Skip to main content

Deciding Satisfiability of Positive Second Order Joinability Formulae

  • Conference paper
  • 480 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4246))

Abstract

This paper deals with a class of second order formulae where the only predicate is joinability modulo a conditional term rewrite system, first order variables range over ground terms and second order variables are interpreted as relations on ground terms (i.e. sets of tuples of ground terms). We define a generic algorithm that decides the satisfiability of positive second order joinability formulae when an algorithm is known to finitely represent solutions of first order formulae. When the answer is positive, the algorithm computes one particular instance for the second order variables. We apply this technique to the class of positive second order pseudo-regular formulae. The result is then a logic program that represents the instance of the second order variables. We define a transformation to translate this instance into a CTRS. This result can be used to automatically synthesize a program that defines a relation from its specification.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alpuente, M., Ballis, D., Correa, F.J., Falaschi, M.: Correction of Functional Logic Programs. In: Degano, P. (ed.) ESOP 2003. LNCS, vol. 2618, pp. 54–68. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  2. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, United Kingdom (1998)

    Google Scholar 

  3. Bostrom, P., Idestam-Alquist, H.: Induction of logic programs by example-guided unfolding. Journal of Logic Programming 40, 159–183 (1999)

    Article  MathSciNet  Google Scholar 

  4. Comon, H., Dauchet, M., Gilleron, R., Lugiez, D., Tison, S., Tommasi, M.: Tree Automata Techniques and Applications (TATA) (1997), http://www.grappa.univ-lille3.fr/tata

  5. Basin, D.A., Klarlund, N.: Hardware verification using monadic second-order logic. In: Wolper, P. (ed.) CAV 1995. LNCS, vol. 939, pp. 31–41. Springer, Heidelberg (1995)

    Google Scholar 

  6. Dershowitz, N., Pinchover, E.: Inductive synthesis of equationnal programs. In: Proc. of the Eighth National Conference on Artificial Intelligence, pp. 234–239. AAAI Press, Menlo Park (1990)

    Google Scholar 

  7. Jensen, J.L., Jorgensen, M.E., Klarlund, N., Schwartzbach, M.I.: Automatic verification of pointer programs using monadic second-order logic. In: SIGPLAN Conference on Programming Language Design and Implementation, pp. 226–236 (1997)

    Google Scholar 

  8. Levy, L., Villaret, M.: Linear second-order unification and context unification with tree-regular constraints. In: Bachmair, L. (ed.) RTA 2000. LNCS, vol. 1833, pp. 156–171. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  9. Limet, S., Pillot, P.: Solving first order formulae of pseudo-regular theory. In: Van Hung, D., Wirsing, M. (eds.) ICTAC 2005. LNCS, vol. 3722, pp. 110–124. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  10. Limet, S., Pillot, P.: On second order formulae of pseudo-regular theory. Technical report, LIFO, Université d’Orléans (2006)

    Google Scholar 

  11. Limet, S., Salzer, G.: Manipulating tree tuple languages by transforming logic programs. In: Dahn, I., Vigneron, L. (eds.) Electronic Notes in Theoretical Computer Science, vol. 86. Elsevier, Amsterdam (2003)

    Google Scholar 

  12. Limet, S., Salzer, G.: Proving properties of term rewrite systems via logic programs. In: van Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 170–184. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  13. Lloyd, J.W.: Foundations of Logic Programming. Springer (1984)

    Google Scholar 

  14. Niehren, J., Pinkal, M., Ruhrberg, P.: On equality up-to constraints over finite trees, context unification and one-step rewriting. In: McCune, W. (ed.) CADE 1997. LNCS (LNAI), vol. 1249, pp. 34–48. Springer, Heidelberg (1997)

    Google Scholar 

  15. Thatcher, J., Wright, J.: Generalized finite tree automata theory with an application to a descision problem of second-order logic. Mathematical System Theory 2(1), 57–81 (1968)

    Article  MathSciNet  Google Scholar 

  16. Thomas, W.: Handbook of Formal Language, vol. 3, ch. 7, pp. 389–455. Springer, Heidelberg (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Limet, S., Pillot, P. (2006). Deciding Satisfiability of Positive Second Order Joinability Formulae. In: Hermann, M., Voronkov, A. (eds) Logic for Programming, Artificial Intelligence, and Reasoning. LPAR 2006. Lecture Notes in Computer Science(), vol 4246. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11916277_2

Download citation

  • DOI: https://doi.org/10.1007/11916277_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-48281-9

  • Online ISBN: 978-3-540-48282-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics