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Abstract. We prove a general finite convergence theorem for “upwasatdpd”
fixpoint expressions over a well-quasi-ordered set. Thisilmanediate applica-
tions in regular model checking of well-structured systewtgere a main issue is
the eventual convergence of fixpoint computations. In paldr, we are able to
directly obtain several new decidability results on loskgirmel systems.

1 Introduction

Regular model checkin@3[12[38] is a popular paradigm for the symbolic verifioati
of models with infinite state space. It has been applied teddamilies of systems
ranging from distributed algorithms and channel systemisytarid systems and pro-
grams handling dynamic data structures.

In regular model checking, one works with regular sets destand handles them
via finite descriptions, e.g., finite-state automata or lsgexpressions. Models amenable
to regular model checking are such that, wiga Conf is regular, therPos{(S) (or
Pre(S)), the set of 1-step successors (resp., predecessorsjjiszaagegular set that can
be computed effectively fror8. Since regular sets are closed under Boolean operations,
one can try to compute the reachability sBost (Init), as the limit of the sequence

S:=Init; S :=HUPos(S); ... Si1:=SHUPos(S); ... *)

Since equality of regular sets is decidable, the computati can contain a test that
detects if the limit is reached in finite time, i.e.3f.1 = S, for somen € N,

With infinite-state models, the main difficulty onvergencelt is very rare that a
fixpoint computation like[[*) converges in finite time, anchavative techniques that
try to compute directly, or guess and check, or approxintedinit setPost (Init), are
currently under active scruting TILZILTIT3/27,10].

Well-structured transition systerid/STS) are a generic family of models for which
the co-reachability sePre*(Final) can be computed symbolically with a backward-
chaining version off{*)[[8,19]. For WSTS’s, convergence lod fixpoint computation
is ensured by WQO theory: one handles upward-closed setspareasing sequences
of upward-closed sets always converge in finite time whemttderlying ordering is a
well-quasi-ordering (a WQO), as is the case with WSTS’s.

1 Actually, such symbolic computations are possible with alss of representation closed
under, and providing algorithms fdPre or Post Boolean operations, vacuity [23122].
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ComputingPre*(Final) for reachability analysis is just a special case of fixpoint
computation. When dealing with richer temporal properte® is interested in more
complex fixpoints. E.g., the set of states satisfying the Gdimula 3[CondJGoal
is definable via a least-fixpoint expressiqX.GoalU (Condn Pre(X)). For game-
theoretic properties, similar fixpoints are involved. Etge states from which the first

player in aturn-based game can enforce reaching a goakis gigX.GoalUuPre(Pre(X)).

Our contribution. In this paper, we define a notion pfexpressions where recursion
is guarded by upward-closure operators, and give a geneital ¢onvergence theorem
for all such expressions. The consequence is that theserfbegressions can be eval-
uated symbolically by an iterative procedure. The guardagient we isolate is very
relevant for the verification of well-structured transitisystems as we demonstrate by
providing several new decidability results on channeleyst

Related work. Henzingeet al.give general conditions for the convergence of fixpoints
computations for temporal[22] or game-theorefic| [17] mties, but the underlying
framework (finite quotients) is different and has differepplications (timed and hybrid
systems). Our applications to well-structured transisgstems generalize results from
[2I3313Z,25] that rely on more ad-hoc finite convergencetas

2 A guarded mu-calculus

We assume basic understandinguafalculi techniques (otherwise sé&é [7]) and of well-
quasi-ordering (WQO) theory (otherwise se€ll[28,24], opdynfld, sect. 2.1]).

Let (W,C) be a well-quasi-ordered set. A sub¥edf W is upward-closedf w € V
whenever C w for somev € V. From WQO theory, we mostly need the following
result:

Fact 2.1 (Finite convergence)lf Vo CV; C V, C --- is an infinite increasing sequence
of upward-closed subsets of W, then for some index¥k ;. Vi = k.

The upward-closureof V. C W, denotedC;(V), is the smallest upward-closed set
that containg/. Theupward-kernebf V, denoted;(V), is the largest upward-closed
set included invV. There are symmetric notions dbwnward-closedubset ofw, of
downward-closureC, (V), and ofdownward-kernelK (V), of V. The complement of
an upward-closed subset is downward-closed. Observetid) =V = K, (V) iff V
is upward-closed, and th@ andK (resp.C, andK;) are dual:

W K (V) =C (W V), W K| (V) =CH{W V). (1)

Monotonic region algebra. In symbolic model-checking, @gion algebras a family
of sets of states (subsets\f) that is closed under Boolean and other operators like
images or inverse images[22].

