Skip to main content

A Domain Reduction Algorithm for Incremental Projective Reconstruction

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4292))

Abstract

In this paper we address the problem of recovering the three-dimensional shape of an object and the motion of the camera based on multiple feature correspondences from an image sequence. We present a new incremental projective factorization algorithm using a perspective camera model. The original projective factorization method produces robust results. However, the method can not be applied to real-time applications since it is based on a batch processing pipeline and the size of the data matrix grows with each additional frame. The proposed algorithm obtains an estimate of shape and motion for each additional frame adding a dimension reduction step. A subset of frames is selected analyzing the contribution of frames to the reconstruction quality. The main advantage of the novel algorithm is the reduction of the computational cost while keeping the robustness of the original method. Experiments with synthetic and real images illustrate the accuracy and performance of the new algorithm.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mahamud, S., Hebert, M., Omori, Y., Ponce, J.: Provably-convergent iterative methods for projective structure from motion. CVPR 1, 1018–1025 (2001)

    Google Scholar 

  2. Sturm, P., Triggs, B.: A factorization based algorithm for multi-image projective structure and motion. In: Buxton, B.F., Cipolla, R. (eds.) ECCV 1996. LNCS, vol. 1065, pp. 709–720. Springer, Heidelberg (1996)

    Google Scholar 

  3. Repko, J., Marc, P.: 3d models from extended uncalibrated video sequences: Addressing key-frame selection and projective drift. 3DIM, 150–157 (2005)

    Google Scholar 

  4. Martinec, D., Pajdla, T.: 3d reconstruction by fitting low-rank matrices with missing data. CVPR 1, 198–205 (2005)

    Google Scholar 

  5. Hartley, R., Zisserman, A.: Multiple View Geometry in computer Vision, 1st edn., Cambiridge (2000)

    Google Scholar 

  6. Grossman, E., Santos-Victor, J.: Algebraic aspects of reconstruction of structured scenes from one or more views. In: Proceedings of the BMVC, vol. 2, pp. 633–642 (2001)

    Google Scholar 

  7. Broida, T.J., Chandrashekhar, S.: Recursive estimation of 3d motion from a monocular image sequence. IEEE Transactions on Aerosp. Electron. Syst. 26, 639–656 (1990)

    Article  Google Scholar 

  8. Soatto, S., Frezza, R.: Motion estimation via dynamic vision. IEEE Trans. Automat. Contr. 41, 393–413 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  9. Tomasi, C., Kanade, T.: Shape and motion from image streams - a factorization method. Int’l J. of Computer Vision 9, 137–154 (1992)

    Article  Google Scholar 

  10. Morita, T.: A sequential factorization method for recovering shape and motion from image streams. In: Proceedings of ARPA Image Understanding Workshop, vol. 2, pp. 1177–1188 (1994)

    Google Scholar 

  11. Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle adjustment – A modern synthesis. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) ICCV-WS 1999. LNCS, vol. 1883, pp. 298–372. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  12. Tomasi, C., Kanade, T.: Detection and tracking of point features. CMU Technical Report, CMU–CS–91–132 (1991)

    Google Scholar 

  13. Pollefeys, M., Reinhard, K., Gool, L.: Self-calibration and metric reconstruction of varying and unknown intrinsic camera parameters. Int’l J. Computer Vision 1, 7–25 (1999)

    Article  Google Scholar 

  14. Torr, P., Fitzgibbon, A.: Maintaining multiple motion model hypotheses through many views to recover matching and structure. ICCV 1, 485–491 (1998)

    Google Scholar 

  15. Nistér, D.: Preemptive ransac for live structure and motion estimation. ICCV, 199–206 (2003)

    Google Scholar 

  16. Pollefeys, M., Van Gool, L., Vergauwen, M., Cornelis, K., Verbiest, F., Tops, J.: Video-to-3d. In: Proceedings of Photogrammetric Computer Vision 2002 (ISPRS Commission III Symposium), International Archive of Photogrammetry and Remote Sensing, pp. 247–252 (2002)

    Google Scholar 

  17. Gibson, S., Cook, J., Howard, T., Hybbold, R., Oram, D.: Accurate camera calibration for off-line, video-based augmented reality. In: ISMAR, pp. 37–46 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lemuz-López, R., Arias-Estrada, M. (2006). A Domain Reduction Algorithm for Incremental Projective Reconstruction. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2006. Lecture Notes in Computer Science, vol 4292. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11919629_57

Download citation

  • DOI: https://doi.org/10.1007/11919629_57

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-48626-8

  • Online ISBN: 978-3-540-48627-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics