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Abstract. We consider a profit maximization problem where we are
asked to price a set of m items that are to be assigned to a set of n
customers. The items can be represented as the edges of an undirected
(multi)graph G, where an edge multiplicity larger than one corresponds
to multiple copies of the same item. Each customer is interested in pur-
chasing a bundle of edges of G, and we assume that each bundle forms a
simple path in G. Each customer has a known budget for her respective
bundle, and is interested only in that particular bundle. The goal is to
determine item prices and a feasible assignment of items to customers
in order to maximize the total profit. When the underlying graph G is a
path, we derive a fully polynomial time approximation scheme, comple-
menting a recent NP-hardness result. If the underlying graph is a tree,
and edge multiplicities are one, we show that the problem is polyno-
mially solvable, contrasting its APX-hardness for the case of unlimited
availability of items. However, if the underlying graph is a grid, and edge
multiplicities are one, we show that it is even NP-complete to approxi-
mate the maximum profit to within a factor n1−ε.

Keywords: Pricing problems, tollbooth problem, highway problem,
computational complexity, dynamic programming, fully polynomial time
approximation scheme.

1 Introduction

We consider a profit maximization problem that is defined on a multi graph.
Given is a simple undirected graph G = (V, I) with |I| = m edges, and given are
(integral) edge multiplicities ci, i ∈ I. Each edge can be thought of as an item for
sale, and the edge multiplicity determines how many copies of the corresponding
item are available. We will mainly discuss problems where all ci’s are finite,
but notice that most of the related work addresses problems with unlimited
availability of items. There is a set of n customers J = {1, . . . , n} each of which
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is interested in purchasing exactly one bundle Ij ⊆ I of items. This is also known
as single-minded customers [13]. We assume that each bundle Ij forms a simple
path in the graph G. Each customer j ∈ J has an integral budget (or valuation)
bj, which is the largest amount that a customer is willing to pay for her bundle Ij .

A feasible solution to the problem consists of an allocation of items to cus-
tomers and a vector of prices p = (p1, . . . , pm), one for each item, such that

1. each item i ∈ I is sold to no more than ci customers,
2. each customer j ∈ J is either assigned the entire bundle Ij , or nothing,
3. a bundle Ij assigned to a customer j must be affordable,

∑
i∈Ij

pi ≤ bj.

Within a given solution, let us call a customer a winner if she gets assigned her
bundle Ij . Let us denote by W the set of winners. We call a set of winners W
feasible with respect to the availability of items whenever

∑
j∈W |Ij ∩ {i}| ≤ ci,

for all i ∈ I. Note that for any feasible set of winners W , there exists a price
vector p such that all customers in W can indeed afford their respective bundles.
The optimization problem consists of finding a feasible set of winners and a
vector of prices such that none of the constraints (1) − (3) is violated, and such
that the total profit Π(W, p) =

∑
j∈W

∑
i∈Ij

pi is maximized.
One usually distinguishes between solutions that are envy-free and those that

are not. In the setting with single minded customers considered here, envy-
freeness requires that if a customer is not a winner, then the total price of that
bundle must exceed her budget. However, we mostly address problems without
requiring envy-freeness.

Notice that, in contrast to the classical auction literature, we assume that we
know the budget of every customer. At first sight this assumption may seem
infeasible, yet there are good reasons for studying this type of problems. An
understanding of how items should be priced under known budgets, for exam-
ple, may be useful also for the more difficult problem with unknown budgets.
This connection was recently made concrete by Goldberg and Hartline [9]; they
reduced a mechanism design problem with unknown budgets to the underly-
ing profit maximization problem with known budgets. Furthermore, data on
customer valuations is nowadays collected at large scale, for example via specifi-
cally designed web sites; see e.g. [8]. Hence, the assumption of known budgets is
reasonable in many settings. Finally, the underlying combinatorial pricing prob-
lems have their own appeal, and results with respect to their computational
tractability have been obtained only recently [1,3,5,6,8,11,12].

Recall that we address problems where the bundle Ij of any customerj ∈ J
corresponds to a path in an underlying simple graph G. We consider three differ-
ent types of underlying graphs, namely paths, trees, and grids. The problem on a
path (with unlimited availability of items) was recently discussed by Guruswami
et al. [11]. They call it the ‘highway problem’, motivated by the question to find
optimal tolls for the usage of a single highway. In their setting, the availability of
items is unlimited. To motivate the problem on a path with limited availability of
items, consider the rental of a set of identical objects over discrete time periods;
e.g. houses in holiday parks on the basis of weeks. Customers are interested in
renting an object in consecutive periods. Since all objects are identical, in any
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time period they need to have the same price. But prices may vary from period
to period. We can thus interpret a time period as an edge in a path, with edge
multiplicity equal to the number of objects available in that period. Notice that
envy-freeness is not necessarily an issue, since the manager can freely decide to
whom to rent the objects.

1.1 Related Work

The profit maximization problem in which the customer’s bundles are paths of
an arbitrary graph G, and the availability of items is unlimited, is the ‘tollbooth
problem’ addressed by Guruswami et al. [11]. They show that the problem is
APX-hard even if the graph is a star, all budgets are equal to one, and the
bundles contain at most 2 items. Another APX-hardness proof for the same
problem was given by Briest and Krysta [5]; in contrast to the result of [11] it is
also valid if several problem parameters are constantly bounded.

The tollbooth problem with the restriction that the underlying graph is a path
is the ‘highway problem’ introduced by Guruswami et al. [11]. NP-hardness of
this problem was recently shown by Bodlaender and Penninkx [4] and Briest
and Krysta [5]. Guruswami et al. [11] furthermore propose a polynomial time
dynamic programming algorithm when the budgets are bounded by a constant,
and a pseudo-polynomial time dynamic programming algorithm when the bundle
sizes are bounded by a constant.

When bundles are not paths in a graph, but arbitrary subsets of the given set
of items, Demaine et al. [6] show that the problem (again with unlimited avail-
ability of items) is hard to approximate to within a (semi-)logarithmic factor.
For the same problem, there exists an approximation scheme with almost linear
running time, given that the number of distinct items is constant, by Hartline
and Koltun [12]. Moreover, Balcan and Blum [3] derive a O(k)-approximation
algorithm, given that each customer is interested in bundles of at most k items.

Finally, independently in [3] and [5], two FPTAS’s are presented for the prob-
lem where the customers’ bundles are nested. That is, for any two bundles Ia

and Ib it holds that Ia ⊆ Ib, Ib ⊆ Ia or Ia ∩ Ib = ∅. Notice that such an instance
can be interpreted as a problem where the bundles are subpaths of a single path,
by ordering the items appropriately. (The converse is not true, however.)

1.2 Our Results

In Section 2, we address the problem where the underlying graph G is a path,
and there is an upper bound C on the availability of any item. We propose
a dynamic programming algorithm that computes an optimal solution in time
O(n2CB2Cm). Here, B = maxj bj is an upper bound on the budgets. The same
problem with unlimited supply of items allows a dynamic programming algo-
rithm with a computation time of O(BB+2nB+3), see [11]. Based on our dynamic
programming algorithm, we moreover derive an FPTAS for that problem, given
that the maximum availability of any item C is constant. In contrast to previous
results in that direction [3,5,12], this FPTAS does neither require a constant
number of items, nor nested bundles or bounded budgets.
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In Section 3 we address the problem where the availability of any item is
exactly one. For the case that graph G is a path, the problem reduces to finding
a maximum weight independent set in an interval graph; thus it is polynomially
solvable [14]. When we generalize from a path to a tree, we can show that the
problem remains polynomially solvable. When the underlying graph G is a grid,
however, we show that it is NP-complete to approximate the maximum profit to
within n1−ε, for any ε > 0. (Recall that n is the number of customers.)