Here we consider regions generated by a far@ily {01,0z,...} of (monotonic)
operators. By &-ary operator, we mean a monotonic mapping (2V)k — 2V that as-
sociates a subsetVy, ..., V) € W with anyk subsetd/y, ..., Vk. Monotonicity means
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thato(Vy,...,Vk) Co(Vy,..., V) whenV;, C V/ fori =1,... k. We allow nullary oper-
ators, i.e., fixed subsets W. Finally, we require tha® contains at least four special
unary operator<;, Cj, Ky, K, and two special nullary operato@andWw.

Theregion algebra generated by,denoted withRp, or simply R, is the set of all
the subsets AV, calledregions that can be obtained by applying operators flOran
already constructed regions, starting with nullary opematEquivalentlyR is the least
subset of ¥ that is closed unde®.

We say the region algebra generated®ys effectiveif there are algorithms im-
plementing the operators i@ and an effective membership algorithm saying whether
w € R for somew € W and some regioR € Rp. Such effectiveness assumptions pre-
suppose a finitary encoding of regions and elemen®af there are several possible
encodings for a same region, we assume an effective eqtesdity

Extending the region algebra with fixpoints. Letx = {X1,Xz,--- } be a countable set
of variablesL,(W,C,0), or shortlyL,, when(W,C) andO are clear from the context,
is the set ofO-terms with least and greatest fixpoimfiven by the following abstract
syntax:

LuS 0,0 = 0(¢1,...,0) | X [ WX | vX.0 | Ci(9) | CL(D) | Ki(9) | K (9)

whereX runs over variables frorg, ando over operators fron®. uX.¢ andvX.$ are
fixpoint expressions. Free and bound occurrences of vasatre defined as usual. We
assume that no variable has both bound and free occurrensesned, and that no
two fixpoint subterms bind the same variable: this can alvieysnsured by renaming
bound variables. (The abstract syntax fgrcould be shorter but we wanted to stress
thatC;, C|, K4, andK, are required to be present@)

The meaning ok, terms is as expected: @amvironments a mappingnv: x — 2w
that interprets each variabkec x as a subset oW. Giveneny, a term¢ € L, denotes a
subset ofV, written [¢]eny and defined by induction on the structurepof

def def

[X]env= €nuX) [o(d1,-..,0k)Jenv=0([d1]env;- - -, [Pk]env)
[C(9)]env ='Cr ([9]eny) [, ()]envE'C, ([0]eny)
[K4 () Teny = K ([9]eny) [, () Jen = K, ([Den)
[MX.$]eny E'1fp (QU, X, eny) [VX.§Jenv = gfp(QUb, X, enV)

whereQ[d, X, eny : 2V — 2W is a unary operator defined B, X, enj(V) def [dlenvx:=v]»
using the standard variant notaticerfy{X :=V]” for the environment that agrees with
enveverywhere except oK where it returnd/. As usual,[¢]eny does not depend on
enyX) if X is not free ind, so that we may shortly writgh]] when¢ is a closed term,
i.e., a term with no free variables.

We recall that the semantics of the fixpoint terms is wellvtedi since, for ev-
ery ¢, X andenv Q[d,X,eny is monotonic (and sincg2V,C) is a complete lat-
tice). Moreover, ifenvandenv are such thaenyX) C env(X) for all X € x, shortly
written envC env, then IfpQ[¢, X,eny) C Ifp(Q[d, X, env]) and gfdQ[d, X,eny) C
ofp(Q[o, X, env]).
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Definition 2.2 (Upward- and downward-guardedness).

1. A variable X isupward-guardeth ¢ if all free occurrences of X i are in the
scope of either a Cor a K; operator, i.e., appear in a subterm of the form(@)
or Ky ().

2. DuaTII(y, ;( isdownward-guardeih ¢ if all its free occurrences are in the scope of a
C, or a K, operator.

3. Aterm¢ is guardedf all its least-fixpoint subterms pX have X upward-guarded
in Y, and all its greatest-fixpoint subtermX. have X downward-guarded if.

Given somep, X andeny, the approximants of Iff2[¢, X, en\) are given by the se-
quenceM;)icy of subsets oV defined inductively wittMo = 0 andMi 1 = [ enyx: —wm; -
Monotonicity yields

MOnggMZQQHp(Q[q)vxaen\’]) (2)
Similarly we defing(N; )ien by No =W andNi 11 = [§]enyx.—n, SO that
No 2Ny DNz 2 -+ 2 gfp(Q[o, X, env). (3)

Lemma 2.3 (Finite convergence of approximants)f X is upward-guarded i, then
there exists an index& N such that

[uX$Jenv= Mk =M1 = M2 = ... (4)
Dually, if X is downward-guarded ifi, then there exists d k N such that
[[VX.(I)ﬂenV: Nk’ = Nk’+l = Nk’+2 =... (5)

Proof. We only prove the first half since the other half is dual. gt.. ., ym be the
maximal subterms of that are immediately under the scope d@aor aK; operator.
Thend can be decomposed under the form

q) = q)(ﬂwlaaﬂwm)

where the contex®(Ys, ..., Ym) uses fresh variable§, ..., Yy, to be substituted in, and
wheref} yj is eitherC, (i) or K4 (g ), depending on how; appears irp. In either case,
and for any environmer@nv, the sef[} WiJeny is upward-closed.

ForVy,...,Vim €W we shortly write®] (Va, ... ,Vim) for [®]enyy;:=vi.... Y=V - SINCE

X is upward-guarded iy, it has no occurrence i@, only in they;’s, so that

Mit1 = [[¢ﬂenv[x::Mi] = [[CDH([HT LlJlﬂen\/[X::Mi]v ceey [[ﬂ qu]]en\.{X::Mi])
= [[(Dﬂ(l—i,la e Li,m)
writing L j for [ WjJenyx:=m;]- FromMo € M1 C M C -+, we deducdoj C Ly j C
L2j € --- SinceK; andC; return upward-closed sets, thgj’s are upward-closed sub-
sets ofW. For all j = 1,...,m, FactlZ1 implies that there is an indkx such that
Li,j = Lk j foralli > kj. PickingK = max(ks, ..., kj) gives for anyi > K
Mi+1 = [[(D]](LI,17 ey le) = ﬂwﬂ(Lkl,la ey Lkrn,m) = [[(D]](LKla ey LKm) = MK+1'

Thus,Ujeny Mi = Mk 11 = Mk 42 andMk 41 is a fixpoint ofQ[¢, X, env, hence the least
one thanks td{2). Picking= K + 1 satisfies[{}). O
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Regions with guarded fixpoints. We can now prove our main result: subsets defined
by L, terms are regions (and can be computed effectively if thetyidg region alge-
bra is effective).

By aregion-environmenive mean an environmertw: X — X that associates re-
gions with variables. Ienvis a region-environment, arfglhas only free variables, i.e.,
has no fixpoints subterms, théd]eny is a region.

Theorem 2.4.1f ¢ € L, is guarded and env is a region-environment tH@fleny is a
region. Furthermore, if the region algebra is effectiveent¢]en can be computed
effectively fromp and env.

Proof. By structural induction on the structure®fIf ¢ = o() is a nullary operator, the
result holds by definition of the region algebradlt= o(¢1,--- ,¢k), the [di]envs are
(effectively) regions by induction hypothesis, so th@feny is an (effective) region too
by definition. In particular, this argument applies witeis a nullary operator, or is one
of the unary operators we singled oGf, C|, Ky, andK.

If ¢ = puX.y, we can apply Lemm@=.3 after we have proved that each one=of th
approximantsVlig, M1, Mo, ..., of [¢]eny are regions. In particulaMo = 0 is a region,
and ifM; is a region, theMi 1 = [W]enyx:—m;] iS ONe t00, sincenv = enyX := M is
a region-environment, and since by induction hypothfgjs,y is a region wherenv
is a region-environment. WheRy, is effective, thevl; can be computed effectively, and
one can detect wheldy = My, 1 since region equality is decidable by definition. Then
[¢]env= Mk can be computed effectively. Finally, the case whierevX.y is dual. O

Corollary 2.5 (Decidability for guarded £, properties). The following problems are
decidable for effective monotonic region algebras:

Model-checking: “Does we [¢]?" foraw € W and a closed and guardéde L,,.
Satisfiability: “Is [¢] non-empty?” for a closed and guardede L.
Universality: “Does [¢] =W ?” for a closed and guardedl € L,,.

