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On computing fixpoints in well-structured regular model
checking, with applications to lossy channel systems
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Abstract. We prove a general finite convergence theorem for “upward-guarded”
fixpoint expressions over a well-quasi-ordered set. This has immediate applica-
tions in regular model checking of well-structured systems, where a main issue is
the eventual convergence of fixpoint computations. In particular, we are able to
directly obtain several new decidability results on lossy channel systems.

1 Introduction

Regular model checking[23,14,33] is a popular paradigm for the symbolic verification
of models with infinite state space. It has been applied to varied families of systems
ranging from distributed algorithms and channel systems tohybrid systems and pro-
grams handling dynamic data structures.

In regular model checking, one works with regular sets of states and handles them
via finite descriptions, e.g., finite-state automata or regular expressions. Models amenable
to regular model checking are such that, whenS⊆ Conf is regular, thenPost(S) (or
Pre(S)), the set of 1-step successors (resp., predecessors), is again a regular set that can
be computed effectively fromS. Since regular sets are closed under Boolean operations,
one can1 try to compute the reachability setPost∗(Init), as the limit of the sequence

S0 := Init; S1 := S0∪Post(S0); . . . Sn+1 := Sn∪Post(Sn); . . . (*)

Since equality of regular sets is decidable, the computation of (*) can contain a test that
detects if the limit is reached in finite time, i.e., ifSn+1 = Sn for somen∈ N,

With infinite-state models, the main difficulty isconvergence. It is very rare that a
fixpoint computation like (*) converges in finite time, and innovative techniques that
try to compute directly, or guess and check, or approximate the limit setPost∗(Init), are
currently under active scrutiny [12,11,13,21,10].

Well-structured transition systems(WSTS) are a generic family of models for which
the co-reachability setPre∗(Final) can be computed symbolically with a backward-
chaining version of (*) [3,19]. For WSTS’s, convergence of the fixpoint computation
is ensured by WQO theory: one handles upward-closed sets, and increasing sequences
of upward-closed sets always converge in finite time when theunderlying ordering is a
well-quasi-ordering (a WQO), as is the case with WSTS’s.
1 Actually, such symbolic computations are possible with anyclass of representation closed

under, and providing algorithms for,Pre or Post, Boolean operations, vacuity [23,22].

http://arxiv.org/abs/cs/0606091v1
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ComputingPre∗(Final) for reachability analysis is just a special case of fixpoint
computation. When dealing with richer temporal properties, one is interested in more
complex fixpoints. E.g., the set of states satisfying the CTLformula ∃[CondUGoal]
is definable via a least-fixpoint expression:µX.Goal∪ (Cond∩Pre(X)). For game-
theoretic properties, similar fixpoints are involved. E.g., the states from which the first
player in a turn-based game can enforce reaching a goal is given byµX.Goal∪Pre(Pre(X)).

Our contribution. In this paper, we define a notion ofµ-expressions where recursion
is guarded by upward-closure operators, and give a general finite convergence theorem
for all such expressions. The consequence is that these fixpoint expressions can be eval-
uated symbolically by an iterative procedure. The guarded fragment we isolate is very
relevant for the verification of well-structured transition systems as we demonstrate by
providing several new decidability results on channel systems.

Related work. Henzingeret al.give general conditions for the convergence of fixpoints
computations for temporal [22] or game-theoretic [17] properties, but the underlying
framework (finite quotients) is different and has differentapplications (timed and hybrid
systems). Our applications to well-structured transitionsystems generalize results from
[2,31,32,25] that rely on more ad-hoc finite convergence lemmas.

2 A guarded mu-calculus

We assume basic understanding ofµ-calculi techniques (otherwise see [7]) and of well-
quasi-ordering (WQO) theory (otherwise see [28,24], or simply [19, sect. 2.1]).

Let (W,⊑) be a well-quasi-ordered set. A subsetV of W is upward-closedif w∈V
wheneverv⊑ w for somev ∈ V. From WQO theory, we mostly need the following
result:

Fact 2.1 (Finite convergence)If V0⊆V1⊆V2⊆ ·· · is an infinite increasing sequence
of upward-closed subsets of W, then for some index k∈N,

⋃
i∈NVi =Vk.

The upward-closureof V ⊆W, denotedC↑(V), is the smallest upward-closed set
that containsV. Theupward-kernelof V, denotedK↑(V), is the largest upward-closed
set included inV. There are symmetric notions ofdownward-closedsubset ofW, of
downward-closure, C↓(V), and ofdownward-kernel, K↓(V), of V. The complement of
an upward-closed subset is downward-closed. Observe thatC↑(V) = V = K↑(V) iff V
is upward-closed, and thatC↑ andK↓ (resp.,C↓ andK↑) are dual:

WrK↑(V) =C↓(WrV), WrK↓(V) =C↑(WrV). (1)

Monotonic region algebra. In symbolic model-checking, aregion algebrais a family
of sets of states (subsets ofW) that is closed under Boolean and other operators like
images or inverse images [22].

