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Abstract. One of the most challenging and fundamental problems in
computer vision is to reconstruct a surfacemodel given a set of uncalibrated
2D images. Well-established Structure from Motion (SfM) algorithms of-
ten result in a sparse set of 3D surface points, but surface modelling based
on sparse 3D points is not easy. In this paper, we present a new method
to refine and optimise surface meshes using edge information in the 2D im-
ages. We design a meshing – edge point detection – re-meshing scheme that
can gradually refine the surface mesh until it best fits the true physical sur-
face of the object being modelled. Our method is tested on real images and
satisfactory results are obtained.

1 Introduction

Much attention has been paid to the task of obtaining a surface representation
from 3D data points on an unknown surface. Early work has been focused on
the data acquired with a laser range scanner, with the characteristics that the
obtained 3D point cloud is dense and well-distributed [1, 2, 3, 4]. Although
these methods have been reported to be successful, the nature of the range
scanning technique greatly limits its usefulness in real-world applications: it is
an “invasive” technique in that the ray emitted by the scanner may damage the
object being scanned; the scanning device is often very expensive; the scanning
process is very slow even for a moderately sized object, and thus not suitable for
modelling large scenes such as buildings.

The advances in computer vision technologies provide an exciting alterna-
tive for surface reconstruction. One of the most challenging and fundamental
problems in computer vision is reconstruction of a surface model given a set of
uncalibrated 2D images captured by a hand-held camera. Although this is not
a solved problem, progress has been made in the last decade and a few working
systems have been built. The first steps usually involve Structure from Motion
(SfM) [5] and camera auto-calibration [6], delivering camera pose information as
well as a sparse 3D point reconstruction based on image feature points. Pollefeys
et al. [7] then applied dense stereo matching techniques on the images which re-
sults in a per-pixel density reconstruction of the scene. Lhuillier and Quan [8, 9]
adopted a different approach by propagating points on the images to obtain a
“quasi-dense” reconstruction.
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Even with “dense” stereo matching, the 3D data from multiple images are
sparse, noisy, and irregularly distributed compared to those from range scanners,
therefore traditional 3D surface reconstruction techniques used with range data
cannot be used with the data from passive computer vision systems. Fortunately,
the extra 2D image information is still available which can be used to facilitate
surface reconstruction. Lhuillier and Quan [8] proposed a variational approach
integrating 3D stereo data with 2D image information; Solem and Heyden [10]
addressed the problem based on methods for region tracking on surfaces and
moving implicit curves; Paris et al. [11] used global graph cut optimisation to
find optimal surface patches.

An interesting divergence from dense-stereo-data-based surface reconstruction
is “feature-based surface reconstruction” [12, 13]: the sparse 3D points obtained
with SfM techniques are directly fed into the surface reconstruction algorithm.
This is based on the observation that the human vision system tends to recognise
objects by salient features such as edges and points. Feature-based surface recon-
struction has the advantage that it represents the scene models in a more efficient
way:meshes are greatly simplified, thus the cost of computation andvisualisation is
greatly reduced. It also has the advantage over dense-stereo-basedmethods in that
feature based surface reconstruction allows for much wider base lines in the input
images, which often prevents the dense stereo matching algorithms from working.
However, finding meshes that correspond to the true shape of scenes being mod-
elled based on sparse 3D points is very difficult. This is probably the reason why
feature-based surface reconstruction remains largely unpopular.

This paper addresses the mesh optimisation problem in feature-based surface
reconstruction. The remainder of the paper is organised as follows: Section 2
discusses the limitations of previous work and briefly states the advantages of
our method; Section 3 formally specifies the problem; Section 4 presents a robust
method to detect points lying on the image edges; Section 5 presents a method to
search for the correct 3D positions for the identified edge points; Section 6 shows
some experimental results and Section 7 concludes our work with suggestions for
future work.

2 Related Work

The problem of mesh optimisation in feature-based surface reconstruction was
first addressed by Morris and Kanade [14]. In their pioneering work an initial
mesh based on Delaunay triangulation is first obtained. An edge swapping tech-
nique is then applied to traverse possible topologies of the 3D feature points.
They use a greedy algorithm to search for the best triangulation correspond-
ing to the most consistent topology across multiple views. Vogiatzis et al. [15]
extended this work by using simulated annealing instead of a greedy algorithm
to search for the best triangulation, making the optimisation less susceptible to
local minima. Most recently Nakatuji et al. [16] detect texture discontinuities
in the images and swap the edges to minimise the overall discontinuity of the
triangulation.
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In general, previous methods suffer from several problems:

1. They are heavily dependent on a judicious selection of feature points on edges
and corners. If no feature points are found (or cannot be reliably tracked) on
edges and corners, then edge swapping will not return a triangulation that
reflects the true surface of the object.