Aregion algebra of regular languages.ConsideW = 2*, the set of finite words over
some finite alphab&f. Thesubword orderingdefined by ti C v iff u can be obtained
by erasing some letters frowh, is a WQO (Higman’s Lemma). Regular languages over
Z are a natural choice for regions: observe that the closugeatqr<C: andC, preserve
regularity and have effective implementatidridatural operators to be consideredin
areyu (union) andN (intersection). However, any operation on languages thatano-
tonic, preserve regularity, and has an effective implew@nt on regular languages can
be added. This includes concatenation (denB&), star-closure (denofg), left- and

right-residualsR 1R £'{v| 3u € R uve R}), shuffle product (denoteR|| R), reverse

(denotedﬁ), conjugacy R%' {vu| uve R}), homomorphic and inverse-homomorphic
images, and many morg[30]. Complementation is not allow€i(it is not monotonic)

2 From a FSA forR, one obtains a FSA fa2, (R) simply by adding loops LN gon all stateg of
the FSA and for all lettera € Z. A FSA for C| (R) is obtained by adding-transitionsq 5 q
whenever there is qi q. From this K, andK can be implemented usin (1).
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but the duals of all above-mentioned operators can be iediO (without compro-
mising effectiveness) so that, for all practical purposesyplement can be used with
the restriction that bound variablesliy terms are under an even number of comple-
mentations.

An application of Theorefi 2.4 is that, R andR; are regular languages, then the
language defined asX.vY. (K; [Ry || (X* ﬁCi(Y*lYﬂX*le))]) is regular and a finite
representation for it (e.g., a regular expression or a nahidi-A) can be constructed
fromR; andRy.

3 \Verification of lossy channel systems

TheorenZW¥ has several applications for regular modelkthgeof lossy channel sys-
tems [5] (LCS) and other families of well-structured sys$g@{19]. In the rest of this
paper we concentrate on LCS’s.

3.1 Channel systems, perfect and lossy

A channel system is a tuple = (Q,C, M, A) consisting of a finite seé® = {p,q, ...} of
locations a finite setC = {c,...} of channelsa finitemessage alphab&i = {m,...}
and a finite sefA = {9,...} of transition rules Each transition rule has the forqno—p> p
whereop is anoperation c!m (sending message € M along channet € C), ¢c?m
(receiving messagm from channek), or / (an internal action to some process, no
I/O-operation).

Operational semantics. Let £ = (Q,C,M,A) be a channel system. éonfiguration
(also, astatq is a pairo = (g, w) whereg € Qs a location anav: C — M* is a channel
valuation that associates with any channel its contentqaesece of messages). The set
Q x M*€ of all configurations is denoted l§onf = {o,p,...}. Forasubse¥ of Conf,

7 def
we letV = Conf\ V.

Steps between configurations are as expected. Fornsaty(q, w) leads too’ =
(d',w) by firing = p %, denoteds gperf o,ifand only ifg=p, d =r andw is
obtained fromw by the effect ofop (the “perf’ subscripts emphasizes that the step is
perfect: without losses). Precisely,(c) = w(c) for all channels that are not touched
upon byop, and

w(c)m if op=clm,
W(e={"MQm - rop=
m—-w(c) if op=c?m,

Thus, whenop = ¢?m, w is only defined ifw(c) starts withm and indeed this is the

intended condition for firingd. Wheneveio LA p for somep, we say thad is enabled
in o, writtend € A(0).

Below we restrict our attention to LCS’s where from egchQ there is at least one
rule q * p in A whereop is not a receiving action: this ensures that the LCS has no
deadlock states and simplifies many technical details witlasing any generality.
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Lossy systems.In lossychannel systems, losing messages is formalized via the sub-
word ordering, extended frold* to Conf: (g,w) C (q,w) if g=q andw(c) = w/(c)
for all channelg € C.

A (possibly lossy) step in the LCS is made of a perfect stejovi@d by arbitrary
losses? formally, we writea LN p whenever there is a perfect step6—>perf o’ such that
p C @’. This gives rise to a labeled transition systefis, gef (Conf,A,—), that can be

given a WSTS structure by the following relatiom:< p s C p N A(o) =A(p).
Both C and= turnsConf into a WQO.