Here we consider regions generated by a familyO = {o1,o2, . . .} of (monotonic)
operators. By ak-aryoperator, we mean a monotonic mappingo : (2W)k→ 2W that as-
sociates a subseto(V1, . . . ,Vk) ⊆W with anyk subsetsV1, . . . ,Vk. Monotonicity means
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thato(V1, . . . ,Vk) ⊆ o(V′1, . . . ,V
′
k) whenVi ⊆V ′i for i = 1, . . . ,k. We allow nullary oper-

ators, i.e., fixed subsets ofW. Finally, we require thatO contains at least four special
unary operators:C↑, C↓, K↑, K↓, and two special nullary operators:/0 andW.

Theregion algebra generated by O, denoted withRO, or simplyR , is the set of all
the subsets ofW, calledregions, that can be obtained by applying operators fromO on
already constructed regions, starting with nullary operators. Equivalently,R is the least
subset of 2W that is closed underO.

We say the region algebra generated byO is effectiveif there are algorithms im-
plementing the operators inO and an effective membership algorithm saying whether
w∈ R for somew∈W and some regionR∈ RO. Such effectiveness assumptions pre-
suppose a finitary encoding of regions and elements ofW: if there are several possible
encodings for a same region, we assume an effective equalitytest.

Extending the region algebra with fixpoints. Let χ = {X1,X2, · · · } be a countable set
of variables.Lµ(W,⊑,O), or shortlyLµ when(W,⊑) andO are clear from the context,
is the set ofO-terms with least and greatest fixpointsgiven by the following abstract
syntax:

Lµ ∋ ϕ,ψ ::= o(ϕ1, . . . ,ϕk)
∣∣ X

∣∣ µX.ϕ
∣∣ νX.ϕ

∣∣ C↑(ϕ)
∣∣ C↓(ϕ)

∣∣ K↑(ϕ)
∣∣ K↓(ϕ)

whereX runs over variables fromχ, ando over operators fromO. µX.ϕ andνX.ϕ are
fixpoint expressions. Free and bound occurrences of variables are defined as usual. We
assume that no variable has both bound and free occurrences in someϕ, and that no
two fixpoint subterms bind the same variable: this can alwaysbe ensured by renaming
bound variables. (The abstract syntax forLµ could be shorter but we wanted to stress
thatC↑, C↓, K↑, andK↓ are required to be present inO.)

The meaning ofLµ terms is as expected: anenvironmentis a mappingenv: χ→ 2W

that interprets each variableX ∈ χ as a subset ofW. Givenenv, a termϕ ∈ Lµ denotes a
subset ofW, writtenJϕKenv and defined by induction on the structure ofϕ:

JXKenv
def
= env(X) Jo(ϕ1, . . . ,ϕk)Kenv

def
= o(Jϕ1Kenv, . . . ,JϕkKenv)

JC↑(ϕ)Kenv
def
= C↑

(
JϕKenv

)
JC↓(ϕ)Kenv

def
= C↓(JϕKenv)

JK↑(ϕ)Kenv
def
= K↑(JϕKenv) JK↓(ϕ)Kenv

def
= K↓

(
JϕKenv

)

JµX.ϕKenv
def
= lfp

(
Ω[ϕ,X,env]

)
JνX.ϕKenv

def
= gfp

(
Ω[ϕ,X,env]

)

whereΩ[ϕ,X,env] : 2W→ 2W is a unary operator defined byΩ[ϕ,X,env](V)
def
= JϕKenv[X:=V],

using the standard variant notation “env[X :=V]” for the environment that agrees with
enveverywhere except onX where it returnsV. As usual,JϕKenv does not depend on
env(X) if X is not free inϕ, so that we may shortly writeJϕK whenϕ is a closed term,
i.e., a term with no free variables.

We recall that the semantics of the fixpoint terms is well-defined since, for ev-
ery ϕ, X and env, Ω[ϕ,X,env] is monotonic (and since(2W,⊆) is a complete lat-
tice). Moreover, ifenvandenv′ are such thatenv(X) ⊆ env′(X) for all X ∈ χ, shortly
written env⊆ env′, then lfp(Ω[ϕ,X,env]) ⊆ lfp(Ω[ϕ,X,env′]) and gfp(Ω[ϕ,X,env]) ⊆
gfp(Ω[ϕ,X,env′]).
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Definition 2.2 (Upward- and downward-guardedness).

1. A variable X isupward-guardedin ϕ if all free occurrences of X inϕ are in the
scope of either a C↑ or a K↑ operator, i.e., appear in a subterm of the form C↑(ψ)
or K↑(ψ).

2. Dually, X isdownward-guardedin ϕ if all its free occurrences are in the scope of a
C↓ or a K↓ operator.

3. A termϕ is guardedif all its least-fixpoint subterms µX.ψ have X upward-guarded
in ψ, and all its greatest-fixpoint subtermsνX.ψ have X downward-guarded inψ.

