
Time-out Bloom Filter: A New Sampling Method for
Recording More Flows

Shijin Kong1, Tao He2, Xiaoxin Shao3, Xing Li4

{ksj001, sxx033}@mails.tsinghua.edu.cn
Department of Electronic Engineering, Tsinghua University, Beijing, P.R.China, 100084

{hetao2, xing4}@cernet.edu.cn
China Education and Research Network, Beijing, P.R.China, 100084

Abstract. Packet sampling is widely deployed to generate flow records on high
speed links. However, random sampling in which 1 in N packets is chosen suf-
fers from omitting majority of flows, most of which are short flows (within N
packets). Although usage-based applications work well by recording long flows
and neglecting short ones, there are many other applications which depend on
nearly per-flow information other than flow lengths and sizes. In this paper, a
novel sampling method is proposed to remedy the flow loss flaw for those ap-
plications. We use a Time-out Bloom Filter to alleviate the sampling bias to-
wards long flows. Compared with random sampling, in our solution, short flows
have a much greater probability to be sampled while long flows are always
sampled, but with much fewer sampled packets. Experimental results show that,
with the same sampling rate, our solution records several times more short
flows than random sampling. Particularly, up to 99% original flows can be re-
trieved from sampled data. Besides, we also propose an adaptive TBF system in
fast SRAM to perform online sampling.

1 Introduction

With the increasing network traffic, most measurement systems employ packet
sampling to reduce resource consumption. First, there is not much resource remained
for data collection on routers and switches because of their heavy workload. Forming
flow statistics on a sampled substream of the original traffic reduces memory con-
sumption and frequency of flow lookups. Second, transmitting sampled data to collec-
tors, which is common for many applications, can greatly save bandwidth for collec-
tion as well as processing and storage cost at collectors. Moreover, some time-
consuming processes such as flow records generation can be executed on collectors.
The volume of sampled data is small to transmit and the burden on routers and
switches is alleviated at the same time.

However, random sampling in which 1 in N packets is chosen causes great loss of
flow information and it is difficult to recover. A flow is defined as a set of packets
with a same key which consists of some fields in packet header. When a packet ar-
rives at the router with a flow key different from those of all current active flows, a
new flow record is generated with the new key. A flow is terminated when the time

2 Shijin Kong, Tao He, Xiaoxin Shao, Xing Li

since the arrival of its latest packet exceeds a time-out threshold. Flow length is de-
fined as the number of its packets, and flow size is the total bytes in it. If any packet of
a flow is sampled, we call this flow is sampled. In random sampling, a short flow
(within N packets) is easily lost if none of its packets is sampled, and a long flow has
a much greater probability to be sampled. The bias towards longer flows causes ma-
jority of short flows lost, and thus brings a great loss in total sampled flows since
most flows in traffic are short flows (e.g. 82.3% in the trace for our experiments).

Few studies have been addressed to the flow loss flaw in random sampling and no
sampling method has been designed to meliorate the great loss of flows. Experiments
have shown that the distribution of flow lengths is heavy-tailed (see, e.g., [1]), that is,
most traffic is carried by a small proportion of long flows. For this reason, sampling
methods of many usage-based applications focus on long flows and neglect short ones
[13]. However, there are still a lot of applications which depend on nearly per-flow
information other than flow lengths and sizes. Here are some examples.

Attacks Detection: information of short flows is very important to detect network
intrusions such as port scanning and SYN flooding. These attacks usually consist of
numerous short flows with only several packets. It is hard to discover these attacks
unless nearly per-flow state is maintained [16], including flow key and correct count
of SYN/FIN flags. Moreover, identifying a victim requires enough flow records.

Traffic Identification: in particular, P2P traffic can be effectively identified by us-
ing connection patterns [2] instead of checking payloads of packets. This method
counts <IP, Port> pairs retrieved from the flow information. Any obvious loss of flow
records will cause fallacious counting results and hurt identification accuracy.

Network Deployment Characterizing: the diversity of flow records reflects the
spatial distribution of flows in the network. Workloads of network devices (e.g. the
size of route tables) can be balanced according to the distribution, which helps to de-
ploy and manage network more efficiently.