Remark 3.1.From now on we assume for the sake of simplicity tf@onf,C) is the
WQO on whichL, is defined. All results could be strengthened ugiGgnf, <). O

Following standard notations for transition syste(@onf,A, —) labeled over some
A, we write Pre[d](o) d:ef{p € Conf|p 5 o} for the set of predecessors Weof o

in L. ThenPre(o) oer Usca Pred](o) has all 1-step predecessorsmfandPre(V) =
Ugev Pre(o) has all 1-step predecessors of stateg.iThe dualPre of Preis defined

by Pre(V) = Pre(V). Thuso € Pre(V) iff all 1-step successors af are inV (this
includes the case wheceis a deadlock state).

Seen as unary operators orP¥, bothPre andPre are monotonic and even contin-
uous for all transition systems35]. For LCS's, the follogilemma states th&re is
compatible with the WQO on states, which will play a cruc@erlater when we want
to show that somey, term is guarded.

Lemma 3.2. Let V C Conf in the transition system LESassociated with a LCE.
Then PrgV) = Pre(C;(V)) andPre(V) = Pre(K | (V)).

Proof. V C C(V) implies Pre(V) C Pre(C;(V)). Now o € Pre(C,(V)) implies that
o — pJp' forsomep’ €V. Buttheno — p’ by definition of lossy steps arale Pre(V).
The second equality is dual. a

An effective region algebra for LCS’s. We are now ready to apply the framework of
sectio® to regular model checking of lossy channel systAsmimes = (Q,C,M,A)

is a given LCS. A regiorR € R is any “regular” subset o€onf. More formally, it is
any sefR C Conf that can be written under the form

R:Z(qiaRila“'vRi‘q)

wherel is afinite index set, theg’s are locations fronQ, and eachij is a regular
language on alphabé&t. The notation has obvious interpretation, with summatien d
noting set union (the empty sum is deno@®dWe are not more precise on how such

3 Note that, with this definition, message losses only oedter steps (thus, not in the initial
configuration). The usual definition allows arbitrary lasbefore and after a step. There is no
essential semantical difference between these two waysoapmg atomic events into single
“steps”. The usual definition is technically smoother wh&fs are viewed as nondeterminis-
tic systems, but becomes unnatural in situations whergaesgversarial processes compete,
e.g., in probabilistic LCS'§19] or other game-theoretisaitings we explore in sectidis 4 dnd 5.
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regions could be effectively represented (sée [6]), buy ttmuld be handled as, e.g.,
regular expressions or FSAs over the extended alpdhe®uU {'(’,")’,’/

The setO of operators includes union, intersecti@, C|, K, K, : these are mono-
tonic, regularity-preserving, and effective operatorgxgsiained in our example at the
end of sectiof]2. Operators specific to regular model-cingciiePre and Pre. That
they are regularity-preserving and effective is bettendmefirst looking at the special

case of perfect steps:

(p,R},,...,Rhfl,mRﬁ,Ri+l,...,R§‘) if q=r,

Pr Ci?mr aRla"'vR‘q =
eperf[p—> I(q p p ) 0 otherwise.

(p.RS,....RELRM LRI ..RY) ifq=r,

!
Preper(d 25 o] (q, Rpo R = {0 otherwise

Preper(5 (@R RY)) = 5 5 Preen(dfan R R
' (€1 3ch

where the notationtR’ (for concatenation) andRn1 1" (for right-residuals) are as in
sectiorP. For lossy steps we use

Pre(R) = Preperi(Ci(R)).

Clearly, bothPreyers andPre are effective operators on regions.

3.2 Regular model-checking for lossy channel systems

Surprising decidability results for lossy channel systésnghat launched the study of
this model [T&#5.15]. We reformulate several of these tssag a direct consequence
of TheorenTZl4, before moving to new problems and new detitjalesults in the
next sections. Note that our technique is applied here tmhthi different operational
semantics (cf. footnofé 3) but it would clearly apply as dieto the simpler semantics.

Reachability analysis. Thanks to LemmB3l 2, the co-reachability set can be exmlesse
as a guardet, term:

Pre" (V) = uX.V UPre(X) = uX.V UPre(C;(X)). (6)

Corollary 3.3. For regularV C Conf, Pré (V) is regular and effectively computable.

Safety properties. More generally, safety properties can be handled. In CTay ttan
be writtenV(V1RV,). Recall thatR, the Release modality, is dual to Until: a state
satisfiesv(V1RV,) if and only if along all paths issuing from, V» always holds until
maybeV; is visited. Using LemmB=34v(V1RV,)], the set of states where the safety
property holds, can be defined as a guardetérm:

[V(ViRV2)] = vX. (V2N (Pre(X) UV1)) = vX. (Vo (Pre(K (X)) UV1)).  (7)
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Corollary 3.4. For regular Wi, V, C Conf, [V(V1RV2)] is regular and effectively com-
putable.