Given someϕ, X andenv, the approximants of lfp(Ω[ϕ,X,env]) are given by the se-
quence(Mi)i∈N of subsets ofW defined inductively withM0 = /0 andMi+1 = JϕKenv[X:=Mi ].
Monotonicity yields

M0 ⊆M1⊆M2 ⊆ ·· · ⊆ lfp(Ω[ϕ,X,env]). (2)

Similarly we define(Ni)i∈N by N0 =W andNi+1 = JϕKenv[X:=Ni ], so that

N0⊇ N1 ⊇ N2 ⊇ ·· · ⊇ gfp(Ω[ϕ,X,env]). (3)

Lemma 2.3 (Finite convergence of approximants).If X is upward-guarded inϕ, then
there exists an index k∈ N such that

JµX.ϕKenv= Mk = Mk+1 = Mk+2 = . . . (4)

Dually, if X is downward-guarded inϕ, then there exists a k′ ∈ N such that

JνX.ϕKenv= Nk′ = Nk′+1 = Nk′+2 = . . . (5)

Proof. We only prove the first half since the other half is dual. Letψ1, . . . ,ψm be the
maximal subterms ofϕ that are immediately under the scope of aC↑ or aK↑ operator.
Thenϕ can be decomposed under the form

ϕ ≡ Φ(⇑ ψ1, . . . ,⇑ ψm)

where the contextΦ(Y1, . . . ,Ym) uses fresh variablesY1, . . . ,Ym to be substituted in, and
where⇑ψi is eitherC↑(ψi) or K↑(ψi), depending on howψi appears inϕ. In either case,
and for any environmentenv′, the setJ⇑ ψiKenv′ is upward-closed.

ForV1, . . . ,Vm⊆W we shortly writeJΦK(V1, . . . ,Vm) for JΦKenv[Y1:=V1,...,Ym:=Vm]. Since
X is upward-guarded inϕ, it has no occurrence inΦ, only in theψi ’s, so that

Mi+1 = JϕKenv[X:=Mi ] = JΦK(J⇑ ψ1Kenv[X:=Mi ], . . . ,J⇑ ψmKenv[X:=Mi ])

= JΦK(Li,1, . . . ,Li,m)

writing Li, j for J⇑ ψ jKenv[X:=Mi ]. FromM0 ⊆M1 ⊆M2 ⊆ ·· · , we deduceL0, j ⊆ L1, j ⊆
L2, j ⊆ ·· · SinceK↑ andC↑ return upward-closed sets, theLi, j ’s are upward-closed sub-
sets ofW. For all j = 1, . . . ,m, Fact 2.1 implies that there is an indexk j such that
Li, j = Lkj , j for all i ≥ k j . PickingK = max(k1, . . . ,k j) gives for anyi ≥ K

Mi+1 = JΦK(Li,1, . . . ,Li,m) = JΦK(Lk1,1, . . . ,Lkm,m) = JΦK(LK,1, . . . ,LK,m) = MK+1.

Thus,
⋃

i∈N Mi = MK+1 = MK+2 andMK+1 is a fixpoint ofΩ[ϕ,X,env], hence the least
one thanks to (2). Pickingk= K+1 satisfies (4). ⊓⊔
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Regions with guarded fixpoints. We can now prove our main result: subsets defined
by Lµ terms are regions (and can be computed effectively if the underlying region alge-
bra is effective).

By a region-environmentwe mean an environmentenv: χ→ R that associates re-
gions with variables. Ifenvis a region-environment, andϕ has only free variables, i.e.,
has no fixpoints subterms, thenJϕKenv is a region.

Theorem 2.4. If ϕ ∈ Lµ is guarded and env is a region-environment thenJϕKenv is a
region. Furthermore, if the region algebra is effective, then JϕKenv can be computed
effectively fromϕ and env.

Proof. By structural induction on the structure ofϕ. If ϕ = o() is a nullary operator, the
result holds by definition of the region algebra. Ifϕ = o(ϕ1, · · · ,ϕk), theJϕiKenv’s are
(effectively) regions by induction hypothesis, so thatJϕKenv is an (effective) region too
by definition. In particular, this argument applies wheno is a nullary operator, or is one
of the unary operators we singled out:C↑, C↓, K↑, andK↓.

If ϕ = µX.ψ, we can apply Lemma 2.3 after we have proved that each one of the
approximantsM0,M1,M2, . . ., of JϕKenv are regions. In particular,M0 = /0 is a region,
and ifMi is a region, thenMi+1 = JψKenv[X:=Mi ] is one too, sinceenv′ = env[X := Mi ] is
a region-environment, and since by induction hypothesisJψKenv′ is a region whenenv′

is a region-environment. WhenRO is effective, theMi can be computed effectively, and
one can detect whenMk = Mk+1 since region equality is decidable by definition. Then
JϕKenv= Mk can be computed effectively. Finally, the case whereϕ = νX.ψ is dual. ⊓⊔

Corollary 2.5 (Decidability for guarded Lµ properties). The following problems are
decidable for effective monotonic region algebras:

Model-checking: “Does w∈ JϕK?” for a w ∈W and a closed and guardedϕ ∈ Lµ.
Satisfiability: “Is JϕK non-empty?” for a closed and guardedϕ ∈ Lµ.
Universality: “Does JϕK =W?” for a closed and guardedϕ ∈ Lµ.

