that: (1) Sol(|G|) = Sol(G), (2) |G| is positive ifG is positive, (3) every solution of
the restriction offG| to a subset oD can be extended to a complete solution@|f.

Given anlRA P, let  be the least common multiple of the integershifod(P) U
{1}. A k-GS H = (D, C,w, mod) is calledlocal for P iff D = Vars(P)andC =
Cons(P). A set of stated” C S(P) is said to bex-GSrepresentedy a family of
finite set(H,,),cv (p) Of local x-GSif for every state(n, v) € Y we havev € Sol(H)
for someH € H,. By definition ofwqo =, it easily follows that locapositivex-GS
constitute an effective representation of upward clostsicfestates it ( P) (see details
in [BGO6]).

Proposition 4. x-GSrepresentations are effectively closed under complenienta

Proposition 5. For every set of statds C S(P), U is k-PGSrepresentable ift/ is an
upward closed set.

Definition 1 (Intersection of k-GS). Given twoxk-GS Gy = (D1, Cy, w1, mody) and
Gy = <D2, CQ, wa, m0d2>, their intersectiorG1 ® Gy = <D1 UDs, 4 UCQ, w, m0d>
is defined by:

- G1 ® Go = nilPifthere isa € Dy N Dy such thatnod, (a) # moda(a);
— otherwise for alla, b € D1 U Dy UCy U Cy, mod(a) = maz{mod}(a), mods(a)}
andw(a,b) = max{w}(a,b),w)(a,b)} where (fori = 1, 2)
e if a € D; UC,; thenmod,(a) = mod;(a), elsemod;(a)
e ifa,b € D, UC; thenwj(a,b) = w;(a,b), elsew,(a,b)
Note that intersection of-GSpreserves positiveness. Moreover, the following holds.

Proposition 6. LetG = (D, C,w, mod) andG’ = (D', C’,w’, mod') be twok-GS
Then, forv : DUD’ — Z,v € Sol(GQR &) iff v|p € Sol(G) andv|p: € Sol(G').
In particular, for D = D', Sol(G @ G') = Sol(G) N Sol(G').

—00
—0Q.

3.2 Symbolic Characterization of Fair Computations inEIRA

In this section, we essentially show that giverEARA we can compute BGSrepresen-
tation of the set of statessuch that there is &ir computation starting from. This
technical result non-trivially generalize€¢r93, Lemma 5.11] and is used in the fol-
lowing to solve model-checking dRA againstE—CCTL*.

Let (P, /g xr) be anEIRAandX the maximal natural numbersuch that a term
of the formOtz occurs in( P, /g x7) for some variable:. W.l.0.g., we can assume that
X > 1 and all the constants (resp., modulo constants) occumittyei atomic formulas
of (P,¢{gxT) are inCons(P) (resp.Mod(P)). We denote bys the least common
multiple of the integers idZod(P) U {1} andS(P) be the set of tuples a? states. In
the following we consider only-PGSor k-GSbut we write simplyPGSor GS

Assume that/ C S(P) is anupward closed segiven by aPGSrepresentation.
For a setF" C V/(P) of P vertices, we denote b0 U] p the set of P statess
such that there is fair computation froms that only visits states off and contains
infinite occurrences of statés, v) with n € F. The main result of this subsection is
the following:

5 hil denotes some inconsistetPGSover D, U D, andCy U Cs



Theorem 1. Given a sef’ C V(P) of P vertices, one can build BGSrepresentation
of the se{ ECF U] p.

To prove this result, we show two important preliminary ifes(@ifrheorems 2 and 3).
For two tuplesV, V) and(N’, V') of P states, & pathn from N to //, we write:

— (N, V) BUN7 V') to mean that there isfair historyr from (A, V) to (A", V")
visiting only states i/, where|w| = m-X with m > 2 (fair reachability relatior);

— (N, V) ~U (N7, V') to mean that\/, V) SSU (A, V') by a fair historyr whose
projection onV (P) is the pathn.