In order to meet the needs of those applications, we present a novel packet sam-
pling method in this paper to meliorate the flow loss flaw. Little attention has been
paid to exact values of flow lengths and sizes since those applications do not care
about them. In our solution, the number of total sampled flows is increased by re-
cording more short flows which are lost in random sampling. Packets are selected by
a data structure called Time-out Bloom Filter (TBF). In TBF, some packets can have
a great probability to be sampled, and others are definitely discarded. For short flows,
considerable proportions of their packets have such a probability. But for long flows,
the proportions are very small. Thus, compared with random sampling, our solution
has a smaller sampling bias towards long flows. Experimental results show that our
method can sample several times more short flows than random sampling with same
sampling rate (the ratio of sampled packets count to original packets count). Particu-
larly, up to 99% of total original flows can be retrieved from sampled data while ran-
dom sampling only records 37%.

The rest of this paper is organized as follows. Section 2 reviews related work. Sec-
tion 3 proposes our measurement method and section 4 makes the comparison with
random sampling. Results of measurement on experimental traces are presented in
Section 5 and section 6 proposes an adaptive TBF system. Finally, section 7 con-
cludes the whole paper and discusses the future work.

Time-out Bloom Filter: A New Sampling Method for Recording More Flows 3

2 Related Work

In this section, we review previous work on flow-related sampling, and hash-based
applications which are similar to ours.

Classical uniform sampling methods like random sampling are reviewed in Duf-
field’s paper [3]. Flow records on randomly sampled packets are commonly generated
by Cisco NetFlow [4] with configurable sampling period N. In [5], an adaptive Net-
Flow with dynamic sampling rate is devised, and one of its primary contributions is to
give accurate numbers of non-TCP flows. Sampling methods for long flows such as
smart sampling [6, 7] can give an accurate estimation of total usage for each flow
size. Although per-flow detailed information can not be told by these methods, re-
search has been done to estimate the distribution of flow lengths [8, 9].

Hash-based sampling methods have also been applied for several purposes. Trajec-
tory sampling [10, 11] puts particular flow keys in hash tables. Later packets with
those keys are selected at each node to detect spatial distribution of flows. Space-
Code Filter [12] uses a group of Bloom Filters with different resolutions to estimate
flow length of any given key. Multistage Filter [13] selects packets based on several
hash functions to identify large flows. And Partial Completion Filters in [14] propose
a scalable solution to detect network attacks.

3 Our Sampling Method

In this section, we introduce Time-out Bloom Filter for packets sampling. TBF is
derived from standard Bloom Filter [15]. A BF is a hash table with m bits, denoted as
b[0], b[1], …, b[m-1], each of which can be 0 or 1. There are d independent hash
functions, h1(x), h2(x), …, hd(x), attached, and each of them maps a given key to one
of the m bits. To insert a key c into the table, all the d bits b[h1(c)], b[h2(c)], …,
b[hd(c)] are set to 1. Initially there are n keys in the table. Later, the table is used to
check whether a given key c’ has been inserted. If b[h1(c’)], b[h2(c’)], …, b[hd(c’)] are
all set to 1, c’ is recognized as one of the n initial keys, otherwise it is not. On aver-
age, BF has a complexity of O(1) for querying a given key, which is much faster than
traditional hash method with complexity O(m). However, since different keys can
have same values calculated by hash functions, each bit can be set by several keys. If
all the d bits of a non-initial key have already been set to 1 by initial keys, it will be
mistaken as one of them. This mistake is called a false positive error.

TBF is used to tell whether an incoming packet can be sampled. Fast query of BF
is retained and the false-positive error is reconsidered in TBF. Section 3.1 shows the
principles of TBF and in Section 3.2 we explain the motivation for designing TBF.

3.1 Time-out Bloom Filter

TBF is similar to BF except that it does not have m bits, but m buckets instead,
each of which contains a timestamp. The m timestamps are denoted as t[0], t[1], …,
t[m-1]. Besides, it has a bucket time-out value t0.

4 Shijin Kong, Tao He, Xiaoxin Shao, Xing Li

Our algorithm is described as follows. When a new packet with key c and time-
stamp t comes, the d timestamps, t[h1(c)], t[h2(c)], …, t[hd(c)], are compared with t. If
any of the d timestamps, the ith for example, follows t - t[hi(c)] > t0 (or we say b[hi(c)]
gets time-out), the packet is sampled, otherwise it is discarded. After comparison, all
those d timestamps are updated to t even if the packet is not sampled. Figure 1 illus-
trates this process with d=3.