2. Finding the optimal triangulation by edge swapping can easily get stuck in
local minima. Statistical methods such as simulated annealing are computa-
tionally expensive, and their convergence cannot be guaranteed. Therefore,
the previous methods can only work with a small set of 3D points.

Our Contribution. We present a new method for mesh optimisation in feature-
based surface reconstruction by directly incorporating edge information in the
triangulation process. Our method is different from previous work in that we
do not rely on an edge swapping technique, whose complexity is exponential
to the number of input 3D points. Instead, we adopt a meshing – edge point
detection – re-meshing scheme. Our method has several advantages over the
previous methods:

1. No edge swapping is involved. We only rely on the well-established 2D De-
launay triangulation algorithm. Our algorithm is readily extensible to large
sets of 3D feature points.

2. Contrary to previous methods, triangle splitting is permitted (and is essen-
tial) in our method, allowing for a more general distribution of features on
the object surface, i.e. features do not need to lie strictly on the corners.

3. Our method can be iterated multiple times to further refine the quality of
the resultant surface mesh.

3 Problem Statement

Given a set of 3D points lying on the surface of an object, there exist many pos-
sible surface triangulations passing through all these points. A simple example
is shown in Figure 1. Although both triangulations in Figure 1 are valid configu-
rations in 2D as well as in 3D, only triangulation (a) is consistent with the true
object surface. In practice we do not know the true surface but instead have a
set of images of the object. The goal is to resolve this ambiguity by selecting a
triangulation based on its consistency with this set of images of the object.

The problem can be mathematically formulated as follows: we have as input a
set of n images I = {I1, ..., In}, a set of m 3D points X = {X1, ..., Xm} obtained
with a SfM algorithm, and n projection matrices P = {P1, ..., Pn} which define
the transformation from 3D points to 2D points for each image. We define our
triangular mesh model as M = {V,E} where V is a set of 3D points and E is
a set of edges connecting members of V. Our goal is to find a mesh model M
that maximises the conditional likelihood Pr

argmax
M

Pr(M | I,X,P) (1)
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(a) (b)

Fig. 1. Two of the many possible triangulation from 3D points on a cube. (a) Tri-
angulation that corresponds to the true physical surface; (b) Triangulation that does
not corresponds to the true physical surface: points from different planar surfaces are
triangulated.

Note that V and X are different in our formulation. Unlike previous methods
[14, 15, 16], where no new 3D points are added and only edges are swapped, we
add new 3D points in X to refine the mesh topology. Hence, X is a subset of V
in our formulation.

4 Edge Point Detection

One of the methods to create an initial mesh model is to perform a Delaunay
triangulation on the 2D feature points from one of the images and project it into
3D space [17, 7]. This method works well for dense stereo reconstruction but for
feature-based surface reconstruction, it often triangulates points from different
planar surfaces (as shown in Figure 1(b)), leading to artifacts when the object
is viewed from different angles.

Since edges in the images are natural indicators of surface discontinuities, it
is advisable to include edge information in the triangulation process. However,
points on edges are difficult to track across the images and hence many feature
detection algorithms such as SIFT [18, 19] deliberately discard points lying on
edges. Furthermore, traditional edge detectors such as the Canny edge detector
[20] and other gradient-based techniques, although successful in many applica-
tion areas, tend to give false positive responses in the presence of highly textured
objects. All these factors pose difficulties in applying the edge information in
guiding the triangulation process.

Fortunately, in this particular problem, we are only interested in finding the
intersection of images edge with edges in mesh triangles rather than the integral
edges as a whole. This observation leads us to designing a specific “edge point
detection” algorithm.

4.1 Problem Re-formulation

Consider that after Delaunay triangulation on the feature points on a reference
image, as shown in Figure 2(a), the goal is to find a point e on the triangle edge
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(a) (b)

Fig. 2. (a) Naive Delaunay triangulation inevitably connects points from different areas
(areas A1 and A2) together. The goal is to find the intersection point e lying on
the discontinuity along the edge a → c. (b) Multiple view geometry. The 3D point
corresponding to image point m lies in the ray passing through m from the image centre
C. When only one view is available, there is not enough information to determine the
3D location: any point lying on the ray is a possible candidate. However, when more
views are available, the location can be identified by computing the reprojection on
another image by camera C′: if Mk is the correct 3D point, then its reprojected 2D
point mk should have similar appearance with m.

a → c that lies on the discontinuity (image edge separating areas A1 and A2). If
we travel along the edge a → c and record the pixels in a vector S = {p1, ...,pn},
then we need to find a pixel pk where 1 < k < n such that

argmax
k

Pr(Sk−1
1 | A1) Pr(Sn

k+1 | A2) (2)

where Sk−1
1 = {p1, ...,pk−1} and Sn

k+1 = {pk+1, ...,pn}.

4.2 Maximum-Likelihood Estimation and KL Divergence

In practice the distribution models of A1 and A2 are not known a priori unless
some texture segmentation techniques are used. Therefore the formulation in
Equation 2 is not readily applicable to our problem. However, we do know a priori
that A1 and A2 are different from each other. If we can define an appropriate
distance function D(Si,Sj) to measure the (dis-)similarity of the two segments Si

and Sj , then we can formulate our problem in a maximum-likelihood estimation
(MLE) framework

argmax
k

D(Sk−1
1 ,Sn

k+1) (3)

In other words, we want to find a k such that Sk−1
1 and Sn

k+1 are most different
from each other.

It is safe to assume that the pixel set sampled from area A follows a Gaussian
distribution N with mean μ and standard deviation σ. If the pixels are sampled
from different areas, then they follow a mixture of Gaussian distribution N with
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mean μ and covariance matrix Σ. Kullback-Leibler (KL) divergence can be used
to measure the cross-entropy (i.e. dis-similarity) between two Gaussian mixtures
f and g:

Dkl(f ‖ g) =
∫

f ln
f

g
(4)

where f ∼ N (μf , Σf ) and g ∼ N (μg , Σg).
Since there is no closed-form expression for KL-divergence between two mix-

ture of Gaussians, computing this distance measure is usually done using Monte-
Carlo simulation, which causes a significant increase in computational complex-
ity. An approximation is proposed by Goldberger et al. [21] which leads to a
closed-form solution:

Dkl(f ‖ g) =
1
2

(
ln

|Σf |
|Σg| − d + tr(Σ−1

f Σg) + (μg − μf )TΣ−1
f (μg − μf )

)
(5)

where d is the dimensionality of the Gaussian mixtures. In our problem d = 3
because we model the RGB plane of each image pixel separately.

4.3 Algorithm Description

It is sensible to combine gradient-based edge detection with maximum-likelihood
estimation. For each edge in the triangle, we travel through the pixels and find
intensity discontinuities by computing the first-order derivative in the travelling
direction. Suppose we record n pixels in one triangle edge S = {p1, ...,pn}, a
good approximation to measure discontinuity d for pixel pk is

d(pk) = |pk − pk−1| + |pk − pk+1| (6)

Gradient-based edge detection doesn’t work well for highly textured areas.
Imagine that in Figure 2(a), A1 is highly textured and has repetitive pattern
while A2 is texture-less, then gradient-based edge detection will return many
positive responses in A1, which is not desirable for finding true discontinuities.
In this case, maximum-likelihood estimation can be used to discard false posi-
tive responses: the positive responses from gradient-based detection can be used
as candidates in maximum-likelihood estimation framework, and the true dis-
continuity corresponds to the pixel pk that maximises the KL-divergence Dkl

between Sk−1
1 and Sn

k+1.

5 3D Position Identification

The detected edge points described in Section 4 do not provide any extra infor-
mation to facilitate surface reconstruction unless their corresponding positions
in 3D space are identified. Estimating 3D positions of feature points lying on
edges in the SfM stage is not easy, as points along the edge usually have similar
appearance, and hence they are difficult to identify and track across the images.
However, camera poses and sparse reconstructed features are available after SfM.
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This information can help constrain the search-space of the 3D positions of the
detected 2D edge points.

Ideally, the corresponding 3D point of a 2D image point lies on the back-
projected ray from the camera centre passing through the 2D image point (see
Figure 2(b)). If we can identify the true location of the 3D point, then its repro-
jected point in each image should have similar appearances as they correspond to
the same feature. Therefore, the 3D point identification problem can be viewed
as an inverse problem of SfM.

In practice, however, inevitably there will be noise in SfM and camera auto-
calibration processes. Therefore, the position of 3D point may show slight devi-
ation from the ray. We propose to propagate the search-space such that it can
take noise into account, as shown in Figure 3. m1 and m2 are two vertices of a
triangle (obtained from Delaunay triangulation on the feature points) and M1

and M2 are the corresponding 3D points respectively (as after SfM their 3D
locations are already known). An edge point e is detected with the method de-
scribed in Section 4. The search-space for its 3D location is a uniformly sampled
3D grid centred at E. E is the mid-point of projections of M1 and M2 on the
viewing ray l which passes through e from C. The 3D grid is positioned in such
a way that it has larger search-space along the ray l and smaller search-space in
the direction perpendicular to l. Note that when the search-space perpendicu-
lar to l is zero, it reduces to search-space along the ray, ignoring the deviation
caused by noise.

We evaluate each 3D point sample Ek from the grid by computing its repro-
jected 2D point ei on each image Ii and compare their similarity to the edge
point e. If Ek is the correct 3D point, then its projection in other images should

Fig. 3. Search-space propagation. m1 and m2 are two vertices of a triangle and M1

and M2 are the corresponding 3D points respectively. An edge point e is detected. The
search-space for its 3D location is a uniformly sampled 3D grid centred at E. E is the
mid-point of projections of M1 and M2 on the viewing ray l which passes through e
from C. The 3D grid is positioned in such a way that it has larger search-space along
the ray l and smaller search-space in the direction perpendicular to l.
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have similar appearance to e. The problem can be formulated as finding an Ek

that minimises the cost function

min
Ek

∑
i

C(e, ei) (7)

where C(e, ei) is the cost function measuring the dis-similarity between e and ei.
Two common criteria are Sum of the Squared Difference (SSD) and Normalised
Cross-Correlation (NCC) between pixels in a small window centred at ei in each
image. In our experiment we use NCC because it is less sensitive to illumination
change between the views. We select the window size to be 7 × 7, as a trade-off
between performance and speed.

One problem still remains. The visibility property VEk
of the 3D point Ek

is not known beforehand: we have no knowledge about in which images the 3D
point Ek is seen. Fortunately, the neighbouring feature points can provide a
reasonable approximation for VEk

. As is shown in Figure 3, if e is closer to m1

than to m2, then we assign the visibility property VM1 to Ek; otherwise we
assign the visibility property VM2 to Ek.

6 Experimental Results

We begin by performing a Delaunay triangulation on the feature points of a
reference image. Edge points are detected as described in Section 4 and their
3D locations are identified as described in Section 5. The surface mesh can be
optimised by re-meshing the new feature set on the image. Note that this process
can be iterated multiple times until no triangle edge cuts through an image edge.

(a)

(b) (c)

Fig. 4. Test case 1: Arch sequence. (a) 5 of the input images; (b) Close-up view of
the original surface model from a very different angle from where the input images are
captured. Notice that the artifacts in the area of arch are caused by poor meshing; (c)
Enhanced surface model with our method. The curved surface in the arch is correctly
modelled.
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(a)

(b) (c)

(d) (e)

Fig. 5. Test case 2 : Monument sequence. (a) 5 of the input images; (b) Original mesh
super-imposed onto the reference image: notice that triangles cut through image edges;
(c) Refined mesh, triangulation is well-conditioned and very few triangles cut through
image edges; (d) Original surface model viewed from very different angle from where
the image is captured: the artifacts along the edge are caused by triangular meshes
connecting points from different surfaces; (e) Refined surface model: edge points are
detected and their 3D locations are correctly determined. The surface model refined
by our method is very consistent with the true physical surface of the object.

3D feature points and camera information are obtained based on our previous
work [13]. The reconstruction process is fully automatic and requires no infor-
mation other than the images alone. Figure 4 shows the reconstructed surface
model of an arch. Notice that the fine details of the curved surface are correctly
reconstructed, which would be impossible if we use edge swapping techniques.
Figure 5 shows another example demonstrating the result of our method. Our
method is very efficient: both test cases involve detection and 3D position iden-
tification of around 10,000 edge points and it finishes within 10 seconds on a
2GHz processor.

7 Conclusion and Future Work

We presented a new method for mesh optimisation in feature-based surface re-
construction by directly incorporating edge information in the triangulation pro-
cess. Our method is different from previous ones in that we do not rely on an
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edge swapping technique. Instead, we adopt a meshing – edge point detection –
re-meshing scheme. Experiments on real images show satisfactory results.

Our method still has limitations: it assumes that edges do not change across
the images. Although it is true for most occasions, it may not hold when the
object has a smoothly curved surface, in which case the edges change accord-
ing to the viewpoint. Moreover, our method works less well when the edges
lie on the epipolar line (See Figure 2(b)): re-projected 2D points are more
difficult to distinguish and hence the identified 3D positions are less reliable.
In our future work, we plan to solve the above problems by combining our
method with the edge swapping method and use a more robust descriptor (such
as a SIFT-like descriptor [18, 19]) rather than NCC to match reprojected 2D
points.
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