Foralli > 1, let Vars; be a fresh copy oV ars(P) (we need this notation to formal-
ize access to several copies Bfvariables) XVars = U;jc Vars, = {y1...,yp}
andXVars' = {yi,...,y,}. Given ak-tupleV = (vy,...,vx) of valuations over
Vars(P), for all z € XVars such that: € Vars; (for somel < i < X) is a copy of
variabley € Vars(P), V.« denotes the value of the componerdf v;.

A GSG = (D,C,w,mod) is calledX-ocal for P iff D = XVars andC =
Cons(P). We denote bySat(G) the set ofK—tuplesV of valuations ovel ars(P)
thatsatisfyG, whereV satisfies5 iff the mappingv : D — Z defined a®.z = V.zisa
solution ofG. We useK—ocal GSto represent sets 6{-tuples ofP states. Intuitively, a
K-ocal GScontains all the informations needed to evaluate an atoomstcaint where
all the terms of the forn®’x are such that < XK. A setX C S(P)* of K-tuples of
P states isGSrepresentedy a family of finite setGn) yrcy (pyx 0f X~local GSif
(N, V) € X iff V € Sat(G) for someGSG € Gyr.

A PGSG = (D,C,w,mod) is calledX—transitional for P iff D = XVars U
KVars' andC = Cons(P). A pair (V, V') of X—tuples of valuations ovérars(P)
satisfieq7 iff the mappingv : D — Z defined as.z = V.x andv.2’ = V'.z, for each
x € XVars, is a solution ofG. We denote byat(G) the set of pairs ok—tuples of
valuations ovel ars(P) that satisfyG. We also extend the operatSut to sets ofK—
transitionaPGSas follows: for a se§ of K—transitionaPGS Sat(G) = Jgcg Sat(G).
Given arelation~,C S(P)t x S(P)f, a pair(\/, ') of X-tuples of P vertices and a
finite setG of X—transitionalPGS we say thatj characterizes~ with respect to the
pair (N, N} iff Sat(G) = {(V, V') | (N, V) ~o (N, V)}.

Remark 1.Let 7; be afair history from (N7, V) to (N, V) and s be afair history
from (N, V) with (N, V) € S(P)*. Then,[m; + 2],y is afair history.

As first result, we show that the fair reachability relatiod’ can bePGScharacterized.

Theorem 2. For each pair(\', N') of K—tuples ofPvertices, one can build effectively
a finite setgY (N, N”) of X-transitional PGSthat characterizes the fair reachability

relation 5 U w.r.t. the pair (A, N”'). Moreover, for eactG € GY (N, N”"), {G} char-
acterizes the fair reachability relation: Y for some pattm from A/ to V.

The algorithm we propose relies on Remark 1, properties ofabzed PGS (see
Proposition 3), and its termination is guaranteed by a blgitdecidablevga which
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is defined over the set fGS® (for a fixed set of variables and constants). More details
are given in [BG06].

For a setX C S(P)*, let us definee? (X) = {(n,v) € S(P) | I(N,V) € X.
(n,v) Kv (N, V)}. By Proposition 3 and Theorem 2, we easily obtain the folfavi
important corollary.

Corollary 1. Given a family ofK—local GS (resp.,PGS) representing a sek C
S(P)*, we can construct &S (resp.,PGS) representation ofe¥ (X).

The second preliminary result for the proof of Theorem 1 iet$aky relies on prop-
erties of PGS Its proof is highly technical (full details are given in [B8]). For a
K-tuple N of vertices and & pathh from N to A/, we define the following sets of
K-tuples of valuations ovel ars(P):

— Sp(h) == {V | 3V (N,V) U (N, V) andV = V)
— Rea™(h) :=={V | (N, V)~ }.

where(N, V) ~ Y. means that there is a faif-computationr starting from(\/, V)
whose projection o (P) is the pathh> (h*° is the infinite pathh, k1, hq, .. ., where
h1 is obtained fron by eliminating the prefix corresponding 1d). By Simulation
LemmaSp(h) C Rea® (h).