Fig. 1. A Time-out Bloom Filter with d=3

TBF differs from BF in two aspects: (1) TBF sets a timestamp for each bucket in-
stead of simply setting it to 1, and updates the timestamps after every packet selec-
tion; (2) TBF samples a packet as long as any of the d buckets gets time-out while BF
requires that all the d bits are set to 1.

3.2 Why Time-out Bloom Filter

Our initial motivation is to sample more flows, so ideally for each flow at least one
packet should be sampled. A simple solution is to select the first packet of each flow
and discard all the rest packets of it. In this process, we do not have to know any more
information of the flow (e.g. IP addresses, ports). The only thing we want to know is
whether an incoming packet belongs to an active flow or it is the first packet of a new
flow. BF can tell the result quickly. We put all the keys of existed flows in BF and
query it every time when a packet comes. According to the query result, an incoming
packet is discarded if it is already in BF, or otherwise it is sampled as the first packet
of a new flow. Hence a packet is sampled if any of the m bits is not set to 1. This is
the origin of the second difference between BF and TBF mentioned in Section 3.1.

Unfortunately, there are two fatal drawbacks using BF.
(1). Not all first packets can be sampled because false positive error happens to

mistake the first packet of a new flow for a packet of an existed flow. When this error
occurs, the first packet will not be sampled and this flow is lost.

(2). More seriously, the longer the sampling is performed, the more existed flows
are put into BF. Finally all m bits will be set to 1. A full-filled BF causes false posi-
tive error in every query, rejecting packets of newly generated flows to be sampled. A
solution to this drawback is to clear the BF periodically, but the filter will be full-
filled quickly on high-speed links (usually less than one second). There is not enough
time for any practical sampling implementation to clear BF every second.

Time-out Bloom Filter: A New Sampling Method for Recording More Flows 5

Thus TBF is applied to meliorate those drawbacks. In TBF, a bucket getting time-
out can be viewed as a bit set to “0” and a bucket not getting time-out as a bit set to
“1”. When an incoming packet arrives at time t, only flows that have packets updated
within [t-t0, t] are still kept in the filter. All other buckets are logically set to “0”. As
time elapsing, the “1” to ”0” transforming process is automatically executed. If t0 is
small enough, TBF is never full-filled with “1”. Hence drawback (2) is avoided.

Each flow can have multiple packets sampled in TBF rather than exactly one.
When the time interval between two continuous packets of a flow is smaller than t0,
the latter one is definitely discarded since none of its d buckets gets time-out. When
the interval is greater than t0, the latter one may not be discarded. As long as any of
those buckets is not updated by other flows during the interval, the packet is sampled,
or otherwise a false positive error occurs. A flow is lost only if all its packets encoun-
ter false positive errors, which greatly meliorates drawback (1). But as a result, re-
dundant sampled traffic is generated because flows unnecessarily have multiple pack-
ets sampled.

4 Comparing Sampling Methods

In this section, we compare our sampling method based on TBF with random sam-
pling, and then explain why our sampling method can sample more flows.

4.1 Random Sampling: Sampling Bias towards Long Flows

Assuming that 1 in every N packets is selected by random sampling, it is easy to
figure out the probability of a packet to be sampled is

Ps=1/N (1)

Let F(k) denote all the flows with length k and M(k) denote the number of F(k). On
average, kM(k)/N of packets of F(k) are sampled. So the proportion of sampled flows
of F(k) has a minimum 1/N when M(k)/N of F(k) have one packet sampled for each,
and a maximum k/N when k/N of F(k) have all their packets sampled.

Usually, N is greater than 10 so that for k much smaller than N, the proportion of
sampled flows is very small. For longer flows with k much greater than N, almost all
of them are sampled. The discrepancy of sampling probabilities represents the
sampling bias towards long flows.