A region algebra of regular languages.ConsiderW = Σ∗, the set of finite words over
some finite alphabetΣ. Thesubword ordering, defined by “u⊑ v iff u can be obtained
by erasing some letters fromv”, is a WQO (Higman’s Lemma). Regular languages over
Σ are a natural choice for regions: observe that the closure operatorsC↑ andC↓ preserve
regularity and have effective implementations.2 Natural operators to be considered inO
are∪ (union) and∩ (intersection). However, any operation on languages that is mono-
tonic, preserve regularity, and has an effective implementation on regular languages can
be added. This includes concatenation (denotedR.R′), star-closure (denoteR∗), left- and

right-residuals (R−1R′
def
= {v | ∃u∈R,uv∈R′}), shuffle product (denotedR‖R′), reverse

(denoted
←−
R), conjugacy (̃R

def
= {vu | uv∈ R}), homomorphic and inverse-homomorphic

images, and many more [30]. Complementation is not allowed in O (it is not monotonic)

2 From a FSA forR, one obtains a FSA forC↑(R) simply by adding loopsq
a−→ q on all statesq of

the FSA and for all lettersa∈ Σ. A FSA for C↓(R) is obtained by addingε-transitionsq
ε−→ q′

whenever there is aq
a−→ q′. From this,K↑ andK↓ can be implemented using (1).
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but the duals of all above-mentioned operators can be included inO (without compro-
mising effectiveness) so that, for all practical purposes,complement can be used with
the restriction that bound variables inLµ terms are under an even number of comple-
mentations.

An application of Theorem 2.4 is that, ifR1 andR2 are regular languages, then the
language defined asµX.νY.

(
K↑

[
R1 ‖ (X∗∩C↓(Y−1←−X ∩X−1R2))

])
is regular and a finite

representation for it (e.g., a regular expression or a minimal DFA) can be constructed
from R1 andR2.

3 Verification of lossy channel systems

Theorem 2.4 has several applications for regular model checking of lossy channel sys-
tems [5] (LCS) and other families of well-structured systems [3,19]. In the rest of this
paper we concentrate on LCS’s.

3.1 Channel systems, perfect and lossy

A channel system is a tupleL = (Q,C,M,∆) consisting of a finite setQ= {p,q, . . .} of
locations, a finite setC = {c, . . .} of channels, a finitemessage alphabetM = {m, . . .}
and a finite set∆ = {δ, . . .} of transition rules. Each transition rule has the formq

op−→ p
whereop is an operation: c!m (sending messagem∈ M along channelc ∈ C), c?m
(receiving messagem from channelc), or

√
(an internal action to some process, no

I/O-operation).

Operational semantics. Let L = (Q,C,M,∆) be a channel system. Aconfiguration
(also, astate) is a pairσ = (q,w) whereq∈Q is a location andw : C→M∗ is a channel
valuation that associates with any channel its content (a sequence of messages). The set
Q×M∗C of all configurations is denoted byConf= {σ,ρ, . . .}. For a subsetV of Conf,

we letV
def
= ConfrV.

Steps between configurations are as expected. Formally,σ = (q,w) leads toσ′ =
(q′,w′) by firing δ = p

op−→ r, denotedσ δ−→perf σ′, if and only if q= p, q′ = r andw′ is
obtained fromw by the effect ofop (the “perf” subscripts emphasizes that the step is
perfect: without losses). Precisely,w′(c) = w(c) for all channelsc that are not touched
upon byop, and

w′(c) =

{
w(c)m if op= c!m,

m−1w(c) if op= c?m.

Thus, whenop= c?m, w′ is only defined ifw(c) starts withm and indeed this is the

intended condition for firingδ. Wheneverσ δ−→ ρ for someρ, we say thatδ is enabled
in σ, writtenδ ∈ ∆(σ).

Below we restrict our attention to LCS’s where from eachq∈Q there is at least one
rule q

op−→ p in ∆ whereop is not a receiving action: this ensures that the LCS has no
deadlock states and simplifies many technical details without losing any generality.
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Lossy systems.In lossychannel systems, losing messages is formalized via the sub-
word ordering, extended fromM∗ to Conf: (q,w)⊑ (q′,w′) if q= q′ andw(c) ⊑ w′(c)
for all channelsc∈ C.

A (possibly lossy) step in the LCS is made of a perfect step followed by arbitrary

losses:3 formally, we writeσ δ−→ ρ whenever there is a perfect stepσ δ−→perf σ′ such that

ρ⊑ σ′. This gives rise to a labeled transition systemLTSL
def
= (Conf,∆,→), that can be

given a WSTS structure by the following relation:σ � ρ def⇔ σ ⊑ ρ ∩ ∆(σ) = ∆(ρ).
Both⊑ and� turnsConf into a WQO.