2 Selling a Multi Path

In this section, we restrict the underlying graph G = (V, I) to be a path. We
first discuss some preliminaries. Thereafter, we present a dynamic programming
approach and a fully polynomial time approximation scheme for the case where
the edge multiplicities ci are bounded by some constant C.

2.1 Preliminaries

It is not hard to see that the profit maximization problem on a multi path is
polynomially solvable if either the set of winners W is given, or if the vector of
prices p is given.

Lemma 1. The profit maximization problem on a multi path is polynomially
solvable if the vector of prices p = (p1, . . . , pm) is given.

Proof. If the vector of prices p = (p1, . . . , pm) is given, we only need to find a
feasible set of winners that maximizes the total revenue. Whenever the items
are available in unlimited supply, this is trivial and the set of winners is just
W := {j | ∑

i∈Ij
pi ≤ bj}. For the case of limited supply, let W ′ be the set of

customers for which the bundle is affordable, given the price vector p. For any
item i, we can not sell more than ci copies. Let aij be equal to 1 if item i ∈ Ij

for customer j, and 0 otherwise. We find a profit-maximizing feasible subset of
winners by solving the following linear program, where xj = 1 iff customer j is
a winner.

max
∑

j∈W ′

(
∑

i∈Ij

pi

)

xj

s.t.
∑

j∈W ′
aijxj ≤ ci ∀i ∈ I

0 ≤ xj ≤ 1 ∀j ∈ W ′

The constraint matrix of this linear program has the consecutive ones property,
that is, all entries that are 1 appear consecutively in any column. This because
the bundles Ij of any customer j consist only of consecutive items. A consecutive
ones matrix is totally unimodular [15]. Hence, the corresponding polyhedron only
has integral vertices, and the LP yields an integral optimal solution. �	
If on the other hand a feasible set of winners W ⊆ J is given, we find an optimal
price vector p = (p1, . . . , pm) by solving the following linear program.
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max
∑

j∈W

∑

i∈Ij

pi

s.t.
∑

i∈Ij

pi ≤ bj ∀j ∈ W

pi ≥ 0 ∀i ∈ I

Since this constraint matrix has the consecutive ones property, too, we obtain
the following.

Lemma 2 (See also [11, Lemma 5.1]). The profit maximization problem on
a multi path is polynomially solvable if a feasible set of winners W ⊆ J is given.
Moreover, since the budgets bj are integral, there exists an optimal, integral price
vector.

2.2 Complexity

Bodlaender and Penninkx [4] as well as Briest and Krysta [5] recently showed
the following.

Theorem 1 ([4,5]). The profit maximization problem on a multi path is
(weakly) NP-hard, even if the edge multiplicity is at most three.

For their reduction it suffices, but it is also necessary, that the availability of
any item is 3. If we restrict the availability of any item to be at most 2, the
complexity remains open.

2.3 Dynamic Programming Algorithm

Recall that for each item i ∈ I there are ci copies available, and for convenience
of notation let

C ≥ max
i∈I

ci

be an upper bound on the availability of any item. We show that we can solve this
problem in time O(n2CB2Cm) by finding a longest path in an acyclic digraph.

We create an m-layered digraph with an additional source s and sink t (layers 0
and m+1, respectively). There are arcs only from layer i to i+1, for i = 0, . . . , m.
Hence, in any s− t path, there are exactly m + 2 nodes. In every node in layer i
(corresponding to item i), we store all winners j that purchase item i. Moreover,
we store the respective total amounts all these winners spend on all items in
their respective bundles up to and including item i. Any node x (more precisely,
the path s−x) represents a feasible partial solution. Arcs from node x of layer i
to node y of layer i+1 are only introduced if the path s− y represents a feasible
extension of the partial solution represented by the path s − x. The weight on
an arc that connects a node of layer i to a node of layer i + 1 is equal to the
profit earned on item i + 1, that is, the total amount that the corresponding
winners pay for item i + 1. Therefore, the weight of the longest s − t path in
the digraph will equal the maximum total profit, and the set of winners can be
reconstructed from the longest s − t path, too. The algorithm below shows a
more formal description.
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Algorithm 1. Dynamic Programming Algorithm
Input: Profit maximization problem on a multi path with maximal availability