Theorem 3. Let N be aX-tuple of verticesh be a path from\ to V/, andG(k) be a
K-transitionalPGSsuch that{ G (h)} characterizes the fair reachability relation .
Then, we can constructi—local PGSH" such thatSp(h) C Sat(H") C Rea®(h).

The idea behind this result is that we can buil®@Srepresentatiodd” having the
properties needed to prove Theorem 1 instead of considsyifig) and Rea™ (h) (see
the following proof). Now, we can prove the main result obteubsection.

Proof of Theorem 1. Let Fx be the set ofK—tuples\ of vertices such that some
component of\ is in F. By Theorem 2, for eacl/’ € Fx, we can construct a finite set
GYWN,N) of K-transitionalPGScharacterizing~ Y w.r.t. the pairl A/, ). Moreover,
there isfinite set ofrepresentativpathsh from A’ to A/, denoted byRepr (N), such that
GYN,N) = Unecreprin{G(h)}, where{G(h)} characterizes~} . By Theorem 3,
for everyN' € Fy, we can compute a famil{/Hj(/}heRep,.(N) of X—local PGSsuch
thatSp(h) C Sat(HY,) C Rea™(h) for everyh € Repr(N). Let us consider the set
X of X-tuples of P states defined as follows:

X ={(N,V) | N € Fx,3h € Repr(N) : V € Sat(H)}

Note thatX is PGSrepresented by the familyH }aer, Of K-local PGS where
Hn = Unereprv) LHA-}- Therefore, by Corollary 1, Theorem 1 directly follows from

the following claim:reV (X) = [EOF U] p. It remains to prove this claim.
reV(X) C [EOFU]p: let (n,v) € reV (X). Then, there is\V' € Fy, h € Repr(N),

andV € Sat(H';) such thatn,v) 5V (N, V). SinceSat(H') C Rea™ (), it holds

5 the hypothesis of positiveness is crucial.
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that (\V, V) ~ .. Sinceh> contains infinite occurrences of accepting vertices, by
Remark 1 we deduce thét,v) € [EOF U] p.

[EOFU]p C reV(X): let (n,v) € [EOFU]p. Then, there is a fait/-computation

7 starting from(n, v) that visits some vertex it infinitely many times. Hence, we
deduce the existence of an infinite sequence

(n,v) Ku (No, Vo) Ku (N1, V1) Ku (N, Vo) ...

with ; € Fy for eachi > 0. Due to well quasi-ordering ok, there are < j such
that\; = N; andV; < V;. Since(\N;, V;) KU, V;), by Properties o§Y (N;, N;),
there ish € Repr(N;) such that\V;, V;) ~ Y (N, V;). SinceV; <V, it follows that

Vi € Sp(h) C Sat(H). As (n,v) U (N;, V), it holds that(n, v) € reV (X). O

3.3 Symbolic Model-checking Algorithm

We fix anlRA P and arE—CCTL* formula¢ such thal/ars(&) C Vars(P),Cons(§) C
Cons(P), andMod(§) € Mod(P). Let x be the least common multiple of the con-
stants inMod(P) U {1}. In the following, by using Theorem 1 and a generalization of
the standard tableau-based constructiorLiidt model-checking, we show that we can
construct as-PGSrepresentation of the set of stafg¢$r. Hence, model-checkingRA
againstt—CCTL is decidable (note that the membership problem#®GSrepresen-
tations is trivially decidable).

Lety € PLF(X) be apattE—=CCTL* formulawithX = {¢;,..., & }. Theclosure
of ¢, denoted by (v), is the smallest set containigg, . . . , £, eachsubformulaof v
(considering:y, . .., & as atomic propositions), and satisfying: (1)ifUys € cl(v),
thenO (1 Uts) € cl(v), (2) if Oy € cl(v), thenOOyy € cl(zp). An LTL-atomof ¢
is a setd C cl(v) satisfying the following properties:

— for iy Vihg € (), 41 Vipy € Alff eitheryy € Aoryy € A;

— fory Ag € Cl(’(/}), 1 Npg € Aff ¢py € Aandy, € A;

— for 11Uty € (1), Y1 Uty € Aliff either oy € A or {11, 0(1p1Ut)} C A;
— for Oy € cl(), Oy € Aiff {11, 000¢ } C A.