Another formulation is based on the duality between iR and the ‘JU” modalities.

Theorem 3.5. [P5), sect. 5] If f is a temporal formula in th&L(3U,3X,A,—) frag-
ment of CTL (using regions for atomic propositions), tfi¢his regular and effectively
computable.

Proof. By induction on the structure dff, using[3Xf] d:EfPre([[f]}), and the fact that

regions are (effectively) closed under complementation. a

Beyond safety. Inevitability properties, and recurrent reachability denstated i,
With temporal logic notation, this yields

[VOV] = uX. (V U (Pre(Conf) N Pre(X))),
[300V] = vX.(uY.((V UPre(Y)) N Pre(X))).

These two terms are not guarded and Leniméa 3.2 is of no help Heweever this
is not surprising: firstly, whethes = 3000V is undecidablel[]4]; secondly, and while
o E [VOV] is decidable, the s¢t/OV] cannot be computed effectively]27].

3.3 Generalized lossy channel systems

Transition rules in LCS’s do not carry guards, aka precaowlst, beyond the implicit
condition that a reading actiarmis only enabled whew(c) starts withm. This bare-
bone definition is for simplification purpose, but actualtpomls sometimes use guards
that probe the contents of the channel before taking thisairttansition. The simplest
such guards are emptiness tests, Iibecﬁ—s"; g’ that only allows a transition fronp to
qif w(c) is empty.

We now introducd.CS’s with regular guard¢GLCS'’s), an extension of the bare-
bone model where any regular set of channel contents cargogaiguard a transition
rule. This generalizes emptiness tests, occurrence tasts (29]), etc., and allows
expressing priority between rules since whether givensrale enabled is a regular
condition.

Formally, we assume rules tanow have the fornp Sop g with p,q,opas before,
and whereG, the guard, can be any regular region. The operational Sfreas a ex-
pected: whed = p Sop g, there is a perfect stapgperf 0 iff 0 € Gand@ is obtained
from o by the rulep Sop g (without any guard). Then, general step& p are obtained

from perfect steps iperf o’ by message loss@s_ o'.

Verification of GLCS’s. For GLCS’s,Pre andPostare effective monotonic regularity-
preserving operators as in the LCS case since

Pre(p =8 qJ(R) = G 1 Prelp % (R,
Pos{p con gJ(R) = Postp =X g(GNR).
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Observe that Lemnfa3.2 holds for GLCS’s as well, so that Egus{8) and[7) entail
a generalized version of Theor&€ml3.5:

Theorem 3.6. For all GLCS’s £ and formulae f in th&'L(3U,3X, A, —) fragment,[ f]
is regular and effectively computable.

4 Solving games on lossy channel systems

In this section, we consider turn-based games on GLCS’sewvtves playersA and

B, alternate their moves. Games play a growing role in vetiioavhere they address

situations in which different agents have different, cotimgegoals. We assume a basic

understanding of the associated concepts: arena, platiegyr etc. (otherwise sée20]).
Games on well-structured systems have already been igaesstiin [Z31[,32]. The

positive results in these three papers rely on ad-hoc fioiwergence lemmas that are

special cases of our Theorémi2.4.

4.1 Symmetric LCS-games with controllable message losses

We start with the simplest kind of games on a GL@%ndB play in turn, choosing the

next configuration, i.e., picking what rudec A is fired, and what messages are lost.
Formally, asymmetric LCS-gamie a GLCSL = (Qa,Qg,C,M,A) where the set

of locationsQ = Qa U Qg is partitioned into two sets, one for each player, and where

the rules ensure strict alternation: for plleﬂ ge A, pe Qaiff g€ Qp. Below, we
shortly writeConf, for Qa x M*I€l, the regular region where it s turn to playConfg
is defined similarly. Strict alternation means that the arén'S,, is a bipartite graph
partitioned inConf, andConfg.