of any item ≤ C
Output: Assignment of items to customers and item prices pi

begin (construction of digraph D)
nodes: For each item i ∈ I , we introduce a layer of nodes: Denote by J i the
set of customers with i ∈ Ij . By Ki = (j1, j2, . . . , jk) we denote any (sorted)
subset of J i of cardinality k, where k ≤ min{ci, |J i|} ≤ C. Define
Hj := {0, 1, . . . , bj} as the possible total amount customer j ∈ Ki can spend
for items {1, . . . , i} ∩ Ij . Let hi ∈ Hj1 × Hj2× · · · × Hjk be a vector denoting
how much each customer j spends for items {1, . . . , i} ∩ Ij , for each j ∈ Ki. If
Ki = ∅, we let hi = 0. Let all such pairs (Ki, hi) be the nodes in layer i of D,
for i = 1, . . . , m. Let s and t denote source and sink. To unify notation,
assume s = (∅, 0) and t = (∅, 0);
arcs: Insert an arc from node (Ki, hi) to node (Ki+1, hi+1) if:
(1) For all j ∈ Ki with i + 1 ∈ Ij , j ∈ Ki+1, and for all j ∈ J i \ Ki with
i + 1 ∈ Ij , j �∈ Ki+1.
(2) There exists a unique integral value d ≥ 0 such that d = hi+1

j − hi
j for all

j ∈ Ki ∩ Ki+1, and d = hi+1
j for all j ∈ Ki+1 \ Ki.

We furthermore connect source node s to all nodes (K1, h1), and we connect
all nodes (Km, hm) to sink node t.
arc lengths: For an arc ai that connects (Ki−1, hi−1) and (Ki, hi): If
Ki = ∅, we let the length of arc ai be �(ai) = 0, and if Ki �= ∅, we let the
length of arc ai be �(ai) = d|Ki|, where d is the (unique) value from
condition (2) above.

end
solution: Compute the longest s − t path P in digraph D. Whenever for
customer j we have that j ∈ Ki with (Ki, hi) ∈ P , customer j gets assigned
item i. The price pi for item i equals �(ai)/|Ki|, where ai is the arc from path P
that connects nodes (Ki−1, hi−1) and (Ki, hi);

Theorem 2. The dynamic programming algorithm outputs an optimal solu-
tion for an instance of the profit maximization problem on a multi path in
O(n2CB2Cm) time.

Proof. The algorithm assigns items to customers and computes prices for all
items according to an s − t path P . This solution is feasible if each customer j
either gets the complete bundle Ij or nothing, no item i ∈ I is assigned to more
than ci customers, and if for every customer j who gets her bundle Ij , we have
that

∑
i∈Ij

pi ≤ bj .
Let an s− t path P be fixed, let ai be the arcs on P , �(ai) the length of these

arcs, and abusing notation let (W i, hi) be the nodes on P . Set W i is thus the
set of customers that get assigned item i.

By definition of the nodes of the digraph, no customer j will be assigned
an item not from her bundle Ij . For any customer j, consider an item i ∈ Ij

such that j ∈ W i. That is, customer j gets assigned item i by the algorithm.
By condition (1) of the digraph construction, all other items of bundle Ij must
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be assigned to customer j as well. Next, for any node (W i, hi), we have by
definition that |W i| ≤ ci, hence no item is oversold. Finally, let us consider the
budget constraint of customer j. We know that Ij = {k, . . . , k′} for some k ≤ k′.
We have that

∑

i∈Ij

pi =
k′

∑

i=k

pi =
k′

∑

i=k

�(ai)
|W i| = hk

j +
k′

∑

i=k+1

(hi
j − hi−1

j ) = hk′
j ≤ bj .