Let Atoms(1)) be the set oL TL-atoms ofyy. When an until-formulay; Uy is asserted
at a state along a computation, we must make sure that threefigerequirements is
eventually satisfied. This is done (as forL) using a generalizedi&hi condition, one
for each until formula. Formally, we denote (1)) the family of subsets afitoms(1))
defined as: for any until formulé; Uy € cl(v), there is a compone € F(v) that
contains all and only theTL-atomsA such that eithets € A or ;Ui ¢ A.

The main step of the proposed algorithm is represented bipHogving result.

Lemma 3. Lety € PLF(X) be a path sub-formula & such thatX = {&;,...,&}
and for eachl < i < k, [¢]p is given by a familyfH$),,cv (p) of local x-PGS Then,
we can construct a-PGSrepresentation of Ev] p.

Proof. We build anEIRA(P’, {px 1), asetl’ C V(P'),and afamilyH = (Hp/ )nev(pr
of sets of locak-PGS(w.r.t. P') such thal/ (P’) = V(P)x Atoms(1) x{0, ..., |F ()|},
Vars(P') = Vars(P), Cons(P') = Cons(P), Mod(P') = Mod(P), and
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Claim 1. for all (n,v) € S(P), (n,v) € [E¢]p if and only if {(n, 4,0),v) €
[EOFTH] pr for someLTL-atomA € Atoms(v)) such that) € A (where™H™
denotes the upward closed subseS¢P’) that isk—PGSrepresented b¥t).

Evidently, the current Lemma directly follows from the cleédbove and Theorem 1.
TheEIRA(P',lgxT) andF C V(P') are defined as (whetE(y)) = {Fy,..., Fi,}):

- V(P') =V (P) x Atoms(¢) x{0,...,m}. A P’ vertexis a triple(n, A, i), where
n is a P vertex, A is an atom that intuitively represents the set of formulas th
hold atn (along the current computation), ahid a finite counter used to check the
fulfillment of the generalized &chi conditionF (v);

- ((n,A,3),(n/, A’,5)) € E(P") ifand only if (1) (n,n") € E(P), (2) forallOy’ €
c(y), 0y’ € Aiff ¢/ € A’ (i.e., the next-requirements ihare met ind’), and (3)
j=tifi<mandA’ ¢ F;11,andj = (i + 1) mod (m + 1) otherwise;

— the labelling¢y, and?’; of P’ are consistent with those @1, i.e. ¢{,((n, A,7)) =
ly (n) andl/z ({(n, A, ), (0, A", i"))) = Le((n,n")); Lexr((n, A,i)) is the set of
atomic formulag(z; < Oz, ,...,z, < O'wx; | in A;

- F={{n,A,m) e V(P")}.

It remains to define the family{ = (M), cv (p) Of sets of locak-PGS Letn’ =

(n, A, iywith AN X = {¢;,,....,&;, }. Intuitively, AN X represents the set of “atomic”

state formulas assertedratlong the current computation. Thus, we have to require that

Sat(Hy) = {v | (n,v) € N:Z|[&.]p}. Formally,H,, = {H | H=H'®...®@ H"

with H" € 15" forall 1 < h < r}. A full proof of Claim 1 is given in [BG06]. O
Now, we can prove the desired result.

Theorem 4. We can construct a-PGSrepresentation{ 1) ,cv (p) of [¢] p.

Proof. By structural induction og. The cas€ = T is obvious. If¢ = & V & (resp.,
€ =& NE), thenforalln € V(P), HS = HE UHE (resp.,HE = {Hy @ Hy | H; €
HS, i = 1,2}), where(H5),ev(p) is thex-PGSrepresentation of; with i = 1,2.