Reachability gamesReachability and invariant are among the simplest objestfor
games. In a reachability gam&,tries to reach a state in some $gtno matter how

B behaves. This goal is denot€¥. It is known that such games are determined and
that memoryless strategies are suffici€nt [20]. The set ohing configurations foA

is denoted with(A) OV, and can be defined i,

(AYOV = pX. [V U [Conf, N Pre(X)] U [Confg N Pre(X)] | 8)

The first occurrence oK can be made upward-guarded by replacitrg(X) with
Pre(C; (X)) (Lemma3R). For the second occurrence, we can unfold the tetying

on the fixpoint equatiofiuX.¢ (X)] = [uX.¢(¢(X))]. This will replaceConfg N Pre(X)
in @) with

ConfgN |5?e(V U [ConfyNPre(X)] U [Confg NPre(X)] ) : (+)
Now, the strict alternation betwe&onf, andConfg lets us simplify (&) into
ConfgN ﬁ?e(v U Pre(X)) . 9)
Hence[[B) can be rewritten into

(AYOV = pX. [v U [Conf, M Pre(C; (X))] U [Confg N Pre(V U Pre(CT(X)))H . @
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Invariant games. In invariant gamesi\'s goal is to never leave some &tC Conf, no
matter howB behaves. Invariant games are dual to reachability gamesthanset of

winning configurationg A)[(1V is exactly(B)OV.

Repeated reachability gameddere A's goal is to visitV infinitely many times, no
matter howB behaves. The set of winning configurations is given by thieiohg L,
term:

(AITOV = W.(A)O [V 1 (9a(Y) Uds(Y))]. (10)

where

oa(Y) £'Confyn Pre(C, (Pre(K, (Y)))),

da(Y) £ Confy N Pre(K, (Y)).

and where we reusEIl8’) faA) O /.. .].

Persistence gamesln a persistence gamé, aims at remaining insid¢ from some
moment on, no matter ho®behaves. Dually, this can be seen as a repeated reachability
game forB. Note that{A) OV = (AYO((AYDTV).

Theorem 4.1 (Decidability of symmetric LCS-games)For symmetric LCS-games
L and regular regions V, the four sef®\) OV, (AYOIV, (A)OOV, and(AYOIOV, are
(effective) regions. Hence reachability, invariant, rafed reachability, and persistence
symmetric games are decidable on GLCS's.

Proof (Sketch)The winning sets can be defined by guartigderms.

Remark 4.2.There is no contradiction between the undecidabilitydaf)V and the
decidability of (A)TJOV. In the latter caseB does not cooperate with, making the
goal harder to reach fak (and the property easier to decide for us). a

4.2  Asymmetric LCS-games with 1-sided controlled loss of nssages

Here we adopt the setting considered[ih [2]. It varies from shmmetric setting of
sectioZ1l in that only playds can lose messages (and can control what is lost), while
playerA can only make perfect steps. Note that this generalizes garhereA plays
moves in the channel system, aBds an adversarial environment responsible for mes-
sage losses. We use the same syntax as for symmetric LCSsgame

Reachability and invariant gamesLet us first consider games where one player tries

to reach a regular region (goalOV), no matter how the other player behaves.
The configurations whei® can win a reachability game are given by:

(BYOV = pXV U (ConfB N Pre(X)) U (cOan N ﬁ?eperf(X))

= XV U (ConfB N Pre(q(X))) U (cOan M Preper(V U Pre(q(X))))
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where guardedness is obtained via Lenimh 3.2 and unfolding.
When we consider a reachability game fgrthe situation is not so clear:

(A)OV =pX VU (Coan N Preperf(X)) U (ConfB N ﬁ?e(X)) :

Neither Lemmd3]2 nor unfolding techniques can turn this mfguarded term. This
should be expected since the §&t) OV cannot be computed effectivel [2].

Theorem 4.3 (Decidability of asymmetric LCS-games[]2])For asymmetric LCS-
gamesL and regular regions V, the set8)OV and {(A)0IV are (effective) regions.
Hence reachability games for B, and invariant games for Adeeidable on GLCS'’s.

Proof (Sketch)lnvariant games are dual to reachability games, and theimgnset
(B)OV is defined by a guarded, term.

5 Channel systems with probabilistic losses

LCS’s where messages losses follow probabilistic rules lh@en investigated as a less
pessimistic model of protocols with unreliable channede (@41B] and the references
therein).

In [9], we present decidability results for LCS’s seen as bimimg nondeterministic
choice of transition rules withrobabilisticmessage losses. The semantics is in term of
Markovian decision processes, o%—iblayer games, whose solutions can be defined in
L. Indeed, we found the inspiration faf, and our Theoreriz2.4 while extending our
results in the MDP approach to richer sets of regions.