The third equality holds due to condition (2) of the digraph construction, and
the last inequality holds because hk′

j ∈ Hj = {0, 1, . . . , bj}.
Now we know that any s − t path P in D defines a feasible solution, and

W :=
⋃

i∈I W i denotes the set of winners. The length of a path is
∑

ai∈P
�(ai) =

∑

i∈I

pi|W i| =
∑

j∈W

∑

i∈Ij

pi .

In other words, the path length defines the profit of the corresponding solution,
thus the longest path yields an optimal solution.

To arrive at the computation time of O(n2CB2Cm), we only need to estimate
the size of the digraph D. For every item i ∈ I, there are at most O(nC) different
sets Ki and at most O(BC) different vectors hi. Thus, per item i ∈ I, we
have at most O(nCBC) nodes (Ki, hi). For any i ∈ I, every node (Ki, hi) is
connected to at most O(nCBC) nodes (Ki+1, hi+1). So, per item, there are at
most O(n2CB2C) arcs, which means that there are at most O(n2CB2Cm) arcs in
D. The computation time to find the longest path in D is linear in the number
of arcs, since D is acyclic [2]. �	
Notice that the solution constructed by the dynamic programming algorithm
need not be envy-free.

2.4 FPTAS

We next show how to turn the dynamic programming algorithm into a fully
polynomial time approximation scheme (FPTAS); that is, an algorithm that
computes a solution with profit at least (1 − ε) times the optimum profit, in
time polynomial in the input and 1/ε. To that end, we just apply the dynamic
programming algorithm on a rounded instance in which K := εB

2n2 for any ε > 0
and the customers’ budgets are b′j := �bj/K�.
Lemma 3. For every solution (W, p) of the original instance, there exists a
solution (W, p′′) of the rounded instance with Π(W, p) > 1

K Π(W, p′′) − mn.

Proof. Let (W, p) be a feasible solution of the original instance with profit
Π(W, p). Let p′′i = �pi/K�, i = 1, . . . , m. Note that pi/K − 1 < p′′i ≤ pi/K.
For the original instance we have for every winner j ∈ W ,

∑
i∈Ij

pi ≤ bj, and it
follows that

∑

i∈Ij

p′′i =
∑

i∈Ij

⌊ pi

K

⌋
≤

⌊∑
i∈Ij

pi

K

⌋

≤
⌊

bj

K

⌋

= b′j .
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Hence, the same set of customers W can be made winners in the rounded in-
stance. Then the capacity constraint is satisfied as well, and the solution (W, p′′)
is feasible. Finally, we have

Π(W, p′′) =
∑

j∈W

∑

i∈Ij

p′′i >
∑

j∈W

∑

i∈Ij

( pi

K
− 1

)
≥ 1

K
Π(W, p)−mn. �	

Lemma 4. For every solution (W ′, p′) of the rounded instance, there exists a
solution (W ′, p̃) of the original instance with Π(W ′, p̃) = KΠ(W ′, p′).

Proof. Let (W ′, p′) be a solution in the rounded instance with revenue Π(W ′, p′).
Let p̃i = p′iK be prices in the original instance, i = 1, . . . , m. (This is integer
because p′i and K are integer.) Then the budget constraint for every customer
j ∈ W ′ is satisfied, because

∑

i∈Ij

p̃i = K
∑

i∈Ij

p′i ≤ Kb′j = K

⌊
bj

K

⌋

≤ bj .