Finally, the cas& = E follows from the induction hypothesis and Lemma 3. 0O

4  Satisfiability and model-checking forCEF™

In this section we show the main result of this paper, i.eisBability and model-
checking forCEF* are decidable. We need the following preliminary result.

Lemma 4. For an E-CCTL* formula&, we can construct in polynomial time dRA
P with a distinguished vertex, and a newE—CCTL* formula¢’ such thaf[{]sar =
{v ] (ng,v') € [¢'] p where v'.x = v.x for every x € Vars(§)}.

Proof. LetVar(§) = {x1,...,zr}. ThelRA P is defined as follows:

no
——f{aux «— 1 auzr — 0 ?x1 Tk

f
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This IRA essentially consists of a sequence of inputs operationsvange an aux-
iliary variable auz to distinguish the state where all the values of the vargabkeve
been updated, which correspond to a new valuation.

Now consider the mag over E-CCTL* formulas defined asf(O'z ~ O’y) =
0ik+2) g ~ 012y, £(O'z =, ¢) = f(O'FH2g) =, ¢, f is homomorphic W.r.t.
the positive boolean operator§(Oy) = O*+2) f(y), f(¥Uy') = ((auz = 1) =
F@)U((au = 1) A F@)), F(OF) = O((auz = 1) = f(¥)), f(EY) = Ef($).
We can check that € [¢]sar iff there is a valuation’ over Vars(£) U {auz} such
thatv'.z = v.x for everyz € Vars(§) and(ng, v’y € [f(&)]p. O

Theorem 5. (1) The model checking problemI&A againstCEF' is decidable.
(2) Satisfiability ofCEF" is decidable.

Proof. (1) For givenIRA P and CEF' formula &, we prove by structural induction
on ¢ that we can build a-GSrepresentation of¢] p (wherek is defined as in Sec-
tion 3). The cases in which is a E-CCTL* formula or a disjunction of formulas
directly follow from Theorem 4, while the cage = —¢’ follows from Proposition
4. For the casé = E(£UE) whereé; is anE-CCTL* formula, we observe that
[€]p = rel&lr ([¢5] p), and the result follows from Theorem 4 and Corollary 1 (setti
X = 1). Finally, the cas€ = EO¢’ follows from a simple variant of Corollary 1.
(2) For aCEF* formula&, we construct &-GSrepresentation df¢] s ar (wherex and
k-GSrepresentation have an obvious meaning). For the booleamectives we pro-
ceed as above. The case in whicis anE—CCTL* formula easily follows from Propo-
sition 3, Lemma 4, and Theorem 4. Finally, we observe thaf EX¥,U&)]sar = 0
if [€2]sar =0, and[E(£1U&)]sar = [€1]sar U [€2]sar otherwise, (2] EO&]sar
contains all valuations ovéfars() if []sar # 0, and[EOE]sar = 0 otherwise.

O

5 Conclusion

We have considered an extension of standafd*, calledCCTL*, whose atomic for-
mulas are constraints frof?C* with comparison of variables at different states. For
this logic, we have addressed two problems: satisfiabitity model checking of Inte-
gral Relational Automata [BBK7Ter93] extended with periodicity constraints. Since
model checkingRAagainst fullCCTL* is undecidable (also for tHeTL-like fragment),
we have considered a meaningful fragmen€afTL*, namelyCEF" (which subsumes
both the existential and universal fragmenCGg€TL* and theEF-like fragment) show-
ing that for this fragment both satisfiability and model dkiag of IRA are decidable.
Furthermore, using a symbolic approach based on theory®@$§ the theory of well
quasi-ordering, and automata-theoretic techniques, we $tsown that it is possible to
compute a finite representation of the set of states of trengiRA that satisfy a given
formula. There are still interesting and non-trivial operestions such as the decidabil-
ity status of satisfiability of fulCCTL* and the complexity for the considered decidable
fragment (termination of our algorithm (see Theorem 2) igrgateed by avqodefined
over the set ok-PGSfor a fixed set of variables and constants).
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