4.2 TBF: Greater Packet Sampling Probability and Less Biased Sampling

First, we use the conclusion of BF in [15]. The probability that a bucket gets “1” is

P1=1 – (1 – 1/m)Ld (2)

where L is the number of S(t0), the set of flows sampled during previous t0 interval. L
can be measured by placing an empty TBF on the link for t0 time and counting the
flows in it. For example, set m=65,536, d=3, t0=0.2s, then L for the trace in Section 5

6 Shijin Kong, Tao He, Xiaoxin Shao, Xing Li

is 5,882 on average (we divide the trace into thousands of t0 periods, and measure L
on each t0 interval to get the average). Thus, a typical value of P1 is 0.23. If L does not
vary much whenever it is measured, P1 is always around 0.23.

d 1 2 3 4
P1’/P1 0.14/0.09 0.18/0.16 0.27/0.23 0.32/0.30

Table 1. P1’ and P1 with m=65,536, t0=0.2s and several d

Now, we suppose a packet with a key c, which does not belong to S(t0), comes. For
each i (1≤i≤d), one would easily expect the probability that b[hi(c)] gets “1” (denoted
as P1’) is P1. However, that’s not the case. P1’ is usually greater than P1. We think this
inconsistency appears due to the correlation among packets. For example, some appli-
cations start several flows with same source IP address at nearly the same time. Any
hash function only uses source IP address for calculation will map the packets of all
these flows to a same bucket. As long as any of these flows is in S(t0), P1’ for packets
of other flows is definitely 1 rather than P1. Besides, there are many other reasons that
cause P1’ to be 1. So on average, P1’ is greater than P1.

To minimize the correlation, hash functions must be carefully chosen. A hash func-
tion should use all fields of flow keys for calculation. Thus, even if two flow keys, c1
and c2, are only different in one field, hi(c1) and hi(c2) are not the same for each i
(1≤i≤d). We use such a group of all-fields-dependent hash functions in Section 5, and
P1’ is measured and compared with P1 in Table 1. As we see, P1’ is very close to P1,
especially when d >1. The correlation is effectively avoided. Thus, if a packet does
not belong to S(t0), the probability that any of its d buckets gets “0” (time-out) is

Ps=1 - (P’1)d≈1 - P1
d (3)

Ps is small if d is set to 3 or larger. Again with the example mentioned above, P1 is
0.23 and Ps is 0.98. It is much greater than that of random sampling (in Equation 1).

Fig. 2. (a) Average inter-packet interval (b) The proportion of “candidates” for t0=0.2s

We define a “candidate” as a packet that has a probability Ps to be sampled. A
packet that is definitely not sampled is not a “candidate”. In random sampling, all the
packets are “candidates”. In TBF, however, only if the interval between two continu-
ous packets in a flow is greater than t0, the latter one can be a “candidate”. In Figure
2(a), we can see that the longer the flow, the shorter the average inter-packet interval

Time-out Bloom Filter: A New Sampling Method for Recording More Flows 7

is. If a proper t0 is selected, there is small proportions of “candidates” in long flows
(<5%) but large proportions of “candidates” in short flows (20% to 40%), as shown in
Figure 2(b) with t0=0.2s. Compared with random sampling, the bias towards long
flows is reduced since fewer packets of long flows are sampled.

In summary, our solution differs from random sampling in two aspects. (1) The
probability of any packet to be sampled (Ps) is much greater. (2) The bias towards
longer flows is alleviated because longer flows have fewer proportions of “candi-
dates” than shorter flows. These two aspects determine that TBF can retrieve much
more flows from sampled data with same volume (or the same sampling rate) than
random sampling.

5 Results of Comparison on Traces

This section shows the experimental results of TBF and its comparison with ran-
dom sampling. We use a trace containing 681,268,937 packets captured from a giga-
bytes link, one of the outlets of THUNET (TsingHua University NETwork). It begins
at 13:00, Aug 4, 2005 and lasts for an hour. Each packet is recorded with a flow key
including four fields in IP header: source IP address, source port, destination IP ad-
dress and destination port. The time-out value for flow termination is 30 seconds. To-
tally 8,475,966 flows are generated in the trace.

Fig. 3. The proportion of flows sampled by: (a) TBF with fixed m=4 (b) TBF with fixed d=3.

First, we perform random sampling 10 times on the trace with N=1, 2, 5, 10, 20,
50, 100, 200, 500, 1000 respectively. The sampling rate for random sampling is sim-
ply 1/N. Then we perform TBF sampling with different m, d and t0. In our experi-
ments, we simply use different combinations of mask on IP addresses and ports as all-
fields-dependent hash functions.

