A Fully Dynamic Algorithm for the Recognition
of P,-sparse Graphs

Stavros D. Nikolopoulos! Leonidas Palios’ Charis Papadopoulos?*

t Department of Computer Science, University of Ioannina
tDepartment of Mathematics, University of Ioannina

P.O.Box 1186, GR-45110 Ioannina, Greece
{stavros, palios, charis}@cs.uoi.gr

Abstract: In this paper, we solve the dynamic recognition problem for the class of Pj-
sparse graphs: the objective is to handle edge/vertex additions and deletions, to recognize
if each such modification yields a Pj-sparse graph, and if yes, to update a representation
of the graph. Our approach relies on maintaining the modular decomposition tree of the
graph, which we use for solving the recognition problem. We establish properties for each
modification to yield a Pj-sparse graph and obtain a fully dynamic recognition algorithm
which handles edge modifications in O(1) time and vertex modifications in O(d) time for a
vertex of degree d. Thus, our algorithm implies an optimal edges-only dynamic algorithm
and a new optimal incremental algorithm for P4-sparse graphs.

Keywords: fully dynamic algorithm, P,-sparse graph, modular decomposition, recognition.

1 Introduction

A dynamic graph algorithm for a class II of graphs is an algorithm that handles a series of on-line
modifications (i.e., insertions or deletions of vertices or edges) on a graph in II; if the modification
results in a graph in II, the algorithm performs it (updating an internal representation), otherwise
it outputs false and does nothing. Such algorithms are categorized depending on the modification
operations they support: an incremental (decremental) algorithm supports only vertex insertions
(deletions); an additions-only (deletions-only) algorithm supports only edge additions (deletions); an
edges-only fully dynamic algorithm supports both edge additions and edge deletions; a fully dynamic
algorithm supports all edge as well as all vertex modifications.

Several authors have studied the dynamic recognition problem for graphs of specific families. In-
cremental recognitions algorithms have been proposed by Corneill et al. [3] for cographs and by Deng
et al. [9] for connected proper interval graphs. Ibarra [15] has given an edges-only fully dynamic algo-
rithm for chordal graph recognition which handles each edge operation in O(n) time and an edges-only
fully dynamic algorithm for split graph recognition which handles each edge operation in O(1) time.
Hell et al. [13] have given a fully dynamic algorithm for recognizing proper interval graphs which
works in O(d + logn) time per modification, where d is the degree of a vertex in case of a vertex
modification; Crespelle [5] has given a fully dynamic algorithm for recognizing interval graphs; based
on the incremental algorithm for cographs [3], Shamir and Sharan [21] have developed a fully dynamic
algorithm for the recognition of cographs, threshold graphs and trivially perfect graphs which handles
edge modifications in O(1) time and vertex modifications in O(d) time; Crespelle and Paul have pre-
sented a fully dynamic algorithm for directed cographs which require O(d) time if d arcs are involved

Graph Class Edge Addition Edge Removal Vertex Insertion Vertex Deletion
chordal O(n) [15] O(n) [15] O(dn) [1] -

interval O(n) [5] O(n) [5] O(n) [5] -

proper interval O(logn) [13] O(logn) [13] O(d + logn) [13] O(d + logn) [13]
split O(1) [15] O(1) [15] O(d) [12] O(d) [12]
permutation O(n) [7] O(n) [7] O(n) [7] O(n) [7]
directed cographs | O(1) [6] 0(1) [6] 0(d) [6] 0(ad) [6]
cographs O(1) [21] 0(1) [21] O(d) 3] O(d) [21]
trivially perfect 0(1) [21] O(1) [21] O(d) [3] 0(d) [21]
threshold 0O(1) [21] O(1) [21] O(d) [21] O(d) [21]
Py-sparse - - O(d) [16] -

Table 1: Summary of known results for fully dynamic recognition algorithms of several graph classes.
For modifications involving a certain vertex v, we denote by d the degree of v.

LET Ty

Py Cs P 1 2

Figure 1: The seven forbidden subgraphs for the class of Ps-sparse graphs.

[6]; furthermore, the last two authors have developed a fully dynamic algorithm for permutation graphs
which handles each modification in O(n) time [7]. More recently two independent algorithms have been
proposed for the dynamic recognition of distance-hereditary graphs [11, 23]. For the class of Py-sparse
graphs, an incremental algorithm for recognizing a P;-sparse graph has been proposed by Jamison and
Olariu [16] which handles the insertion of a vertex of degree d in O(d) time. In Table 1 we summarize
previously known results for the dynamic recognition of several graph classes.

Researchers have also considered the problem of the dynamic maintenance of the modular decom-
position tree of a graph (the modular decomposition tree of a graph G is a unique (up to isomorphism)
labeled tree which records all the partitions of the vertex set of G into modules and can be constructed
in time and space linear in the size of the graph [4, 8, 18, 24]): Muller and Spinrad [19] have given
an incremental algorithm for the modular decomposition, which handles each vertex insertion in O(n)
time; Corneil et al. [3] have given an optimal incremental algorithm for the recognition and modular
decomposition of cographs, which handles the insertion of a vertex of degree d in O(d) time.

Our work in this paper focuses on Py-sparse graphs; the P,-sparse graphs are defined as the graphs
for which every set of five vertices induces at most one chordless path on four vertices [14] (Figure 1
depicts the 7 forbidden subgraphs for the class of Py-sparse graphs). They are perfect and also perfectly
orderable [14], and properly contain many graph classes, such as, the cographs, the P;-reducible graphs,
etc. (see [2, 16, 17]). The Py-sparse graphs have received considerable attention in recent years and they
find applications in applied mathematics and computer science (e.g., communications, transportation,
clustering, scheduling, computational semantics) in problems that deal with graphs featuring “local
density” properties. Indeed, the structure of P-sparse graphs incorporates such local density properties
since they are graphs that are unlikely to have more than a few P,s; we note that the notion of local
density is often associated with the absence of Pys.

In this paper, we describe a fully dynamic algorithm for the class of Py-sparse graphs. Our algorithm
maintains the modular decomposition tree of the graph; it checks whether the requested edge/vertex
operations yield a Py-sparse graph, and if yes, it updates the modular decomposition tree. Edge
operations are handled in O(1) time while vertex operations are handled in O(d) time. As a result,

we obtain an optimal edges-only dynamic algorithm and a new optimal incremental algorithm for
P,-sparse graphs.

As already mentioned, here we focus on maintaining a data structure of the given graph based on
the modular decomposition tree. Such a representation is the ground of other dynamic recognition
algorithms like for cographs [3, 21] and permutation graphs [7]. Thus it is expected that certain
similarities occur between the dynamic algorithms that use the modular decomposition tree of the
modified graph. Let us note that the modular decomposition tree of cographs (known as cotree) is
quite restricted with the absence of one of the three types of label for the internal nodes of the tree.
Since the class of Py-sparse graphs properly contains cographs and it is unrelated with permutation
graphs, the modular decomposition tree of a Pj-sparse graph generalizes that of a cograph whereas
it differs to that of a permutation graph. Also we note that known vertex-incremental algorithm for
Py-sparse graphs [16] is not based on the modular decomposition tree and it seems non-trivial to extend
the proposed algorithm in order to maintain the corresponding tree of the modified graph. Moreover
it is known that the edge modifications on cographs have a local impact on the tree which enables an
optimal running time [21]. We prove that a similar local impact occurs on Py-sparse graphs, meaning
that the two vertices incident to the modified edge cannot be far apart in the tree. For the vertex-
incremental algorithm a marking process was used for the cograph recognition [3]. We are able to
extend the marking process to the representation of a Ps-sparse graph so that it handles certain type
of labelled node of the modular decomposition tree which is not present in the cotree of a cograph.

Our algorithm is based on a series of characterizations of the modified graph in order to provide
necessary and sufficient conditions whenever the graph belongs to the class of Pj-sparse graphs. In
some of the characterizations certain similarities occur on the stated conditions. The reason for giving
all proofs in details is to provide a correct certificate of non-membership, i.e., a forbidden induced
subgraph, when each of the corresponding condition does not hold. If G’ is not Ps-sparse graph then
it must contain one of the forbidden induced subgraphs depicted in Figure 1. However without the
knowledge of the corresponding condition it is not clear to which certificate we are referring to and
how this certain subgraph is obtained. Although our algorithm does not provide a certificate, it can be
extended to do so, following our structural proofs. Therefore each of the characterization contributes
in ensuring non-membership of the modified graph.

The paper is organized as follows. In Section 2 we establish the notation and related terminology,
and we present background results on Pj-sparse graphs. In Section 3 we present our algorithmic
techniques for handling edge modifications, while in Section 4 we present the case for handling vertex
modifications. Final remarks and open problems are discussed in Section 5. A preliminary version of
this work appeared in [20].

2 Theoretical Framework

Let G be a simple graph; we denote by V(G) and E(G), the vertex and edge set of G. The subgraph
of G induced by a set S C V(G) is denoted by G[S]. If a vertex u is adjacent to a vertex v, we say
that u sees v, otherwise, we say that it misses v; more generally, a vertex set A sees (misses resp.) a
vertex set B, if every vertex in A sees (misses resp.) every vertex in B. We denote by P4 a chordless
path on four vertices. The edge of a P incident to the two vertices of degree two is called middle edge
whereas the other two edges are called wing edges.

Let IT be a class of graphs. A fully dynamic algorithm for Il-recognition maintains a data structure
of the current graph G € II and supports the following operations.

e FEdge addition: given two vertices u,v € V(G) which are non-adjacent in G, update the data
structure if G U {uv} € II, or output false otherwise;

e FEdge removal: given an edge uv € E(G), update the data structure if G — {uv} € II, or output
false otherwise;

V6

V11
U7

(2)J—

V12

V3 e—oN

U8

Ve
(N 9 VU1 V2 U3 Vg U7 U

>U13
’U5.4 V11 V12 Vg Vs Vg V10

v10

Figure 2: A disconnected Pj-sparse graph on 13 vertices and its md-tree.

o Vertex insertion: given a new vertex v ¢ V(G) adjacent to some vertices of G (possibly to none
or all), update the data structure if G U v € II, or output false otherwise;

o Vertex deletion: given a vertex v € V(G), update the data structure if G — v € II, or output
false otherwise.

After the execution of any such operation, the algorithm becomes ready to execute the next operation.
Clearly (see also [21]), the addition (deletion) of a vertex does not reduce to the addition (deletion) of
its incident edges; thus, vertex modifications must be handled separately from the edge modifications
by the dynamic algorithm. However note that operations that handle vertex modifications can be used
to support edge modifications as well in running time bounded by the time needed for a vertex removal
and a vertex addition.

A graph class II is called complement-invariant if G € II implies G € II. Further, we say that II
satisfies the hereditary property if G € II implies G[S] € II for every S C V. We note that the class of
Py-sparse graphs is complement-invariant and satisfies the hereditary property.

Lemma 2.1. Let G be a Py-sparse graph. Then (i) G has the complement-invariant property, and (ii)
for everyv € G, G' = G — v is a Py-sparse graph.

2.1 Modular Decomposition and P;-sparse Graphs

A subset M of vertices of a graph G is said to be a module of G, if every vertex outside M is
either adjacent to all the vertices in M or to none of them. The empty set, the singletons, and the
vertex set V(G) are trivial modules and whenever G has only trivial modules it is called a prime (or
indecomposable) graph. A module M of G is called a strong module if, for any module M’ of G, either
M’ N M = () or one module is included into the other. Furthermore, a module in G is also a module
in G.

The modular decomposition of a graph G is a linear-space representation of all the partitions of V(G)
where each partition class is a module. The modular decomposition tree T(G) of the graph G (or md-
tree for short) is a unique (up to isomorphism) labeled tree associated with the modular decomposition
of G in which the leaves of T(G) are the vertices of G and the set of leaves associated with the subtree
rooted at an internal node induces a strong module of G (Figure 2). Thus, the md-tree T'(G) represents
all the strong modules of G. It is known that for every graph G the md-tree T'(G) can be constructed
in linear time [4, 8, 18, 24].

Let ¢ be an internal node of the md-tree T(G) of a graph G. We denote by M (t) the module
corresponding to ¢ which consists of the set of vertices of G associated with the subtree of T'(G) rooted at
node t. The node t is labeled by either P (for parallel module) if the subgraph G[M (t)] is disconnected,
S (for series module) if the complement of G[M (t)] is disconnected, or N (for neighborhood module)

otherwise. Let u1,us, ..., u, be the children of the node t of T'(G). We denote by G(t) the representative
graph of the module M (t) defined as follows: V(G(t)) = {u1,ua,...,up} and uu; € E(G(t)) if there
exists edge vive € E(G) such that vy € M(u;) and vy € M(u;); by the definition of a module, if a
vertex of M(¢;) is adjacent to a vertex of M (t;) then every vertex of M(¢;) is adjacent to every vertex
of M(t;). Thus, G(t) is isomorphic to the graph induced by a subset of M (t) consisting of a single
vertex from each maximal strong submodule of M (t) in the modular decomposition of G. Depending
on whether an internal node ¢ of T(G) is a P-, S-, or N-node, the following result holds (see also [10]):

o if t is a P-node, G(t) is an edgeless graph;

o if t is an S-node, G(¢) is a complete graph;

o if ¢t is an N-node, G(¢) is a prime graph.
In particular, for the class of Py-sparse graphs, Giakoumakis and Vanherpe [10] showed that:

Lemma 2.2. Let G be a graph and let T(G) be its modular decomposition tree. The graph G is Py-
sparse iff for every N-node t of T(G), G(t) is a prime spider with a spider-partition (S, K, R) and no
vertex of S UK is an internal node in T(G).

A graph G is called a spider if the vertex set V(@) of the graph G admits a partition into sets S, K,
and R such that:

Cl: |S|=|K]| > 2, the set S is an independent (stable) set, and the set K is a clique;
C2: all the vertices in R are adjacent to all the vertices in K and to no vertex in S;
C3: there exists a bijection f : S — K such that one of the following statements holds:
(i) for each vertex v € S, N(v) N K = {f(v)};
(ii) for each vertex v e S, N(w)NK =K — {f(v)}.

The triple (S, K, R) is called the spider-partition. A graph G is a prime spider if G is a spider with
|R| < 1. If the condition of case C3(i) holds, then the spider G is called a thin spider, whereas if the
condition of case C3(ii) holds then G is a thick spider; note that the complement of a thin spider is
a thick spider and vice versa. A prime spider with |S| = |K| = 2 is simultaneously thin and thick.
Observe that in a spider graph every edge between vertices of S and K is a wing edge of a P4 and
every edge between vertices of K is a middle edge of a Pj.

2.2 Data Structure

As mentioned, our algorithm maintains the modular decomposition tree T'(G) of the Py-sparse graph.
In order to facilitate our task, we store in each node of T(G) additional information of constant
size per node. More specifically, each node ¢ of T(G) stores

e its type (P, S, or N),

e a pointer to its parent, denoted by p(t), and a pointer to its children,

e the number of its children, and

e auxiliary integer fields counter and mark initialized to 0.
Additionally, each N-node stores

e whether the corresponding spider is thin or thick;

e the independent set S and the clique K of the spider are stored in pairs of corresponding (through
the function f) vertices,

e while there exists a separate pointer to R which is null if R = () (there is no need to store the
size |S| = | K| as it is equal to |¢/2], where ¢ is the number of children of the N-node).

3 Edge Modifications

Here we show how to handle any edge addition and edge removal of a P,-sparse graph.

3.1 Adding an Edge

Let uv be the edge to be added and let G’ = G U {uv}. For the two vertices u, v € G we denote by
tyy the least common ancestor of u and v in T'(G). Since u, v are non-adjacent in G, node ¢, is either
a P-node or an N-node.

Let us first discuss the modifications needed in order to update properly T'(G). We show that we
need to update either the subtree rooted at t,, or the subtree rooted at p(t,,). In G’ every vertex of
V(G")\ M (tys) either sees M (ty,,) or misses M (t,,) and, thus, M (¢,,) remains a module of G’. Let T,
be the modular decomposition tree of G'[M (ty,)]. Then T'(G’) is obtained from T'(G) by substituting
the subtree rooted at t,, by T,. However if p(t,,) has the same P or S label with the root of T}, we
need to be more careful. Because we add an edge in G[M (t,)], if the root of T}, is a P-node then ¢,
is also a P-node and p(t,,) is not a P-node. Thus if both p(t,,) and the root of T, have the same label
then it implies that they are both S-nodes. The latter occurs when u or v sees every vertex of M (t,)
in G'. Assume without loss of generality that u sees every vertex of M (t,,) in G'. Since G[M (t,,)] is
disconnected (rooted at a P-node) and G'[M (t,,)] is connected (rooted at an S-node), G'[M (tyy)] — u
is disconnected or G'[M(tyy)] — v has only one vertex v. Thus the the modular decomposition tree
T, —uof G'[M(tyy)] — u is rooted at a P-node or contains only a leaf-vertex. Then we substitute the
subtree rooted at t,, by 7., — u and place u as a child of p(t,,). Therefore the addition of the edge
wv in G results in updating one of the subtrees rooted at t,, or p(tys)-

Let t, and ¢, be the children of t,, such that M(t,) and M(t,) contain the vertices u and v,
respectively. Note that if |M(¢,)] =1 (resp. |M(¢,)| =1) then ¢, = u (resp. ¢, = v). Without loss of
generality, we make the following assumption:

Assumption 3.1. We assume that |M(t,)| > |M(t.)].
We distinguish three cases, namely, (i) |M(t,)| > 2, (ii) |[M(t,)] = 1 and ¢, is a P-node, and

(iii) |M(t,)] = 1 and ¢, is an N-node; we prove the following lemmas.

Lemma 3.2. Let |M(t,)| > 2. Then G’ is a Py-sparse graph if and only if ty, is a P-node and
(M ()] = [M(t,)| = 2.

Proof. Since |M (t,)| > |M(t,)| > 2, the node t,, cannot be an N-node because ¢, and t, are internal
nodes and at most one child of any N-node is an internal node (not a leaf) in T(G) by Lemma 2.2.
Thus, ¢y, is a P-node; then it follows that the subgraphs G[M (t,,)] and G[M(t,)] are both connected.

For the “if”-part of the lemma let M(t,) = {u,u'} and M(¢,) = {v,v’}. Observe that in G’ we
create a new Pj by adding its middle edge uwv. We describe the modifications applied in T(G’). We
create a new subtree rooted at an N-node « having children u, w’, v,v’. The spider partition (5, K, R) of
G(7) corresponds to S = {v/,v'}, K = {u,v}, and R = 0. If ¢,, has exactly two children in T(G) then
tuy is replaced by v in T(G’); otherwise, t,, and t, are removed from children of ¢,, and v becomes a
child of t,, in T(G"). Hence the resulting graph G’ is indeed P;-sparse. For the “only if”-part, we have
that G’ is Py-sparse and assume for contradiction that at least one of M (t,), M(t,) has 3 elements;
then, Assumption 3.1 implies that |M(¢,)| > 3. The connectivity of G[M(t,)] and G[M (t,)] implies
that there exist vertices v’ € M(t,) and v’ € M(t,) such that wu’,vv’ € E(G). Then, by adding
the edge uv in G, the resulting graph G’ contains the Py v/uvv’. Since G[M(t,)] is connected and
|M(t,)| > 3, there exists a vertex = in M (t,) such that x sees at least one of v,v’. But then, the five
vertices u’, u,v,v’, z induce in G’ one of the following graphs: Py, Fy, or Fy; thus, G’ is not Ps-sparse,
a contradiction. 1

For the following observe that if statement (i) holds then we do not create a new P, in G’; this
corresponds to the cograph recognition case as stated in [21]. If statement (ii) holds then we create a
new P, in G’ by adding a wing edge.