Hence, we can make the same set W ′ of customers winners, and solution (W ′, p̃)
is feasible for the original instance. The revenue can be written as

Π(W ′, p̃) =
∑

j∈W ′

∑

i∈Ij

p̃i =
∑

j∈W ′

∑

i∈Ij

(p′iK) = K
∑

j∈W ′

∑

i∈Ij

p′i = KΠ(W ′, p′). �	

We can now combine Lemmas 3 and 4 to obtain an FPTAS.

Theorem 3. There exists an FPTAS for the profit maximization problem on a
multi path.

Proof. Let (W, p) and (W ′, p′) be the optimal solutions in the original and
rounded instances, respectively. Consider solution (W ′, p̃) for the original in-
stance, where p̃i = Kp′i, i = 1, . . . , m, and solution (W, p′′) for the rounded
instance, where p′′i = �pi/K�. An application of the previous two lemmas now
yields

Π(W ′, p̃) = KΠ(W ′, p′) ≥ KΠ(W,p′′) > K

�
1

K
Π(W,p) − mn

�
= Π(W,p)−εB

mn

2n2
,

where the first inequality holds due to optimality of (W ′, p′) for the rounded
instance. Note that m ≤ 2n− 1 < 2n, and the optimal profit is at least equal to
the maximum budget B, so B ≤ Π(W, p). Thus, Π(W ′, p̃) > (1 − ε)Π(W, p).

Concerning the computation time to compute the optimal solution (W ′, p′),
observe that the size of the digraph is O(n6C+1/ε2C). Hence, the computation
time to find the longest path is polynomial in terms of n and 1/ε. �	

Again, notice that the solution constructed by the FPTAS need not be envy-free.
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3 Selling Simple Graphs

In this section we assume that the availability of any item i is one, or in other
words, the edge multiplicities ci are one. We consider three types of graphs,
namely paths, trees and grids.

Theorem 4 ([16]). The profit maximization problem on a simple path can be
solved in O(n2) time.

In fact, the result of Theorem 4 is not surprising, since the problem reduces
to finding a maximum weight independent set in an interval graph, a problem
known to be solvable in polynomial time [14].

3.1 Trees

Guruswami et al. [11] show that the problem with unlimited availability of items
is APX-hard even on star graphs. Contrasting this complexity result, we prove
that if the availability of each item is exactly one, the profit maximization prob-
lem on a tree can be solved in polynomial time. (Again, recall that we do not
require the solution to be envy-free.)

Theorem 5. The profit maximization problem on a simple tree can be solved in
O(n5) time.

Proof. Consider the graph H = (J, E) where (j, k) ∈ E if and only if Ij ∩Ik 
= ∅,
for two customers j, k ∈ J . Since {Ij |j ∈ J} is a collection of simple paths in
a tree, graph H is called an EPT graph [10]. Since G is a tree and availability
of each item is exactly one, the maximum weight independent set in H with
vertex weights bj , j ∈ J , is the optimal set of winners W , and the weight of this
independent set is equal to the maximum profit. The vector of optimal prices can
be straightforwardly obtained by setting the price of one arbitrary edge from Ij ,
j ∈ W , to bj , and setting the prices of all other edges in Ij to 0. The remaining
edges in the tree can be priced arbitrarily.

A polynomial time algorithm to compute a maximum weight independent set
in an EPT graph was described by Tarjan [17]. The algorithm is a recursive
procedure that decomposes the problem on the basis of clique separators. The
polynomial running time is a consequence of the fact that the atoms, i.e., the
non-decomposable subgraphs of EPT graphs are line graphs. For line graphs, the
maximum weight independent set problem is just the maximum weight matching
problem, which can be solved in O(n3) time by Edmonds algorithm [7]. The total
time complexity is bounded by O(n5). �	

3.2 Grids

Demaine et al. [6] show that the profit maximization problem where the bundles
are arbitrary subsets of items (and with unlimited availability of items) is hard
to approximate to within a (semi-)logarithmic factor. If we restrict bundles to be
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paths in a general graph, Briest and Krysta [5] show that the problem is APX-
hard even if several parameters of the problem are constantly bounded. For the
even more restricted problem where the bundles are paths in a star, Guruswami
et al. [11] also show APX-hardness.