In this section, rather than rephrasing our results %)ﬂnlhyer games on LCS’s, we
show how to deal with g—player gamed[16] on LCS’s, i.e., games opposing plagers
andB (as in sectioll4) but where message losses are probabilistic

Formally, asymmetric probabilistic LCS-game= (Qa,Qg, C,M,A) is exactly like
a symmetric LCS-game but with an altered semantics: in stateConf,, playerA
selects a fireable ruk@ < A (B picks the rule ifo € Confg) and the system moves to a

successor state whereo gperf ¢’ J p andp is chosen probabilistically i€ ({o'}).
The definition of the probability distributioR(o, 8, p) can be found in[3419] where it is

calledthe local-fault modellt satisfiesP(a,,p) > 0 iff p C o’ (assumingy E)perf a’).
Additionally it guarantees finite-attractor propertythe set of states where all channels
are empty will be visited infinitely many times almost surfdlig].

Reachability games.AssumeA tries to reach regiol (goal ¢V) with probability 1
no matter howB behaves. The sdA)[OV]_1 of states in whichA has an almost-sure
winning strategy is given by

VU [COanmPreperf(Q(X) mg(v))} ) W

(A)[OV]=1 = vY.uX. -
U {ConfB N Preper(Cr(X) N K¢(Y))}
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Remark 5.1.Justifying [I1) is outside the scope of this paper, but wetoato give

an intuition of why it works: the inner fixpoinfX.V U - - - ” define the largest set from
which A has a strategy to readh no matter whaB doesif the message losses are
favorable However, whatever messages are |8&,strategy also guarantees that the
system will remain inY, from which it will be possible to retry the strategy foV

as many times as necessary. This will eventually succeedsalsurely thanks to the
finite-attractor property. a0

Invariant games. Assume nowA tries to stay inV almost surely (goalcV]-1), no
matter howB behaves. The® must ensuréV surely and we are considering a 2-
player game where message losses are adversarial and sowukllde controlled by
B. This leads to

(AY[OV]_1 = vX.V N ([cOanm Preper(K, (X))] U [Conf N Pre(X)] )
12
—UXVN ([COanm Prepen(K, (X))] U [Confg N Pre(K, (X))] ) . 2

In (I3), the subtermPreper(K| (X)) accounts for states in whighcan choose a perfect
move that will end irK (X), i.e., that can be followed by any adversarial messagedosse

and still remain inX. The subternPre(X) accounts for states in whidhcannot avoid
going toX, even with message losses under his conRm(X) can be rewritten into
Pre(K (X)) thanks to LemmB3 2, so that we end up with a guarded term.

Goals to be satisfied with positive probabilitin 2%—player games, it may happen that
a given goal can only be attained with some non-zero proibafll6]. Observe that,
since the games we consider are determifed [26], the gddls o or [(V]~o are the
opposite of goals asking for probability 1:

(A OV]>0 = (B)[OV]-1, (ANEV]>0 = (B)[OV]-1.

Theorem 5.2 (Decidability of qualitative symmetric probalilistic LCS-games).For
symmetric probabilistic LCS-games and regular regions V, the set§A)[OV]_1,
(A)[OV]s0, (A)[OV]=1, and (A)[DV]-o are (effective) regions. Hence qualitative
reachability and invariant games are decidable on GLCS's.

Proof (Sketch)These sets can be defined by guartgterms. O

6 Conclusion

We defined a notion of upward/downward-guarded fixpoint egpions that define sub-
sets of a well-quasi-ordered set. For these guarded fixprpressions, a finite conver-
gence theorem is proved, that shows how the fixpoints can dleaed with a finite
number of operations. This has a number of applicationsaitiqular in the symbolic
verification of well-structured systems, our original mvation. We illustrate this in the
second part of the paper, with lossy channel systems aset.taa these systems, we
derive in an easy and uniform way, a humber of decidabiligotems that extend or
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generalize the main existing results in the verificationesfiporal properties or game-
theoretical properties.

These techniques can be applied to other well-structurgtgsys, with a region al-
gebra built on, e.g., upward-closed sets. Admittedly, memmples of well-structured
systems do not enjoy closure properties as nice as our Ldni@n@BLCS’s, which
will make it more difficult to express interesting propestia the guarded fragment of
Ly. But this can still be done, as witnessed byil[31,32] whereatithors introduced a
concept ofB-games andBB-games that captures some essential closure assumptions
allowing the kind of rewritings and unfoldings we have jtistl with Lemmd3P.
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