Figure 3(a) shows the proportion of total sampled flows by TBF against the sam-
pling rate with fixed m=65,536 and d=1, 2, 3, 4. Figure 3(b) shows the results with
fixed d=3 and m=4,096, 16,384, 65,536. For each combination of m and d, TBF are

8 Shijin Kong, Tao He, Xiaoxin Shao, Xing Li

performed 10 times with t0=0.01s, 0.02, 0.05s, 0.1s, 0.2s, 0.5s, 1.0s, 2.0s, 5.0s, 10s re-
spectively. The sampling rate decreases monotonically while t0 increases.

As we can see, TBF samples much more flows than random sampling with same
sampling rate. When the sampling rate is 0.1, TBF with m=65,536 and d=3 records
99% of original flows while random sampling (N=10) records 37% of them. The re-
sult of TBF is consistent with Equation 3: each flow at least has one candidate (the
first packet), so at least Ps=98% of original flows can be sampled. Some flows have
multiple candidates, thus results in a higher 99% on the whole. When sampling rate is
smaller, say 0.01, random sampling only samples 8% but TBF still records 48%.

Either increasing m or increasing d helps to enhance the number of sampled flows
while the sampling rate is kept unchanged. But increasing m is more effective than in-
creasing d. For sampling rate 0.01, varying d from 1 to 4 gives 16% more sampled
flows while by changing m from 4,096 to 65,536, 26% extra flows are recorded. We
also notice that for d=3 and d=4, the two curves have already overlapped. It means
there is no more gain by adding more hash functions.

In Figure 4(a), proportions of sampled flows of F(k) (1≤k≤20)are shown. For each
length k, TBF with m=65,536, d=3 and t0=0.2s records more than Ps=98% of F(k).
The sampling rate of this TBF is about 0.1, so it is compared with random sampling
N=10. When k is fewer than five, the number of sampled flows of F(k) recorded by
TBF is at least three times more than that by random sampling. To give a clearer
view, various flow counts for each k are presented as a percentage of the total original
flow count in Figure 4(b). As we expect, the sum of short flow counts, ΣM(k)
(1≤k≤N=10), represents majority of the total original flow count, 82.3% exactly.

Fig. 4. Sampled flows distributed in flow lengths ranged from 1 to 20, in proportion to

(a) M(k) (b) the number of total original flows

6 Adaptive TBF Sampling System

In this section, we focus on implementing adaptive TBF sampling systems. To per-
form TBF sampling effectively, m, d and t0 should be carefully chosen.

Although m should be as great as possible, it is limited by memory. In our imple-
mentation, we only use a 256KB SRAM for TBF. Since t0 is at a level of 0.1s, each

Time-out Bloom Filter: A New Sampling Method for Recording More Flows 9

bucket records its updating time in milliseconds to keep accuracy. We set m=65,536,
and each bucket has 2bytes to store the last 16 bits of packet arriving time in millisec-
onds. That is 26×210=64 seconds. To our experience, all buckets are updated within
every 64 seconds, so a bucket getting time-out will not be mistaken as NOT-
TIMEOUT in the pseudo code of Figure 5.

d is usually set to 3 or 4 as in Section 5 we analyzed that there is no gain to further
add hash functions. On the other hand, for every packet, d hash values are calculated.
If d is smaller, per-packet process is faster. We set d=3 and continue using the all-
fields-dependent hash functions devised in Section 5.

When m and d are determined, t0 is used to make a tradeoff between the sampling
rate and the proportion of flows sampled. If t0 is small, Ps is great (in Equation 3) and
lots of flows are retrieved from redundant sampled data. If t0 is large, low Ps causes
few sampled flows but low sampling rate. In real applications there always exists a
target for performance, say, recording more than 90% flows or sampling no more than
10% packets, which helps to choose a proper t0.

In our implementation, we set the target as sampling no more than 10% packets.
The network traffic varies all the time, and a fixed group of m, d, t0 will cause the
sampling rate much higher or lower than 10% sometimes. So we devised an adaptive
TBF sampling system to keep sampling rate around the target. In Figure 5, t0 is ad-
justed based on the sampling rate measured every five seconds. If the sampling rate is
over 0.1, t0 is set larger and if the sampling rate keeps below 0.1 for 3 continuous
measurements, t0 is set smaller.

CHECK_BUCKET_TIMEOUT (timestamp t, bucket i)
if (t > t[i] AND t – t[i] < t0 OR t < t[i] AND t + 64,000–t[i] < t0)

 return NOT-TIMEOUT;
endif
return TIMEOUT;

ADAPTIVE_TBF_SAMPLING
 if (sampling_rate > target OR sampling_rate < target for 3 measurements)
 t0 = t0 * (sampling_rate / target)1/2;
 endif

Fig. 5. Pseudo codes for time-out checking and adaptive TBF sampling

Fig. 6. One-hour result of adaptive TBF sampling system

We already have a gigabytes measurement system based on Intel IXP2400 network
processor to capture packet headers from one of THUNET outlets. To test the system

10 Shijin Kong, Tao He, Xiaoxin Shao, Xing Li

for online sampling, we implement it on a host which receives the captured packet
headers from the measurement system. In Figure 6, a one-hour result of the system is
shown. On the whole, about 99.3% flows are sampled with sampling rate 0.1.

7 Conclusion and Future Work

In this paper, we propose a novel sampling method based on Time-out Bloom Fil-
ter to remedy the short flow loss flaw in random sampling. We analyze the motivation
of using TBF for packets selection and the reasons for its smaller sampling bias to-
wards long flows. By comparing with random sampling on network trace, we find that
TBF sampling can record up to 99% of total original flows and several times more
short flows than random sampling. We have also discussed the proper choices of pa-
rameters and then devised an adaptive TBF sampling system for online sampling. In
the future work, we are going to program the algorithm on IXP2400 network proces-
sor to integrate TBF sampling with the measurement system.

References

1. A. Feldmann, J. Rexford, and R. Cáceres. Efficient Policies for Carrying Web Traffic over
Flow-switched Networks. IEEE/ACM Transactions on Networking, 6(6): 673 - 685, 1999.

2. T. Karagiannis, A. Broido, M. Faloutsos, et al. Transport Layer Identification of P2P Traf-
fic. ACM SIGCOMM Internet Measurement Conference (IMC), 2004.

3. N.G. Duffield. Sampling for Passive Internet Measurement: A Review. Statistical Science,
19(3):472 - 498, 2004.

4. Ciso NetFlow. http://www.cisco.com/warp/public/732/netflow/index.html.
5. C. Estan, K. Keys, D. Moore, et al. Building a Better NetFlow, ACM SIGCOMM, 2004.
6. N.G. Duffield, C. Lund, and M. Thorup. Charging from Sampled Network Usage. ACM

SIGCOMM Internet Measurement Workshop (IMW), 2001.
7. N.G. Duffield and C. Lund. Predicting Resource Usage and Estimation Accuracy in an IP

Flow Measurement Collection Infrastructure. ACM SIGCOMM IMC, 2003.
8. N.G. Duffield, C. Lund, and M. Thorup. Estimating Flow Distributions from Sampled

Flow Statistics. ACM SIGCOMM, 2003.
9. N. Hohn and D. Veitch. Inverting Sampled Traffic. ACM SIGCOMM IMC, 2003.
10. N.G. Duffield and M. Grossglauser. Trajectory Sampling for Direct Traffic Observation.

IEEE/ACM Transactions on Networking, 9(3):280 - 292, 2001.
11. N.G. Duffield and M. Grossglauser. Trajectory Engine: A Backend for Trajectory Sam-

pling. IEEE Network Operations and Management Symposium, 2002.
12. A. Kumar, J. Xu, J. Wang, et al. Space-Code Bloom Filter for Efficient Per-Flow Traffic

Measurement. IEEE INFOCOM, 2004.
13. C. Estan and G. Varghese. New Directions in Traffic Measurement and Accounting. ACM

SIGCOMM, 2002.
14. R.R. Kompella, S. Singh, and G. Varghese. On Scalable Attack Detection in the Network.

ACM SIGCOMM Internet Measurement Conference, 2004.
15. B.H. Bloom. Space/time Tradeoffs in Hash Coding with Allowable Errors, ACM Commu-

nicationsm 13(7), 1970.
16. K. Levchenko, R. Paturi, and G. Varghese. On the Difficulty of Scalably Detecting Net-

work Attacks. ACM CCS, 2004.