Lemma 3.3. Let M(t,) = {u}, tuy, be a P-node, and suppose that the path from t, to p(v) in the
md-tree T(G) does not contain any N-node. If G' is a Py-sparse graph then the following two properties
are satisfied:

(i) there exists at least one vertex in M(t,) which sees all the other vertices in M (t,);

(i) if vertex v misses at least one vertex in M(t,), then there exists exactly one vertex, say, x, in
M (t,) which sees all the other vertices in M (t,), v misses exactly one vertex, say, y, in M(t,),
and y only sees x.

Proof. (i) Suppose for contradiction that there is no vertex in M(t,) that sees all the other vertices in
M (t,). Since t,, is a P-node and there are no N-nodes from ¢, to p(v), ¢, is an S-node. Furthermore,
because there is no vertex € M(t,) that sees M(t,) — {z}, t, has no children that are leaves of the
md-tree T(G). Thus, ¢, has at least two children that are internal nodes of T(G); let ¢ be the child of
t, that is an ancestor of v and let ¢ be another child of ¢,. Both ¢ and ¢’ are not S-nodes, and there
exist p € M(t) — {v} and ¢, € M(t'), such that v, p are not adjacent and ¢, r are not adjacent in G.
Then, the vertices u, v, p, ¢, induce an Fy in G’, a contradiction. Therefore, there exists at least one
vertex in M (t,) that sees all the other vertices in M(t,).

(ii) We first show that there is no vertex z’ € M(t,) — {x} that sees all other vertices in M(t,). If
there were such a vertex z’, then, the five vertices u,v,z,y, and x’ induce in G’ the graph Fi, a
contradiction. Thus, only vertex = in M(t,) sees all other vertices in M (¢,).

Next, suppose that there exists another vertex y' € M(t,) — {y} such that v misses y’. Then, the
five vertices u,v,z,y, and ¢’ induce in G’ the graphs F; or F3, a contradiction. Therefore, v misses
exactly one vertex in M(t,), the vertex y. Moreover, if y saw a vertex, say, z € M (t,), other than x,
then the five vertices u, v, z,y, and z would induce in G’ the graph Fi, a contradiction again. I

Suppose now that the path from ¢, to p(v) contains at least one N-node ¢ of T(G). Recall that the
representative graph G(t) is a prime spider and let (S, K, R) be its spider partition. Note that v € M (t)
and thus v belongs to the set S, or to the set K, or if R = {r} to the set M(r).

Lemma 3.4. Let M(t,) = {u}, tu, be a P-node, and suppose that the path from t, to p(v) in the md-
tree T(G) contains at least one N-node t. Let (S, K, R) be the spider partition of G(t) with R = {r}.
If G' is a Py-sparse graph then the following three properties are satisfied:

(i) v e M(r) and v sees all other vertices in M(r);
(i) the path from t, to p(v) contains exactly one N-node t;
(iii) t = t, and G(t,) is a thin spider.

Proof. (i) Suppose for contradiction that the vertex v belongs to the set S of the prime spider G(t).
Since |S| = |K| > 2, there exists a vertex v’ € S — {v}. If the Py of G(t) to which v,v" belong is
vyy'v’, then the addition of the edge uv implies that G’ contains the Ps uvyy’v’, a contradiction. Now
consider that v € K; let v € K — {v} and let zvv'z’ be the Py of G(¢) to which v, v’ belong. Then, the
five vertices z,v,v’, 2/, u induce in G’ the graph F}, a contradiction again. Thus, since the graph G’ is
Py-sparse, it must hold that v € M (r).

Suppose now that v € M(r) and let z € M (r) be such that v misses z. If x € S and y € K such

that x,y are adjacent in G, then by adding the edge wv, the five vertices u, v, z,y, and 2z induce the
graph F; in G'.

(i) Suppose that there existed another N-node, say, ¢/, in the path from ¢, to p(v) and let (S’, K', R')
be the spider partition of G(t') with R’ = {r’'}. Suppose without loss of generality that ¢’ is higher in
the tree T'(G) than t. Then, according to statement (i) above, v would belong to M (r) C M(r'); yet,
v would miss all the vertices of S C M(r’), in contradiction to statement (i).

Figure 3: Illustrating case (i) of Corollary 3.5 and the corresponding updates of the md-tree. If there
is no subtree labelled A in T(G) then the top-most P-node in the subtree of T'(G’) is not needed and
the subtree is now rooted at the S-node which is the parent of v.

Figure 4: Tllustrating case (ii) of Corollary 3.5 and the corresponding updates of the md-tree. If there
is no subtree labelled A in T'(G) then the P-node in the subtree of T'(G’) is not needed and the subtree
is now rooted at the N-node which is the parent of v.

(iii) Suppose now that t # t,. Since ty, is a P-node and t # t,, it follows that ¢, is an S-node (if ¢,
were an N-node, then the path would contain two N-nodes). Then, at least one vertex z € M (t,) sees
all the vertices of M(t). Let z,y € S be two vertices of the spider G(¢). By adding the edge wv in G,
the five vertices u,v,x,y, and z of G’ would induce the graph Fj in G’, a contradiction. Moreover, if
G(t,) were a thick spider, then there would exist z1,z2 € S and y € K such that y would see both z;
and z5. By statement (i) above, v € M(r). Then, the addition of the edge uv would imply that the
vertices x1, Ta,¥y, v, u would induce the graph Fj in G’. 1

Then, from Lemmas 3.3 and 3.4, we have:

Corollary 3.5. Let |[M(t,)| =1 (i.e., M(t,) = {u}) and suppose that t,, is a P-node. Then G’ is a
Py-sparse graph if and only if one of the following (mutually exclusive) cases holds:

(i) vertex v sees all the vertices in M (t,) — {v};

(i) vertex v misses exactly one vertex y € M(t,) such that y sees only one vertex v € M(t,), and
only the vertex © sees all the other vertices in M (t,);

(7ii) vertex v misses £ > 1 wvertices in M(t,) such that G(t,) is a thin spider (S, K, R) with |S| =
|K| = ¢, R = {r} and the vertex v belongs to the set M(r) and sees all the other vertices in
M(r).

Proof. For the “if”-part let us construct an md-tree for G’ having the properties described in Lemma, 2.2.
If Case (i) holds then v is a child of the S-node ¢, in T(G). In the md-tree of G’, a new P-node is

T(G):

Figure 5: Hllustrating case (iii) of Corollary 3.5 and the corresponding updates of the md-tree. If there
is no subtree labelled A in T(G) then the P-node in the subtree of T'(G’) is not needed and the subtree
is now rooted at the N-node which is the parent of v.

inserted as a child of ¢, having children u and an S-node 7. The previous children besides v of ¢, now
point to node 7 keeping their adjacencies they had in G (see Figure 3; note that this case corresponds
to the cograph characterization as stated in [21]). The rest of the cases follow in a similar manner as
shown in Figures 4-5.

For the “only if”-part, we have that G’ is Ps-sparse. Then, if the path from ¢, to p(v) in the
md-tree T(G) contains no N-nodes, then by Lemma 3.3 (statement (i)), there exists a vertex in M (¢,)
which sees all other vertices in M (¢,). If v is such a vertex, then we get Case (i). If v is not so, i.e.,
v misses at least one vertex in M (¢,) — {v}, then Lemma 3.3 (statement (ii)), implies that Case (ii)
holds. If now the path from ¢, to p(v) in the md-tree T(G) contains N-nodes, then by Lemma 3.4, we
have that ¢, is the unique N-node in the path and G(¢,) is a thin spider. Furthermore, if (S, K, R) is
the spider partition of G(t), then R = {r} and v € M(r) and sees all other vertices in M (r). Thus, v
would miss only the vertices in S, where |S| > 1; this is Case (iii). I

Lemma 3.6. Let |M(t,)| =1 (i.e., M(t,) = {u}) and suppose that t., is an N-node with (S, K, R)
being the spider partition of G(ty,). Then G’ is a Py-sparse graph if and only if either S = {u,v} and
R=0oruesS,ve K, and G(ty,) is a thick spider.

Proof. Let us first show that if one of the two conditions of the statement holds then G’ is a Py-sparse
graph. In order to show that G’ is a Pj-sparse graph we construct an md-tree T(G’) for G’ with the
properties described in Lemma 2.2. If S = {u,v} and R = () then the four vertices of G(t,,) create a
chordless cycle and the subtree of t,, is replaced with the subtree shown in the top part of Figure 6.
Let v be the new S-node having the two children that correspond to the subtrees of u and v. If the
parent of ¢, exists and is an S-node then the two children of « become children of p(t,,) and = is
removed since two adjacent S-nodes cannot exist in T'(G’). Otherwise, if t,, is the root of T(G) or
P(tuw) is an P- or N-node then v becomes a child of or p(t,,) in T(G’). For the case when u € S,
v € K, and G(t,,) is a thick spider we work in a similar manner as shown in the two other parts of
Figure 6 in which we distinguish the modified T(G’) according to whether |S| =2 or |S| > 2.

Next assume that G’ is a Pj-sparse graph. Then G’ does not contain one of the graphs in Figure 1
as induced subgraphs. The definition of the spider implies that the cases to consider are for u,v to
belong both to S, or to S and K, or if R = {r} to S and M(r).

e u,v € S: Let v,v € K such that uu'v'v is a Py of G; then, G’ contains the chordless cycle
wu'v'v. If R = {r} then the vertices u,v,u’,v" and any vertex in M(r) induce a P5 in G’; thus,
R =10. If |S] = |K| > 2, then if the spider is thin, the vertices u,v,u’,v’,y, where y € K —{u/,v'}
induce a Py, whereas if the spider is thick, the vertices u,v,u’,v’, z, where z € S — {u, v} induce
a P5in G'.

e u €S, ve K: Suppose that G(t,,) is a thin spider such that |S| > 2 (note that the spiders
with |S| = 2 are also considered thick); R may or may not be . Then, v # f(u). Let z € K be

Figure 6: Illustrating the cases of Lemma 3.6 and the corresponding updates of the md-tree.

such that z # v and z # f(u); then, the vertices u, v, f(u), z, f~1(2) induce a graph F; in G'.

eucSandve M(r): Letz €S —{u}. If z,2" € K are the vertices such that uzz'z is a Py in
G(tuy) (and in G), then the vertices u,v,x, z, 2’ induce an Fy in G, which thus is not Pj-sparse.

Therefore if G’ is a Py-sparse graph then the conditions of the statement hold and we conclude the
proof. 1

Due to the previous results, one can notice that the addition of an edge in a P,-sparse graph can
never create a new thick spider with |\S| > 3. We conclude this section with the following result.

Theorem 3.7. The insertion of an edge in a Py-sparse graph can be handled in O(1) time.

Proof. We apply Lemma 3.2, Corollary 3.5, and Lemma 3.6, that correspond to different cases de-
pending on the cardinality of M(t,) (whether it is a singleton set) and the label of t,, (P-node or an
N-node). In fact we show that checking the corresponding cases and properly updating T'(G) can be
done through traversing T'(G) in constant time.

More precisely Lemma 3.2 reads in terms of 7'(G) as follows: u and v have the same grand-parent
which is a P-node and both parents of v and v have exactly two children that are leafs in T'(G). Thus
checking the corresponding statement requires going up from u,v by at most 2 levels which can be
done in O(1) time. Further obtaining T'(G’) can be done through updating the corresponding fields of
constant number of nodes.

Next, we express the cases of Corollary 3.5 in terms of T(G) as follows:

(i) p(v) is not an N-node and either p(v) or the grand-parent of v coincides with p(u);

10

(ii) p(v) is not an N-node and either the great grand-parent of v coincides with p(u), and the grand-
parent of v has exactly two children one of which is leaf, or the great great grand-parent of v
coincides with p(u), and both the grand-parent and the great grand-parent of v have exactly two
children one of which is leaf.

(iii) either p(v) is an N-node such that G(p(v)) is a thin spider (S, K, R) with R = {v} and the
grand-parent of v coincides with p(u), or p(v) is an S-node, the grand-parent of v is an N-node
corresponding to a thin spider, and the great grand-parent of v coincides with p(u).

Each case requires going up from v by at most 2 levels (case (i)) or 4 levels (case (ii)) or 3 levels
(case (iii)). All the necessary conditions are checked through the additional information stored in each
node of T(G). We need to be careful when we update properly T(G) because of the movement of v
that may result in a node having exactly one child in T'(G") (this corresponds to the root of the subtree
labelled B at Figures 3,4,5). However this can be done in constant time as it corresponds in updating
the parent-pointers of constant number of nodes. Thus it is not difficult to see that updating T'(G)
can be done in constant time.

Regarding Lemma 3.6, the corresponding cases translate in terms of T'(G) as follows: u and v have
the same parent which is an N-node with spider partition (S, K, R) such that either S = {u,v} and
R=0,orue S,ve K,and G(p(u)) is a thick spider. Thus it requires on checking the parent nodes of
u,v and the additional information stored at the N-node. Updating T'(G) can be done by introducing
properly constant number of nodes with the corresponding information as shown in Figure 6.

Hence checking whether any of the corresponding cases holds requires going up from v,u by at
most 4 levels from v and possibly from « which can be done in O(1) time using the parent-pointers
and by spending O(1) time per level for verification purposes. Additionally, updating the md-tree can
also be done in O(1) time. Therefore, the theorem holds. &

3.2 Removing an Edge

In order to handle edge removal, we take advantage of the complement-invariant property of the class
of Py-sparse graphs (see Lemma 2.1). In fact we will apply the algorithm for the edge addition through
Theorem 3.7 on the complement of G: by the complement-invariant property, an edge uv can be added
in G if and only if the edge uv can be removed from G. In order to avoid storing G we will use T'(G)
as a different interpretation for T(G). Indeed T(G) is obtained from T(G) by exchanging the roles
of P- and S-nodes, and for each N-node with spider partition (S, K, R) we exchange the roles of thin
and thick spiders, and swap the sets S and K. Thus by using a different interpretation of 7'(G) in
Theorem 3.7, edge deletions for Py-sparse graphs can also be handled in O(1) time.
Therefore we obtain the following result.

Theorem 3.8. There is an optimal edges-only fully dynamic algorithm for recognizing P,-sparse graphs
and maintaining their modular decomposition tree, which handles each edge modification in O(1) time.

4 Vertex Modifications

First we handle vertex insertions and, then, we handle vertex deletions.

4.1 Adding a Vertex

Let G be a Py-sparse graph and a vertex « ¢ V(G) which is adjacent to d vertices in V(G), where d €
{0,1,...,|V(G)|}. In this section, we show how to recognize if the graph G’ with vertex set V(G)U{z}
is a Py-sparse graph, and if so, we show how to obtain the md-tree T(G’) of G’ from the md-tree T'(G)
in O(d) time. Let us classify the internal nodes of the md-tree T'(G) with respect to the vertex z into
the following three categories: an internal node t is z-fully-adjacent, x-partly-adjacent, z-non-adjacent

11

iff z is adjacent to all, some but not all, and none, respectively, of the vertices in the module M (t).
The above classification is extended to leaf-nodes: a leaf-node a is z-fully-adjacent or x-non-adjacent
iff z is adjacent or non-adjacent respectively to a. For the a-fully-adjacent nodes of T'(G), we have the
following observation:

Observation 4.1. The z-fully-adjacent nodes form a forest of at most d subtrees of T(G) whose total
number of nodes (i.e., internal and leaf) is less than 2d, where d is the number of vertices of G which
are adjacent to x.

Proof. The observation follows from the fact that the forest of z-fully-adjacent nodes has d leaves and
that every internal node in T'(G) and in this forest has at least two children.

In turn, for the z-partly-adjacent nodes, we show the following properties:

P1: if an internal node ¢ of the md-tree T(G) is a-partly-adjacent, then all its ancestors in T'(G) are
z-partly-adjacent;

P2: for every z-partly-adjacent P-node tp of T'(G), the subgraph of G induced by the module M (tp)
contains two non-adjacent vertices a, b such that a is adjacent and b is not adjacent to x;

P3: for every z-partly-adjacent S-node tg of T'(G), the subgraph of G induced by the module M (tg)
contains an edge ab such that a is adjacent and b is not adjacent to x;

P4: for every a-partly-adjacent N-node ¢ of T(G), the subgraph of G induced by the module M (ty)
contains both an edge ab such that a is adjacent and b is not adjacent to x and a pair of non-
adjacent vertices a’, b’ such that a’ is adjacent and b’ is not adjacent to x.

Property P1 holds by the definition of z-partly-adjacent nodes. Let us show that Property P2 holds.
The vertices of M (tp) can be partitioned into two non-empty sets according to whether they are
adjacent or not to x. Since the complement of G[M (¢p)] is connected (tp is a P-node), there must be a
non-edge in G[M (tp)] between the two sets of the partition. The endpoints of the particular non-edge
correspond to the vertices a and b. Properties P3—P4 follow by similar arguments, taking into account
that the graph induced by the module of an S-node is a connected graph, and the graph induced by
the module of an N-node is connected and its complement is also connected.

Additionally, the following very important property holds:

Theorem 4.2. For any two xz-partly-adjacent nodes of T(G), the graph G’ is Py-sparse only if one of
them is an ancestor of the other.

Proof. Suppose that T(G) contains two z-partly-adjacent nodes ¢, ¢’ such that none is an ancestor of
the other. Then, ¢,t' are internal nodes of T(G) and let t; be the least common ancestor of ¢, ', and
t; and tj be the children of ¢; which are ancestors of t and t’ respectively. Clearly, by Property P1, t;
and t;, are z-partly-adjacent nodes. Additionally, the node ¢; is either a P-node or an S-node (recall
that at most one child of an N-node is an internal node). Thus, we distinguish the following two cases:

o the node t; is a P-node: Then, t;,t; are either S- or N-nodes; in either case, there are vertices
a;,b; € M(t;) and ag, by € M(tx) such that in G, a;,b; are adjacent, ay, by are also adjacent,
and x is adjacent to a;, a; but not to b;, by, (see Properties P3, P4). But then, G’ would contain
the Ps bja;rarby, and thus would not be P-sparse.

o the node t; is an S-node: This case is the complement version of the previous case. The nodes
tj,tx, are either P- or N-nodes; in either case, there are vertices a;, b; € M(t;) and ay, by, € M (ty)
such that in G, a;, b; are non-adjacent, ay, by, are also non-adjacent, and x sees a;, a, and misses
bj, by (see Properties P2, P4). But then, G’ would not be Pj-sparse as it would contain the Ps
induced by aj,b;, , ax, bx.

12

Theorem 4.2 implies that for G’ to be Py-sparse all the z-partly-adjacent nodes form a path p, with
at most one node per level of T(G). Since the root of T(G) is an a-partly-adjacent node if there exist
any such nodes, let p, = toty - -t where ¢y is the root of T(G) and ¢, is the z-partly-adjacent node
farthest away from the root. Additionally, Theorem 4.2 implies that for each node t;, 0 < i < k, each
of t;’s children, other than ¢;;1, is either z-fully-adjacent or z-non-adjacent; for the node ¢, each of
ti’s children is either x-fully-adjacent or xz-non-adjacent and there is at least one child of each kind.

For the z-partly-adjacent N-nodes, we can also show the following:

Lemma 4.3. Let t be an x-partly-adjacent N-node of T(G) whose corresponding spider partition of
M(t) is (S, K, R), and suppose that the vertex x is adjacent to a vertex in SU K. Then, the graph G’
is Py-sparse only if x sees S U K, or sees K and misses S.

Proof. First, suppose that x sees k € K. Then we show that x sees every k' € K. Let skk’s’ be the
(unique) Py of the spider which has k&’ as an edge. If 2 misses &’ then the vertices z, k, k', s, s induce
an Fy (if z misses both s,s), or an Fy (if 2 sees s but misses s’), or an Fy (if 2 sees s’ but misses s),
or a Pj (if 2 sees both s,s’). Thus x either sees K or misses it.

In a similar fashion we show that either z sees S or misses it. Suppose that x sees s € S and does
not see s’ € S. Then, if skk’s’ is the (unique) Py of the spider containing both s and s’, the vertices
x,k, k', s, s induce an F; if = is adjacent to both k,k’, or a Ps if 2 is adjacent neither to k nor to
k' (note that in light of our result for K, we do not need to consider the case where x is adjacent to
exactly one of k, k’). Thus, z either sees S or misses it.

Finally we show that if z misses K and sees S then G’ is not P,-sparse. Let skk’s’ be a Pj of
the spider, where k, k' € K and s,s’ € S. If o missed k, k' but saw s, s’ then the vertices z, k, k', s, s’
would induce a C5 in G’, a contradiction. §

Let us consider the partition of the vertex set M (tg) — M (tx) C V(G) into the following four sets:

Vp = U (M(t;) — M(tit1)) Vs = U (M(t;) — M(tit1)),
t; is a P-node t; is an S-node
0<i<k 0<i<k
VNs = U S(ti)’ VNe = U K(ti)a
t; is an N-node t; is an N-node
0<i<k 0<i<k

where for an N-node t;, S(t;) and K(¢;) are the independent set and the clique of the spider induced
by the module M(¢;). Then, every vertex in Vp (in Vg resp.) is non-adjacent (adjacent resp.) to the
vertices in M (ty) since their least common ancestor ¢; in T(G) is a P-node (S-node resp.), while the
structural properties of a spider imply that every vertex in K(t;) (S(t;) resp.) for an N-node t; is
adjacent (non-adjacent resp.) to the vertices in M (t).

Our vertex-addition procedure relies on the following lemmas:

Lemma 4.4. Suppose that the x-partly-adjacent nodes of the md-tree T(G) lie on a path toty - - t,
where tq is the root of T(G) and t; is the parent of t;11 for each i =0,1,...,k — 1. If t; is a P-node
then G’ is Py-sparse if and only if one of the following four (mutually exclusive) cases holds:

(i) Vertex x sees Vg and Vi, and misses Vp and Vi,.
1) Vertex x sees Vg, Vn,, and exactly one vertex, say, y, in Vp, and misses Vi, where
K S

(ii.1) vertex y is a child of node ti_o (which is a P-node),

(#.2) node tp_1 is an S-node with two children, the node t, and one vertez, say, u (which is
adjacent to x), and

13

(ii.3) vertex x sees all the vertices in M(ty) except for a single vertex, say, b, which is a child of
tk.

(iii) Vertex x sees Vi, , all but one vertez, say, z, in Vg, and misses Vp and Vi, where

(11i.1) vertex z is a child of node ty—1 (which is an S-node), and

(i%.2) node ti has two children a,b, which are leaf-nodes such that a is adjacent and b is non-
adjacent to x.

(iv) The node ty—1 is an N-node corresponding to a thick spider with independent set S(ti—1), vertex x
sees Vg, Vg, S(tp—1), and all but one vertezx, say, b (which is a child of i), in M(ty), and
misses Vp and Vi, — S(tg—1).

Proof. 1t is not difficult to see that the graph G’ is Py-sparse if Case (i) of the lemma holds: in the
md-tree of G’, x and the z-fully-adjacent children of ¢, in T(G) are children of an S-node which is a
child of ¢ (see Figure 7 (a)). Similarly, for the remaining cases, Figure 7 gives the md-tree T(G") (it is
easy to check the adjacencies), which establishes that the graph G’ is P,-sparse in these cases as well.
Thus, we need to show that if G’ is Py-sparse exactly one of Cases (i)—(iv) holds.

Since the node t; is an z-partly-adjacent P-node then by Property P2 there exist two vertices
a,b € M (t) which are non-adjacent in G and such that x is adjacent to a and non-adjacent to b.
First, we note that, for G’ to be Ps-sparse:

Al: x must be adjacent to the entire Vi, and to all but at most one vertex in Vg: if x were not
adjacent to vertices y,y’ € Vs U Vy,., then the vertices z, a,b,y,y" would induce in G’ either an
F, or an F (see Figure 1) depending on whether y, 4’ are adjacent or not, and thus G’ would
not be Py-sparse. Thus, z is non-adjacent to at most one vertex in Vg U Vy, . Since the clique of
a spider is of size at least 2, x is adjacent to at least one vertex of the clique. Then by Lemma 4.3
x sees all of V.. Therefore if x does not see a vertex y € Vg U Viy,., then y € Vs.

A2: x must be adjacent to at most one vertex in Vp: suppose that x were adjacent to vertices
2,2 € Vp; since the parent of t is either an S- or an N-node, there exists a vertex y which
is adjacent to a,b and is non-adjacent to z,z’. Then, if y is non-adjacent to x, the vertices
z,x,a,y,b would induce a Ps. If y is adjacent to x, the vertices b,y, x, z, 2/ would induce an F}
(22" ¢ E(Q)), or an Fy (22’ € E(G)).

A3: x must miss the independent sets of all the N-nodes in the subpath toty ---tr_o: suppose that z
were adjacent to a vertex z belonging to the independent set S(t;) of the spider associated with
t; (0 <14 <k —2); then, there exists k € K (¢;) such that k is non-adjacent to z, and since x sees
Vi, k is adjacent to = as well; moreover, no matter whether ¢;_; is an S- or an N-node, there
exists u € M(tx—1) — M(tx) such that u is adjacent to both a,b. Notice also that k is adjacent
to u,a,b since k € K (t;). Then, if x is adjacent to u, the vertices z, x, k, u, b would induce an F,
otherwise, the vertices z, z, a, u, b would induce a Ps.

Observe that if there are no z-partly-adjacent nodes then the root of T'(G) is either an z-fully-adjacent
node or an z-non-adjacent node. This means that Vp = Vg = V. = Vv, = 0 and Case (i) trivially
applies. Moreover the same situation holds whenever ¢ is the root of the tree T(G). Thus, in the
following, we assume that ¢ exists and ¢, is not the root of T(G). Now, if = sees Vg and misses Vp
and tp_1 is not an N-node, then Case (i) applies again; note that from Properties Al and A3, x also
sees Vi, and misses Vig.

Suppose next that ¢ is not the root of T(G) and that x sees y € Vp, or misses z € Vg, or t_1 is
an N-node, and that G’ is Py-sparse; since ¢ is a P-node, we distinguish the following cases:

(a) ty—1 is an S-node: let uw € M(t—1) — M(tx); then u is adjacent to both a, b.

14

(a) In Case (i) C denotes the subtrees rooted at tj_; that contain vertices of
M(tx—1) — M(t) which are adjacent to z, A denotes the subtrees rooted at tj that
contain vertices of M (ty) which are adjacent to z, and B denotes the subtrees rooted
at tj that contain vertices of M (¢)) which are not adjacent to .

T(G):

(b) In Case (ii) C' denotes the subtrees rooted at tj_o that contain vertices of M (tx_2) —
{M(tx—1) U {y}} which are not adjacent to z and A denotes the subtrees rooted at t; that
contain vertices of M (ty) which are adjacent to z. In T(G’) note that if C = 0 then the
parent of p(z) becomes a child of tx_3 in T(G) (so that tx_o is removed in T(G’)) and if A
contains only one leaf-node then it becomes a child of p(z).

T(G):)

(c) In Case (iii) C denotes the subtrees rooted at tx_; that contain vertices
of M(tp—1) — {M(tx) U {z}} which are adjacent to z. In T(G’) note that if

C = 0 then p(z) becomes a child of t5_o.

N AN

th—1 , N
T(G"): thick

N
T(G): thick

Su{vy Ku{z}

(d) In Case (iv) A denotes the subtrees rooted at tj, that contain vertices
of M (t) which are adjacent to . In T(G’) note that if A contains only
one leaf-node then it becomes a child of p(x).

Figure 7: Ilustrating the four cases of Lemma 4.4 and the corresponding updates of the md-tree.

o Suppose that = sees y € Vp. Since y € Vp, y misses a,b,u. Then, = sees u, otherwise z,y, u,a,b

15

would induce a P5. Moreover, y is a child of t;_s: if y were a child of ¢;, where i < k — 2, then
t;+1 would be an S- or an N-node and thus there would exist a vertex v such that v sees u,a,b
whereas v misses y; then, the vertices z,y,u,v,b would induce an F; or an F, depending on
whether z is adjacent to v or not. Next, we show that w is t5_1’s only child other than ty; if not,
then since t;_; is an S-node, there would exist adjacent vertices u,u’ € M (tp—1) — M (ty) and
the vertices z,y,u,u’,b would induce an F'; (recall that = sees any vertex u € M (tx_1) — M (tx)).
Additionally, 2 cannot miss two vertices b, b’ € M (1) because then the vertices x, y, u, b, b would
induce either an F; or an F5 depending on whether b, b’ are adjacent or not. Finally, b is a child
of t, otherwise the child of ¢; that would be an ancestor of b would be an S- or N-node, and
thus there would exist a vertex a’ adjacent to b; then, the vertices x,y,b,a’,u would induce an
F;. Putting everything together we obtain Case (ii).

Suppose that = misses z € Vg and misses Vp. Because z € Vg, z is adjacent to a,b.

If 2 ¢ M(tx—1) — M(t) then because t;_o is a P- or an N-node, there exists v € M (t;_3) such
that v misses both a,b and v, z are adjacent. By Properties A2 and A3 z is adjacent to v and
the vertices z, z,v, a, b induce an Fy. Thus z € M (tp—1) — M (t).

If z is not a child of ¢5_; then there exists a vertex u' € M (tx—1) — M (t) such that z,u’ are non-
adjacent, since t;_1 is an S-node. Moreover sees u’ by Property Al and u" € Vg. Furthermore
u' is adjacent to both a,b. Then the vertices z, z,u’, a, b induce a Ps. Hence z is a child of t;_1.

Next we show that x sees and misses exactly one vertex in M (¢). Recall that ¢; has children
only z-fully-adjacent nodes or z-non-adjacent nodes, since ¢ is the farthest away from the root
x-partly-adjacent node. If x misses two vertices b, b’ € M (i) then b is not adjacent to a because
tx is a P-node and there would have been an z-partly-adjacent node as a child of ¢;. For the
same reason if x sees two vertices a,a’ € M(t;) then a’,b are non-adjacent. Notice that z sees
M (tr,) since z is a child of t;_;. In the former situation, the vertices z, z,a,b, b’ would induce
an I} or an Fy depending on whether b, b’ are adjacent or not, and in the later situation the the
vertices z, 2, a, @', b would induce an F or an F; depending on whether a, a’ are adjacent or not.
Thus we obtain precisely Case (iii).

(b) ty—1 is an N-node: let k € K(ty_1) and s,s" € S(tx_1) such that k sees s but misses s; clearly,
k sees a,b whereas s, s’ miss them. By Property Al, = sees the clique K (¢5_1) of the spider G(tx_1);
thus, sees k. By Lemma 4.3, x either misses the independent set S(¢5—1) of G(tx—1) or sees S(tp_1).
We distinguish the two cases.

o Suppose that = misses S(ty—1). Then z misses Vy,. Vertex z misses Vp as well: if it saw

y € Vp, then the vertices z, ¥, k, s,b would induce an F}; recall that x sees k by Property Al.
Additionally, x sees Vs: if it missed z € Vg, then the vertices z, z,a, s, s would induce an Fj.
This is covered by Case (i).

Suppose that x sees S(tx_1). Then, x sees Vg: if it missed z € Vg, then the vertices z, z, ', a, b
would induce an Fy; recall that s’ € S(t;_1). Additionally, z misses Vp: if it saw y € Vp, then
the vertices z,y, s’, k, b would induce an F}. Furthermore, t;_; corresponds to a thick spider with
£ > 2; if not, £ > 2 and there would exist vertices s, s” € S(tx_1) that would miss k € K (tx_1)
and the vertices z, k, s’, s”,b would induce an Fj. Finally, x sees all the vertices in M (¢x) except
for b; if = also missed b’ € M(t)) then the vertices x, k, s’,b,b" would induce an Fy (b0’ ¢ E(G))
or an Fy (bb' € E(G)). Then also observe that b is a child of ¢, since t; does not have an
a-partly-adjacent node as a child. This is precisely Case (iv).

The case where tj, is an S-node is precisely the complement version of Lemma 4.4: we need to exchange
P- and S-nodes, thin and thick spiders, their cliques and independent sets, and what x sees/misses in
the conditions of Lemma 4.4.

16

N AN
AN tr

N
T(G): thick T(G"): thick
-

5 K r Sui{r} Ku{s}
\\ tr \\
T(G): thin ; = T(G"): thin :
S K r Su{z} Ku{r}

Figure 8: Tllustrating cases (i) and (ii) of Lemma 4.6 and the corresponding updates of the md-tree.

Lemma 4.5. Suppose that the x-partly-adjacent nodes of the md-tree T(G) lie on a path toty - - t,
where tg is the root of T(G) and t; is the parent of t;y1 for eachi=0,1,... .k — 1. If t} is an S-node
then G’ is Py-sparse if and only if one of the following four (mutually exclusive) cases holds:

1) Vertex x sees Vg and Vy,., and misses Vp and Vi, .
K S
11) Vertex x sees Vi,., all but one vertex, say, y, in Vs, and misses Vp and V., where
K S

(#.1) vertex y is a child of node ty_o (which is an S-node),

(#.2) node tg_1 is a P-node with two children, the node ty and one vertex, say, u (which is
non-adjacent to x), and

(ii.3) vertex x sees only a single vertex of M (tx), which is a child of ty.
(iii) Vertex x sees Vg, Vi, , and exactly one vertex, say, z, in Vp, and misses Vi, where

(i4i.1) vertex z is a child of node ty_1 (which is a P-node), and

(i4.2) node ti has two children a,b, which are leaf-nodes such that a is adjacent and b is non-
adjacent to x.

(iv) The node tx—_1 is an N-node corresponding to a thin spider with clique K (tp_1), vertex x misses
Ve, VNg, K(tg—1), and all but one vertex, say, b, in M(ty), and sees Vg and Vi, — K(tp_1).

Proof. Since the Pj-sparse graphs are complement-invariant (Lemma 2.1), we consider the graph G-
its md-tree T(G) is identical in structure to T(G) except that P-nodes have become S-nodes and vice
versa, thin spiders have become thick and vice versa, and their cliques and independent sets have been
swapped. Since a node in T(G) is z-partly-adjacent iff its corresponding node in T(G) is x-partly-
adjacent, Lemma 4.4 applies and gives us necessary and sufficient conditions for G’ to be Py-sparse.
By exchanging P- and S-nodes, thin and thick spiders, their cliques and independent sets, and what z
sees/misses in these conditions, we obtain the conditions of the lemma, which are the necessary and
sufficient conditions for G’ to be Ps-sparse. I

Lemma 4.6. Suppose that the x-partly-adjacent nodes of the md-tree T(G) lie on a path toty - - - tg,
where to is the root of T(G) and t; is the parent of t;11 for each i =0,1,...,k—1. Ifty is an N-node
and the partition of the spider G(t) is (S, K, R), then G’ is Py-sparse if and only if the conditions in
one of the following three (mutually exclusive) cases hold:

(i) Vertex x sees S UK and misses M(r) where R = {r}, sees Vs and Vi, , and misses Vp and
Vg, the spider corresponding to ti is a thick spider, and the node r is a leaf.

(ii) Vertex x misses S U K and sees M(r) where R = {r}, sees Vs and Vn,, and misses Vp and
Vg, the spider corresponding to ti is a thin spider, and the node r is a leaf.

17

Figure 9: Ilustrating cases (iii.1), (iii.2), and (iii.3) of Lemma 4.6 and the corresponding updates of
the md-tree.

(iii) Vertex x sees K, misses S, and one of the following three cases holds:

(i1i.1) vertex x sees Vg and Vi, and misses Vp and Vy,;

(11.2) vertex x sees Vs, Vi, , and exactly one vertex, say, y, in Vp, and misses Viy, where y is a
child of ti,—1, the spider corresponding to ty, is thin, and x sees M (r) (if R = {r});

(11.3) vertex x sees Vy,., all but one vertex, say, y, in Vg, and misses Vp and Viy, where y is a
child of ti—1, the spider corresponding to ty, is thick, and x misses M (r) (if R = {r}).

Proof. For the “if”-part, we show that if one of the stated cases applies then G’ admits an md-tree
with the properties described in Lemma 2.2. We describe Case (iii.1). In a similar manner it is not
difficult to construct T(G’) for the rest of the cases as we depict in Figures 8-9. If Case (iii.1) holds
and R =) then = becomes a child of t; in T(G’); if Case (iii.1) holds and R = {r} then z either sees
or misses M(r). In the former case, x becomes a child of an S-node in T(G’) while in the latter, =
becomes a child of a P-node (Figure 9, top figure). Therefore by Lemma 2.2, G’ is Py-sparse.

Now assume that G’ is Pj-sparse. We need to show that exactly one of the stated cases holds. By
Property P4 there exist four vertices a, b, a’,b" € M (t)) such that za,za’,ab € E(G’) and ab, zb', a’'b’ ¢
E(G"). For G’ to be Py-sparse the following properties must hold:

Bl: @ must be adjacent to all but at most one verter in Vs: if x were non-adjacent to vertices
Y,y € Vs then the vertices z,a’,b’,y,y’ would induce in G’ either an F'; or an F'5 depending on
whether y,y’ are adjacent or not. Thus G’ would not be P;-sparse.

B2: x must be adjacent to at most one vertex in Vp: if x were adjacent to vertices z,z’ € Vp then
since both 2,2’ are non-adjacent to a,b, the vertices z,a,b, z, 2’ would induce an F; or an Fb
depending on whether z, z’ are adjacent or not, respectively.

18

B3: x must see the entire Vi, and miss the entire Vyg: x sees the the entire Vi, by Lemma 4.3.

If = were adjacent to a vertex z belonging to Vi, of a spider G(t;) associated with a node t;
(0 <i < k—1) then there exists k € K (t;) such that k is non-adjacent to z; then k € Vy, and x
is adjacent to k. Moreover, both b, b’ are adjacent to k and non-adjacent to z, since every vertex
of G(ty) sees K(t;) C Vi, and misses S(¢;) C V. Then, the vertices z,z, k, b, b’ would induce
either an Fy or an Fy in G’ depending on whether b, b" are adjacent or not.

Let us consider the cases that may arise. First, suppose that ¢ is the root of T(G) or = sees Vg
and misses Vp; note that if ¢ is the root of T(G) then Vg = Vp = (). In accordance with Lemma 4.3,
we distinguish the three following cases (a), (b) and (c):

(a)

(c)

x sees SUK: Then, since tj is the lowermost a-partly-adjacent node in T'(G), R = {r} and r is
an z-non-adjacent node. Thus, x misses every vertex in M (r). Let z € M (r). By the definition
of the spider G(ty), z sees K and misses S. The two following properties are satisfied:

o G(tg) is a thick spider: If G(tx) were a thin spider then there would exist two non-adjacent
vertices s1,82 € S such that both s; and ss miss a vertex k& € K; but then, the vertices
z,k,x, 81,82 would induce an Fy.

o risaleaf: if r were not a leaf, then there would exist 2’ € M (r) such that 2z’ # z. Let s € S
and k € K be two non-adjacent vertices of S U K; but then, the vertices s, z, k, z, 2/ would
induce either an F; or an F5 depending on whether z, 2’ are adjacent or not.

The above along with Property B3 imply that this is precisely Case (i).

x misses SUK: Then, since ¢, is the lowermost z-partly-adjacent node in T(G), R = {r} and r
is an z-fully-adjacent node. Thus, x sees every vertex in M (r). Let z € M (r). By the definition
of the spider G(t), z sees K and misses S. The two following properties are satisfied:

o G(ty) is a thin spider: If G(¢x) were a thick spider then there would exist two non-adjacent
vertices s1, so € S which would both see a vertex k € K; but then, the vertices z, z, k, 51, $o
would induce an Fj.

o ris a leaf: If r were not a leaf, then there would exist 2/ € M(r) such that z’ # z. Let
s € Sand k € K be two adjacent vertices of SU K; but then, the vertices z, z, 2, k, s would
induce either an F'; or an I’y depending on whether z, 2’ are adjacent or not.

This is precisely Case (ii).

x sees K and misses S: In light of Property B3, this is covered by Case (iii.1).

Now suppose that tj, is not the root of T(G) and it is not the case that x sees Vg and misses Vp;
then, due to Properties B1 and B2, x misses exactly one vertex of Vg or sees exactly one vertex of Vp.
We distinguish the two following cases (d) and (e):

(d)

Suppose that x sees y € Vp: By Property B2, x cannot see another vertex of Vp. First we prove
that y must be a child of ¢,_;. Suppose that y € M(t;) — M (t;41) where i < k — 2; then ¢; is a
P-node and consequently ¢;11 is an S- or an N-node. Let z € M (t;41) — M (t;42). Observe that
y misses every vertex in M (t;11) 2 M(t) whereas z sees every vertex in M (t). If is adjacent
to z then the vertices y,z, z,b,b induce either an F; or an F, depending on whether 0,0 are
adjacent or not. Hence y € M (t;_1) — M (t;). Now assume that y is not a child of ¢;_1. Let
t’ be the child of tx_; that is an ancestor of y. Since ¢’ # y and t’ is an N-node or an S-node,
there exists 2/ € M(t') such that y and 2’ are adjacent in G; then the vertices 2/, y, z, a, a’ induce
either an Fy or an Fy depending on whether a,a’ are adjacent or not. Therefore y must be a
child of t;_1. The four following properties are satisfied:

19

o x sees Vg: Otherwise, if there existed p € Vg non-adjacent to z then the vertices x,y, p, b, b’
would induce either an F; or an Fy, since p is adjacent to y and to every vertex of M (ty)
as it belongs to Vg.

o x sees K and misses S: If saw S U K then R = {r} and z would miss a vertex z € M(r)
since tj, is an z-partly-adjacent node. Let s € S,k € K be two non-adjacent vertices in G.
Then the vertices y, z, s, k, z would induce an F}, since y misses s, k, z; a contradiction. If
2 missed S U K then R = {r} and x would see a vertex z € M(r). Let s € S,k € K be
two adjacent vertices in G. Then the vertices y, z, z, k, s would induce a Ps; a contradiction
again. Hence, by Lemma 4.3, z sees K and misses S.

o G(tg) is a thin spider. By the previous observation, we know that x sees K and misses S.
If G(ty) were a thick spider then there would exist two non-adjacent vertices s1, so € S that
are both adjacent to a vertex k € K. But then the vertices y, x, k, s1, s2 would induce an
Fy.

o x sees M(r) (if R = {r}). By an earlier observation, we know that = sees K and misses S.
Let s € S and k € K be two adjacent vertices in G. If x missed a vertex z € M (r) then the
vertices y, x, k, s, z would induce an Fj since z sees k but misses s.

Putting everything together, we obtain Case (iii.2), since ¢;_1 must be a P-node.

(e) Suppose that x misses y € Vs: By Lemma 2.1 we know that Ps-sparse graphs are complement-
invariant. Consider the complement of case (d). Then the P-nodes become S-nodes and vice
versa, thin spiders become thick and vice versa, and their cliques and independent sets are being
swapped. Moreover by exchanging what x sees/misses in the conditions of (d) we obtain the
required conditions for G’ to be P,-sparse. This is precisely Case (iii.3).

The procedure that handles the addition of vertex x finds the node ¢; and takes advantage of
Lemmas 4.4-4.6 to check and modify the tree T(G). It starts from the leaves of the md-tree T'(G)
which correspond to the neighbors of x and moving in a bottom-up fashion constructs the set A of
internal nodes of T'(G) having at least one z-fully-adjacent child. Then, it splits A obtaining the
set Full of a-fully-adjacent nodes of T(G) and a subset Partial of the set of z-partly-adjacent nodes,
from which it determines ¢, (vertex ¢’ of Step 3); in this way, this can be done in O(d) time. Furthermore
because in each case of Lemmas 4.4-4.6, x sees Vi, and all but at most one of the elements of Vg,
and the parent of a P-node cannot be a P-node, the following holds:

Observation 4.7. For each node t € Partial at distance at least 4 from the root of the tree T(G),
if mone of t’s parent, grandparent, great-grandparent, and great-great-grandparent belongs to Partial,
then the graph G’ is not Py-sparse.

In detail, the procedure to add a vertex x works as follows:

Procedure VERTEX_ADD(vertex z)
1. A« 0

construct a queue @ whose elements are pointers to each of the leaf-nodes of T'(G) which corre-

spond to the neighbors of x;

while the queue @ is not empty do
remove from @ an element (i.e., a pointer to a node, say, t, of T(G));
increment the counter-field of the parent p(¢) of ¢ by 1 and let its new value be val;
if val =1
then insert in A a pointer to p(t);
if wal = number of p(t)’s children
then insert in @ a pointer to p(t); {t is z-fully-adjacent}

20

2. Full + set of pointers to each of the leaf-nodes of T'(G) which correspond to the neighbors of z;
Partial + 0;
for each element a of the set A do
let ¢ be the node of T'(G) pointed by a;
if the value of t’s counter-field is equal to the number of ¢’s children

then insert a in Full; {t is z-fully-adjacent}
else insert a in Partial; {t is x-partly-adjacent}
set t’s counter-field equal to 0; {reset the value of counter-field}

3. result + true;

for each element a of the set Partial do

let ¢ be the node of T'(G) pointed by a;

if there exist t’s parent, grandparent, great-grandparent, and great-great-grandparent

and none is pointed by an element of Partial
then result < false;
goto Step 4;

mark t’s parent, grandparent, great-grandparent, and great-great-grandparent (if they ex-
ist);
if there exist two or more nodes pointed by elements of Partial which are unmarked
then result < false;
else t' + the unique node pointed by an element of Partial which is unmarked;

4. for each element a of the set Partial do
let t be the node of T'(G) pointed by a;
unmark ¢’s parent, grandparent, great-grandparent, and great-great-grandparent;

5. if result = false
or none of the cases of Lemmas 4.4-4.6 applies to ¢’
by parsing the unique path from ¢’ to the root of T(G)
then output false (i.e., G’ is not Py-sparse); return;
Appropriately modify T(G) depending on the case of Lemma 4.4, 4.5, or 4.6 that applies to t';

We next discuss the correctness of the algorithm. First note that z-partly-adjacent nodes of T'(G)
form a path by Theorem 4.2. In Step 1 we collect in A some z-partly-adjacent nodes and every z-
fully-adjacent node, by incrementing appropriately the corresponding fields. In fact A contains every
a-partly-adjacent node of T(G) that has at least one child which is z-fully-adjacent node. Recall that
an z-partly-adjacent node of T'(G) has at least one child that is not z-non-adjacent node. Thus the set
Partial obtained in Step 2 contains the set of z-partly-adjacent nodes that are included in A, whereas
the set Full contains every z-fully-adjacent node of T(G). Node t; which is the farthest a-partly-
adjacent node away from the root has at least one child which is z-fully-adjacent node and, thus, ¢ is
included in the set Partial. Moreover if G’ is Py-sparse then the z-partly-adjacent nodes of Partial
lie on the path formed by the z-partly-adjacent nodes of T(G). In the marking process executed in
Step 3, every node of Partial marks some of its ancestors, meaning that the only unmarked node (¢')
of Partial is exactly node ;. By Observation 4.7 it suffices to check 4 levels away from each z-partly-
adjacent node of Partial, so that the marked nodes at the end of Step 3 form the path tg,...,tx_1 of
T(G). Notice that Step 4 cleans up the marks on the nodes of the md-tree in preparation for the next
modification and does not influence the correctness of the algorithm. Together with Lemmas 4.4-4.6
that are applied on node t’, we conclude that the algorithm correctly handles the addition of a vertex
T.

For the time complexity of the procedure, we need the following;:

Observation 4.8. Let d be the number of vertices of G which are adjacent to x. Then, the size of the
set Full at the end of Step 2 is less than 2d, the size of the set Partial at the end of Step 2 does not
exceed d; consequently, the size of the set A at the end of Step 1 is less than 3d.

21

Proof. The bound on the size of the set Full follows from the fact that the number of z-fully-adjacent
nodes is less than 2d (Observation 4.1); recall that Full contains pointers to precisely the z-fully-
adjacent nodes. The bound on the size of Partial follows from the fact each node of T(G) (except for
the root) has exactly one parent and that the z-fully-adjacent nodes form at most d trees (Observation
4.1); each z-fully adjacent node that is a child of an z-partly-adjacent node is a root of such a tree, and
Partial contains pointers to precisely the x-partly-adjacent nodes with at least one z-fully-adjacent
child. The bound on the size of A follows from the previous bounds because the sets Full and Partial
form a partition of A. 1

Now we are ready to show our main result of this section.

Theorem 4.9. Let G be a Py-sparse graph. The addition of a vertex x ¢ V(G) adjacent to d vertices
of G can be handled in O(d) time.

Proof. The fact that Procedure Vertex_Add performs the desired task follows from the correctness
discussion above. We will next analyze its running time. Note that Step 1 guarantees that each x-
fully-adjacent node will at some point be inserted in @); thus, since a node is inserted at most once
in @, Observation 4.1 implies that the while loop in Step 1 is executed less than 2d times. Since
inserting and deleting elements can be done in constant time, and we can access the parent of a node
in constant time, Step 1 takes O(d) time. Similarly, Step 2 takes O(d) time; the size of the set A is O(d)
(Observation 4.8). Step 3 also takes O(d) time; note that the parent, grandparent, great-grandparent,
and great-great-grandparent of a node are accessed in constant time following 4 pointers to parent-
nodes. Similarly, Step 4 takes O(d) time. Finally, for Step 5, Observations 4.7 and 4.8 imply that the
depth of node ¢'(= t;,) does not exceed 4d. Moreover, an exhaustive check of the cases in Lemmas 4.4
4.6 ensures that Step 5 can also be completed in O(d) time: we walk from ¢’ to the root and we check
if the conditions of one of the possible cases are met by taking advantage of the parent-pointers and
the fact that the value of the counter-field of a node is equal to the number of its children that are
z-fully-adjacent; it is important to note that checking whether x sees the module M (t) associated with
anode t is done by looking whether ¢ is in the set Full. Therefore, the overall time complexity is O(d).
1

4.2 Deleting a Vertex

Let v € V(G) be a vertex with d incident edges in G which has to be deleted. Clearly, the graph G’
which results after the deletion of v is a Py-sparse graph as it is an induced subgraph of G (see
Lemma 2.1). Hence we focus on properly updating the md-tree T(G) so that we obtain the md-
tree T(G").

Let us first consider the case where the parent p(v) of v in T(G) is an N-node ¢ such that the spider
partition of G(t) is (S, K, R). We distinguish the following cases:

(i) v € S: First suppose that S = {v,v'}, K = {k,k'}, and let v be adjacent to k: then, the spider
is replaced by an S-node with children the vertex &’ and a P-node; if R = (), then this P-node
has as children the vertices v’ and k, else if R = {r}, it has as children the vertex v’ and an
S-node with children the vertex k and the node r. Now, suppose that |S| = |K| > 3 and let
f(v) = k € K. If the spider is thin then: if R = (), then after the removal of v, k is removed
from the set K and included into a new set R, so that R = {k}; if R = {r}, then k is removed
from the set K and if r is an S-node then k is placed as a child of r, otherwise the place of r is
taken by a new S-node with k and r as children. If the spider is thick, then after the removal of
v, vertex k sees all the remaining vertices in M (t); thus, the N-node ¢ is replaced by an S-node
with children the vertex k£ and the node t after we have removed the vertices v, k.

(ii) v € K: Since the complement of a thin spider is a thick spider (and vice versa) with the clique
and independent sets swapped (and if R = {r}, the P- and S-nodes in the subtree rooted at r

22

swapped as well), this is the complement version of the previous case and takes the same time
to handle.

(ili) R ={v}: In this case, v is deleted, and we obtain a spider with R = {).

For the case when p(v) is a P- or S-node we work as noted in [21] where the appropriate modifications
on T(G) can be handled in O(d) time. Thus, we have:

Theorem 4.10. The deletion of a vertex v of a Py-sparse graph G can be handled in O(d) time, where
d is the degree of v in G.

Therefore by combining Theorems 3.7, 3.8, 4.9 and 4.10 we conclude with our main theorem:

Theorem 4.11. There is a fully dynamic algorithm for recognizing Py-sparse graphs and maintaining
their modular decomposition tree, which handles additions and deletions of vertices and edges. Edge
modifications can be handled in O(1) time while vertex modifications can be handled in O(d) time.

5 Concluding Remarks

We have given a fully dynamic algorithm for recognizing Pj-sparse graphs. Our algorithm handles
insertions and deletions of vertices and edges and runs in O(d) time per operation where d is the
number of edges involved in the operation.

It has become common that if a recognition algorithm decides that a graph does not belong to the
required graph class then, in addition to a message stating this, the algorithm provides an evidence
of non-membership, a certificate. In our case, a certificate for a graph that is not Pj-sparse is one
of the seven forbidden graphs depicted in Figure 1. With a careful but not difficult augmentation,
our algorithm can be made to provide such a certificate whenever an operation results in a non-P;-
sparse graph. In particular, by using the described data structure we can provide one of the forbidden
subgraphs: (i) in O(d,, 4+ d,) time for an edge modification where d,, and d, are the degrees of the
vertices involved in the edge modification and (ii) in O(n) time for vertex addition. Providing certificate
within an optimal running time is an interesting open problem; a possible approach might involve the
maintenance of an additional O(n)-space representation of a vertex ordering (e.g., the factorizing
permutation [6, 24]).

The vertex addition part of our algorithm implies an incremental algorithm to construct the modular
decomposition tree of a Py-sparse graph that takes O(d) time per vertex. It would be interesting to
have such an algorithm for general graphs. The currently best incremental algorithm for constructing
the modular decomposition tree for general graphs handles each vertex insertion in O(n) time [19]. It
should be noted that several linear-time algorithms are known for building the modular decomposition
tree [4, 8, 18, 24]; however, none seems to be easily modified for updating the tree in an online fashion
within a running time bounded by the vertex degree.

Acknowledgements

The authors would like to express their sincere thanks to the anonymous referees whose valuable
suggestions helped improve the presentation of the paper.

References

[1] A. Berry, P. Heggernes, and Y. Villanger, A vertex incremental approach for maintaining chordality,
Discrete Mathematics 306 (2006) 318-336.

23

2]

3]

[4]

[5]

[7]

8]

(10]

(11]

(12]

(13]

(14]
(15]

(16]

(17]

(18]

(19]

20]

21]

22]
(23]

A. Brandstadt, V.B. Le, and J. Spinrad, Graph Classes — a Survey, STAM Monographs in Discrete Math-
ematics and Applications, STAM, Philadelphia, 1999.

D.G. Corneil, Y. Perl, and L.K. Stewart, A linear recognition algorithm for cographs, SIAM J. Comput.
14 (1985) 926-984.

A. Cournier and M. Habib, A new linear algorithm for modular decomposition, Proc. 19th Int’l Colloquium
on Trees in Algebra and Programming (CAAP’94), LNCS 787 (1994) 68-84.

C. Crespelle, Fully dynamic representations of interval graphs, Proc. 85th Workshop on Graph-Theoretic
Concepts in Computer Science (WG 2009), LNCS 5911 (2009) 77-87.

C. Crespelle and C. Paul, Fully-dynamic recognition algorithm and certificate for directed cographs,
Discrete Appl. Math. 154 (2006) 1722-1741.

C. Crespelle and C. Paul, Fully dynamic algorithm for recognition and modular decomposition of permu-
tation graphs, Algorithmica, 58 (2010) 405-432.

E. Dalhaus, J. Gustedt, and R.M. McConnell, Efficient and practical algorithms for sequential modular
decomposition, J. Algorithms 41 (2001) 360-387.

X. Deng, P. Hell, and J. Huang, Linear time representation algorithms for proper circular arc graphs and
proper interval graphs, STAM J. Comput. 25 (1996) 390-403.

V. Giakoumakis and J.-M. Vanherpe, On extended Pys-reducible and Pj-sparse graphs, Theoret. Comput.
Sci. 180 (1997) 269-286.

E. Gioan and C. Paul, Dynamic dstance hereditary graphs using split decomposition, Proc. 18th Int’l
Symposium on Algorithms and Computation (ISAAC 2007), LNCS 4825 (2007) 41-51.

P. Heggernes and F. Mancini, Dynamically maintaining split graphs, Discrete Appl. Math. 157 (2009)
2057-2069.

P. Hell, R. Shamir, and R. Sharan, A fully dynamic algorithm for recognizing and representing proper
interval graphs, STAM J. Comput. 31 (2002) 289-305.

C. Hoang, Perfect graphs, Ph.D. Thesis, McGill University, Montreal, Canada, 1985.

L. Ibarra, Fully dynamic algorithms for chordal graphs and split graphs, ACM Transactions on Algorithms,
4 (2008) Article 40.

B. Jamison and S. Olariu, Recognizing Pj-sparse graphs in linear time, SIAM J. Comput. 21 (1992)
381-406.

B. Jamison and S. Olariu, A tree representation for Ps-sparse graphs, Discrete Appl. Math. 35 (1992)
115-129.

R.M. McConnell and J. Spinrad, Modular decomposition and transitive orientation, Discrete Math. 201
(1999) 189-241.

J.H. Muller and J. Spinrad, Incremental modular decomposition, J. ACM 36 (1989) 1-19.

S.D.Nikolopoulos, L. Palios, and C. Papadopoulos, A fully dynamic algorithm for the recognition of Pj-
sparse graphs, Proc. 32nd Workshop on Graph-Theoretic Concepts in Computer Science (WG 2006),
LNCS 4271 (2006) 256—268.

R. Shamir and R. Sharan, A fully dynamic algorithm for modular decomposition and recognition of
cographs, Discrete Appl. Math. 136 (2004) 329-340.

J. Spinrad, Ps-trees and substitution decomposition, Discrete Appl. Math. 39 (1992) 263-291.

M. Tedder and D. Corneil, An optimal edges-only fully dynamic algorithm for distance-hereditary graphs,
Proc. 24th Int’l Symposium on Theoretical Aspects of Computer Science (STACS 2007), LNCS 4393
(2007) 344-355.

24

[24] M. Tedder, D. Corneil, M. Habib, and C. Paul, Simpler linear-time modular decomposition via recursive
factorizing permutations, Proc. 85th International Colloquium on Automata, Languages and Programming
(ICALP 2008), LNCS 5125 (2008) 634-645.

25