Remark 3.1.From now on we assume for the sake of simplicity that(Conf,⊑) is the
WQO on whichLµ is defined. All results could be strengthened using(Conf,�). ⊓⊔
Following standard notations for transition systems(Conf,∆,→) labeled over some

∆, we write Pre[δ](σ) def
= {ρ ∈ Conf | ρ δ−→ σ} for the set of predecessors viaδ of σ

in L. ThenPre(σ) def
=

⋃
δ∈∆ Pre[δ](σ) has all 1-step predecessors ofσ, andPre(V) =⋃

σ∈V Pre(σ) has all 1-step predecessors of states inV. The dualP̃re of Pre is defined

by P̃re(V) = Pre(V). Thusσ ∈ P̃re(V) iff all 1-step successors ofσ are inV (this
includes the case whereσ is a deadlock state).

Seen as unary operators on 2Conf, bothPreandP̃re are monotonic and even contin-
uous for all transition systems [35]. For LCS’s, the following lemma states thatPre is
compatible with the WQO on states, which will play a crucial role later when we want
to show that someLµ term is guarded.

Lemma 3.2. Let V ⊆ Conf in the transition system LTSL associated with a LCSL.
Then Pre(V) = Pre(C↑(V)) andP̃re(V) = P̃re(K↓(V)).

Proof. V⊆ C↑(V) implies Pre(V) ⊆ Pre(C↑(V)). Now σ ∈ Pre(C↑(V)) implies that
σ−→ ρ⊒ ρ′ for someρ′ ∈V. But thenσ−→ ρ′ by definition of lossy steps andσ∈Pre(V).
The second equality is dual. ⊓⊔

An effective region algebra for LCS’s. We are now ready to apply the framework of
section 2 to regular model checking of lossy channel systems. AssumeL = (Q,C,M,∆)
is a given LCS. A regionR∈ R is any “regular” subset ofConf. More formally, it is
any setR⊆ Conf that can be written under the form

R= ∑
i∈I
(qi ,R

1
i , . . . ,R

|C|
i )

whereI is a finite index set, theqi ’s are locations fromQ, and eachRj
i is a regular

language on alphabetM. The notation has obvious interpretation, with summation de-
noting set union (the empty sum is denoted/0). We are not more precise on how such
3 Note that, with this definition, message losses only occurafter steps (thus, not in the initial

configuration). The usual definition allows arbitrary losses before and after a step. There is no
essential semantical difference between these two ways of grouping atomic events into single
“steps”. The usual definition is technically smoother when LCS’s are viewed as nondeterminis-
tic systems, but becomes unnatural in situations where several adversarial processes compete,
e.g., in probabilistic LCS’s [9] or other game-theoreticalsettings we explore in sections 4 and 5.
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regions could be effectively represented (see [6]), but they could be handled as, e.g.,
regular expressions or FSAs over the extended alphabetM∪Q∪{′(′, ′)′, ′,′}.

The setO of operators includes union, intersection,C↑, C↓, K↑, K↓: these are mono-
tonic, regularity-preserving, and effective operators asexplained in our example at the
end of section 2. Operators specific to regular model-checking arePre andP̃re. That
they are regularity-preserving and effective is better seen by first looking at the special
case of perfect steps:

Preperf[p
ci?m−−→ r](q,R1

p, · · · ,R
|C|
p ) =

{
(p,R1

p, . . . ,R
i−1
p ,mRi

p,R
i+1
p , . . . ,R|C|p ) if q= r,

/0 otherwise.

Preperf[q
ci !m−−→ q′](q,R1

p, · · · ,R
|C|
p ) =

{
(p,R1

p, . . . ,R
i−1
p ,Ri

pm−1,Ri+1
p , . . . ,R|C|p ) if q= r,

/0 otherwise.

Preperf

(
∑
i∈I
(qi ,R

1
i , . . . ,R

|C|
i )

)
= ∑

i∈I
∑
δ∈∆

Preperf[δ](qi ,R
1
i , . . . ,R

|C|
i ).

where the notation “mR” (for concatenation) and “Rm−1” (for right-residuals) are as in
section 2. For lossy steps we use

Pre(R) = Preperf(C↑(R)).

Clearly, bothPreperf andPre are effective operators on regions.

3.2 Regular model-checking for lossy channel systems

Surprising decidability results for lossy channel systemsis what launched the study of
this model [18,5,15]. We reformulate several of these results as a direct consequence
of Theorem 2.4, before moving to new problems and new decidability results in the
next sections. Note that our technique is applied here to a slightly different operational
semantics (cf. footnote 3) but it would clearly apply as directly to the simpler semantics.

Reachability analysis. Thanks to Lemma 3.2, the co-reachability set can be expressed
as a guardedLµ term:

Pre∗(V) = µX.V∪Pre(X) = µX.V ∪Pre(C↑(X)). (6)

Corollary 3.3. For regular V⊆ Conf , Pre∗(V) is regular and effectively computable.

Safety properties. More generally, safety properties can be handled. In CTL, they can
be written∀(V1RV2). Recall thatR, the Release modality, is dual to Until: a stateσ
satisfies∀(V1RV2) if and only if along all paths issuing fromσ, V2 always holds until
maybeV1 is visited. Using Lemma 3.2,J∀(V1RV2)K, the set of states where the safety
property holds, can be defined as a guardedLµ term:

J∀(V1RV2)K = νX.
(
V2∩ (P̃re(X)∪V1)

)
= νX.

(
V2∩ (P̃re(K↓(X))∪V1)

)
. (7)
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Corollary 3.4. For regular V1,V2 ⊆ Conf ,J∀(V1RV2)K is regular and effectively com-
putable.

Another formulation is based on the duality between the “∀R” and the “∃U” modalities.

Theorem 3.5. [25, sect. 5] If f is a temporal formula in theTL(∃U,∃X,∧,¬) frag-
ment of CTL (using regions for atomic propositions), thenJ f K is regular and effectively
computable.

Proof. By induction on the structure off , usingJ∃X f K
def
= Pre(J f K), and the fact that

regions are (effectively) closed under complementation. ⊓⊔

Beyond safety. Inevitability properties, and recurrent reachability canbe stated inLµ.
With temporal logic notation, this yields

J∀♦VK = µX.
(
V ∪ (Pre(Conf)∩ P̃re(X))

)
,

J∃�♦VK = νX.
(
µY.((V ∪Pre(Y))∩Pre(X))

)
.

These two terms are not guarded and Lemma 3.2 is of no help here. However this
is not surprising: firstly, whetherσ |= ∃�♦V is undecidable [4]; secondly, and while
σ |= J∀♦VK is decidable, the setJ∀♦VK cannot be computed effectively [27].

3.3 Generalized lossy channel systems

Transition rules in LCS’s do not carry guards, aka preconditions, beyond the implicit
condition that a reading actionc?m is only enabled whenw(c) starts withm. This bare-
bone definition is for simplification purpose, but actual protocols sometimes use guards
that probe the contents of the channel before taking this or that transition. The simplest

such guards are emptiness tests, like “p
c=ε?−−→ q” that only allows a transition fromp to

q if w(c) is empty.
We now introduceLCS’s with regular guards(GLCS’s), an extension of the bare-

bone model where any regular set of channel contents can be used to guard a transition
rule. This generalizes emptiness tests, occurrence tests (as in [29]), etc., and allows
expressing priority between rules since whether given rules are enabled is a regular
condition.

Formally, we assume rules in∆ now have the formp
G:op−−→ q with p,q,opas before,

and whereG, the guard, can be any regular region. The operational semantics is a ex-

pected: whenδ = p
G:op−−→ q, there is a perfect stepσ δ−→perf θ iff σ ∈ G andθ is obtained

from σ by the rulep
G:op−−→ q (without any guard). Then, general stepsσ δ−→ ρ are obtained

from perfect stepsσ δ−→perf σ′ by message lossesρ⊑ σ′.

Verification of GLCS’s. For GLCS’s,PreandPostare effective monotonic regularity-
preserving operators as in the LCS case since

Pre[p
G:op−−→ q](R) = G ∩ Pre[p

op−→ q](R),

Post[p
G:op−−→ q](R) = Post[p

op−→ q](G∩R).
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Observe that Lemma 3.2 holds for GLCS’s as well, so that Equations (6) and (7) entail
a generalized version of Theorem 3.5:

Theorem 3.6. For all GLCS’sL and formulae f in theTL(∃U,∃X,∧,¬) fragment,J f K
is regular and effectively computable.

4 Solving games on lossy channel systems

In this section, we consider turn-based games on GLCS’s where two players,A and
B, alternate their moves. Games play a growing role in verification where they address
situations in which different agents have different, competing goals. We assume a basic
understanding of the associated concepts: arena, play, strategy, etc. (otherwise see [20]).

Games on well-structured systems have already been investigated in [2,31,32]. The
positive results in these three papers rely on ad-hoc finite convergence lemmas that are
special cases of our Theorem 2.4.

4.1 Symmetric LCS-games with controllable message losses

We start with the simplest kind of games on a GLCS:A andB play in turn, choosing the
next configuration, i.e., picking what ruleδ ∈ ∆ is fired, and what messages are lost.

Formally, asymmetric LCS-gameis a GLCSL = (QA,QB,C,M,∆) where the set
of locationsQ = QA∪QB is partitioned into two sets, one for each player, and where

the rules ensure strict alternation: for allp
G:op−−→ q ∈ ∆, p ∈ QA iff q ∈ QB. Below, we

shortly writeConfA for QA×M∗|C|, the regular region where it isA’s turn to play.ConfB
is defined similarly. Strict alternation means that the arena, LTSL , is a bipartite graph
partitioned inConfA andConfB.