Here we show that if the availability of items is bounded, we can derive an
even stronger inapproximability result, even for a very restricted class of graphs
and customers’ bundles.

Theorem 6. For all ε > 0, approximating the profit maximization problem on
a simple grid to within n1−ε is NP-hard, even with unit budgets, and when each
item is an element of at most two bundles. The same result holds if the solution
is required to be envy-free.

Proof. For the proof we construct an approximation preserving reduction from
Independent Set. In the latter problem, given a graph G = (V, E), the prob-
lem is to find a maximum cardinality subset S ⊆ V such that no two vertices
from S are adjacent. It is NP-hard to approximate Independent Set within a
factor |V |1−ε; see [18].

Let V = {v1, . . . , vn} and E = {e1, . . . , em}. We construct the instance of the
profit maximization problem as follows. We create a grid graph with (n + 1)
horizontal layers and (2m + 2) vertical layers. We index the vertices of the grid
graph by pairs (i, j) where i is the index of the vertical layer and j is the index
of the horizontal layer. Let horizontal layer j ∈ {1, . . . , n} correspond to vertex
vj ∈ V , and let the edge ((2i, n + 1), (2i + 1, n + 1)) in the grid correspond to
edge ei ∈ E. Next, for each vertex vj ∈ V , we introduce a customer in the profit
maximization problem with a bundle defined by the following simple path in
the grid graph. The path starts at point (1, j) and ends at point (2m + 2, j)
following the layer j everywhere except for the edges ((2i, j), (2i + 1, j)) such

v1

v2

...

vk

...

edges

(v1, vk) (v2, vn)
...

vn

(vk, vn)

Fig. 1. Grid graph from the reduction
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that vj ∈ ei. These edges are substituted by vertical detours, passing through
edges ((2i, n + 1), (2i + 1, n + 1)); see Figure 1 for an example. We complete the
construction setting the budget of each customer to 1.

We claim that in G there exists an independent set of cardinality K if and only
if there exists a solution of the corresponding profit maximization problem with
total profit K. By construction, two paths corresponding to adjacent vertices in
G must share some edge e in layer (n + 1). Since the multiplicity of edge e is
1, only one of these paths can be present in a feasible solution. Hence, the total
profit in the profit maximization problem is at most the maximum cardinality
independent set in G. Now, consider an independent set S in G and any two
vertices in this independent set. By construction, the two corresponding paths in
the profit maximization problem are edge disjoint. Therefore, there is a solution
of the profit maximization problem where S defines the set of winners and this
allocation is feasible with respect to availability of items. For each vj ∈ S we set
the price of the grid edge ((1, j), (2, j)) to 1, for each vj /∈ S we set the price
of ((1, j), (2, j)) to 2, and for all other edges of the grid we set the prices to 0.
In the constructed solution of the profit maximization problem the total profit
equals |S|. Thus, the reduction preserves the objective value.

Since the number of customers n in the profit maximization problem exactly
equals |V |, we derive that the profit maximization problem is hard to approxi-
mate to within a factor n1−ε. It remains to notice that the constructed solution
is envy-free since the price of the bundle of each non-winning customer equals 2,
which is greater than the budget. Therefore, the theorem holds also if we require
the solution to be envy-free. �	

4 Conclusion

Notice that the currently best known negative result on the tractability of the
profit maximization problem on a path is NP-hardness [4,5]. Even though several
FPTAS’s (including the one of this paper) exist whenever certain parameters
are constantly bounded, the best known positive result for the general case is a
logarithmic approximation [3,11]. It thus remains an intriguing open problem to
obtain a (deterministic) constant approximation algorithm.

Acknowledgements. Thanks to Jason Hartline for several interesting remarks
and pointers to several references.
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