Reachability games.Reachability and invariant are among the simplest objectives for
games. In a reachability game,A tries to reach a state in some setV, no matter how
B behaves. This goal is denoted♦V. It is known that such games are determined and
that memoryless strategies are sufficient [20]. The set of winning configurations forA
is denoted with〈〈A〉〉♦V, and can be defined inLµ:

〈〈A〉〉♦V = µX.
[
V ∪

[
ConfA∩Pre(X)

]
∪
[
ConfB∩ P̃re(X)

]]
. (8)

The first occurrence ofX can be made upward-guarded by replacingPre(X) with
Pre(C↑(X)) (Lemma 3.2). For the second occurrence, we can unfold the term, relying
on the fixpoint equationJµX.ϕ(X)K= JµX.ϕ(ϕ(X))K. This will replaceConfB∩ P̃re(X)
in (8) with

ConfB∩ P̃re
(
V ∪

[
ConfA∩Pre(X)

]
∪
[
ConfB∩ P̃re(X)

])
. (+)

Now, the strict alternation betweenConfA andConfB lets us simplify (+) into

ConfB∩ P̃re
(
V ∪Pre(X)

)
. (9)

Hence (8) can be rewritten into

〈〈A〉〉♦V = µX.
[
V ∪

[
ConfA∩Pre(C↑(X))

]
∪
[
ConfB∩ P̃re(V ∪Pre(C↑(X)))

]]
. (8’)
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Invariant games. In invariant games,A’s goal is to never leave some setV ⊆ Conf, no
matter howB behaves. Invariant games are dual to reachability games, and the set of
winning configurations〈〈A〉〉�V is exactly〈〈B〉〉♦V.

Repeated reachability games.HereA’s goal is to visitV infinitely many times, no
matter howB behaves. The set of winning configurations is given by the following Lµ

term:
〈〈A〉〉�♦V = νY.〈〈A〉〉♦

[
V ∩ (ϕA(Y)∪ϕB(Y))

]
, (10)

where

ϕA(Y)
def
= ConfA∩Pre

(
C↑(P̃re(K↓(Y)))

)
,

ϕB(Y)
def
= ConfB∩ P̃re(K↓(Y)).

and where we reuse (8’) for〈〈A〉〉♦[. . .].

Persistence games.In a persistence game,A aims at remaining insideV from some
moment on, no matter howB behaves. Dually, this can be seen as a repeated reachability
game forB. Note that〈〈A〉〉♦�V 6= 〈〈A〉〉♦(〈〈A〉〉�V).

Theorem 4.1 (Decidability of symmetric LCS-games).For symmetric LCS-games
L and regular regions V, the four sets〈〈A〉〉♦V, 〈〈A〉〉�V, 〈〈A〉〉♦�V, and〈〈A〉〉�♦V, are
(effective) regions. Hence reachability, invariant, repeated reachability, and persistence
symmetric games are decidable on GLCS’s.

Proof (Sketch).The winning sets can be defined by guardedLµ terms.

Remark 4.2.There is no contradiction between the undecidability of∃�♦V and the
decidability of〈〈A〉〉�♦V. In the latter case,B does not cooperate withA, making the
goal harder to reach forA (and the property easier to decide for us). ⊓⊔

4.2 Asymmetric LCS-games with 1-sided controlled loss of messages

Here we adopt the setting considered in [2]. It varies from the symmetric setting of
section 4.1 in that only playerB can lose messages (and can control what is lost), while
playerA can only make perfect steps. Note that this generalizes games whereA plays
moves in the channel system, andB is an adversarial environment responsible for mes-
sage losses. We use the same syntax as for symmetric LCS-games.

Reachability and invariant games.Let us first consider games where one player tries
to reach a regular regionV (goal♦V), no matter how the other player behaves.

The configurations whereB can win a reachability game are given by:

〈〈B〉〉♦V = µX.V ∪
(

ConfB∩Pre(X)
)
∪
(

ConfA∩ P̃reperf(X)
)

= µX.V ∪
(

ConfB∩Pre(C↑(X))
)
∪
(

ConfA∩ P̃reperf(V ∪Pre(C↑(X)))
)
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where guardedness is obtained via Lemma 3.2 and unfolding.
When we consider a reachability game forA, the situation is not so clear:

〈〈A〉〉♦V = µX.V ∪
(

ConfA∩Preperf(X)
)
∪
(

ConfB∩ P̃re(X)
)
.

Neither Lemma 3.2 nor unfolding techniques can turn this into a guarded term. This
should be expected since the set〈〈A〉〉♦V cannot be computed effectively [2].

Theorem 4.3 (Decidability of asymmetric LCS-games [2]).For asymmetric LCS-
gamesL and regular regions V, the sets〈〈B〉〉♦V and〈〈A〉〉�V are (effective) regions.
Hence reachability games for B, and invariant games for A aredecidable on GLCS’s.

Proof (Sketch).Invariant games are dual to reachability games, and the winning set
〈〈B〉〉♦V is defined by a guardedLµ term.

5 Channel systems with probabilistic losses

LCS’s where messages losses follow probabilistic rules have been investigated as a less
pessimistic model of protocols with unreliable channels (see [34,1,9] and the references
therein).

In [9], we present decidability results for LCS’s seen as combiningnondeterministic
choice of transition rules withprobabilisticmessage losses. The semantics is in term of
Markovian decision processes, or 11

2-player games, whose solutions can be defined in
Lµ. Indeed, we found the inspiration forLµ and our Theorem 2.4 while extending our
results in the MDP approach to richer sets of regions.

In this section, rather than rephrasing our results on 11
2-player games on LCS’s, we

show how to deal with 212-player games [16] on LCS’s, i.e., games opposing playersA
andB (as in section 4) but where message losses are probabilistic.

Formally, asymmetric probabilistic LCS-gameL = (QA,QB,C,M,∆) is exactly like
a symmetric LCS-game but with an altered semantics: in stateσ ∈ ConfA, playerA
selects a fireable ruleδ ∈ ∆ (B picks the rule ifσ ∈ ConfB) and the system moves to a

successor stateρ whereσ δ−→perf σ′ ⊒ ρ andρ is chosen probabilistically inC↓({σ′}).
The definition of the probability distributionP(σ,δ,ρ) can be found in [34,9] where it is

calledthe local-fault model. It satisfiesP(σ,δ,ρ)> 0 iff ρ⊑ σ′ (assumingσ δ−→perf σ′).
Additionally it guarantees afinite-attractor property: the set of states where all channels
are empty will be visited infinitely many times almost surely[1,8].

Reachability games.AssumeA tries to reach regionV (goal♦V) with probability 1
no matter howB behaves. The set〈〈A〉〉[♦V]=1 of states in whichA has an almost-sure
winning strategy is given by

〈〈A〉〉[♦V]=1 = νY.µX.




V∪
[
ConfA∩Preperf(C↑(X)∩K↓(Y))

]

∪
[
ConfB∩ P̃reperf(C↑(X)∩K↓(Y))

]


 . (11)
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Remark 5.1.Justifying (11) is outside the scope of this paper, but we cantry to give
an intuition of why it works: the inner fixpoint “µX.V ∪·· · ” define the largest set from
which A has a strategy to reachV no matter whatB doesif the message losses are
favorable. However, whatever messages are lost,A’s strategy also guarantees that the
system will remain inY, from which it will be possible to retry the strategy for♦V
as many times as necessary. This will eventually succeed almost surely thanks to the
finite-attractor property. ⊓⊔

Invariant games. Assume nowA tries to stay inV almost surely (goal[�V]=1), no
matter howB behaves. ThenA must ensure�V surely and we are considering a 2-
player game where message losses are adversarial and could as well be controlled by
B. This leads to

〈〈A〉〉[�V]=1 = νX.V ∩
([

ConfA∩Preperf(K↓(X))
]
∪
[
ConfB∩ P̃re(X)

])

= νX.V ∩
([

ConfA∩Preperf(K↓(X))
]
∪
[
ConfB∩ P̃re(K↓(X))

])
.

(12)

In (12), the subtermPreperf(K↓(X)) accounts for states in whichA can choose a perfect
move that will end inK↓(X), i.e., that can be followed by any adversarial message losses
and still remain inX. The subterm̃Pre(X) accounts for states in whichB cannot avoid
going toX, even with message losses under his control.P̃re(X) can be rewritten into
P̃re(K↓(X)) thanks to Lemma 3.2, so that we end up with a guarded term.

Goals to be satisfied with positive probability.In 21
2-player games, it may happen that

a given goal can only be attained with some non-zero probability [16]. Observe that,
since the games we consider are determined [26], the goals[♦V]>0 or [�V]>0 are the
opposite of goals asking for probability 1:

〈〈A〉〉[♦V]>0 = 〈〈B〉〉[�V]=1, 〈〈A〉〉[�V]>0 = 〈〈B〉〉[♦V]=1.

Theorem 5.2 (Decidability of qualitative symmetric probabilistic LCS-games).For
symmetric probabilistic LCS-gamesL and regular regions V, the sets〈〈A〉〉[♦V]=1,
〈〈A〉〉[♦V]>0, 〈〈A〉〉[�V]=1, and 〈〈A〉〉[�V]>0 are (effective) regions. Hence qualitative
reachability and invariant games are decidable on GLCS’s.

Proof (Sketch).These sets can be defined by guardedLµ terms. ⊓⊔

6 Conclusion

We defined a notion of upward/downward-guardedfixpoint expressions that define sub-
sets of a well-quasi-ordered set. For these guarded fixpointexpressions, a finite conver-
gence theorem is proved, that shows how the fixpoints can be evaluated with a finite
number of operations. This has a number of applications, in particular in the symbolic
verification of well-structured systems, our original motivation. We illustrate this in the
second part of the paper, with lossy channel systems as a target. For these systems, we
derive in an easy and uniform way, a number of decidability theorems that extend or
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generalize the main existing results in the verification of temporal properties or game-
theoretical properties.

These techniques can be applied to other well-structured systems, with a region al-
gebra built on, e.g., upward-closed sets. Admittedly, manyexamples of well-structured
systems do not enjoy closure properties as nice as our Lemma 3.2 for LCS’s, which
will make it more difficult to express interesting properties in the guarded fragment of
Lµ. But this can still be done, as witnessed by [31,32] where theauthors introduced a
concept ofB-games andBB-games that captures some essential closure assumptions
allowing the kind of rewritings and unfoldings we have justified with Lemma 3.2.
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