
A Compositional Algorithm for Parallel Model
Checking of Polygonal Hybrid Systems

Gordon Pace1 and Gerardo Schneider2

1 Dept. of Computer Science and AI, University of Malta, Msida, Malta
2 Dept. of Informatics, University of Oslo, Oslo, Norway

gordon.pace@um.edu.mt, gerardo@ifi.uio.no

Abstract. The reachability problem as well as the computation of the
phase portrait for the class of planar hybrid systems defined by constant
differential inclusions (SPDI), has been shown to be decidable. The ex-
isting reachability algorithm is based on the exploitation of topological
properties of the plane which are used to accelerate certain kind of cy-
cles. The complexity of the algorithm makes the analysis of large systems
generally unfeasible. In this paper we present a compositional parallel al-
gorithm for reachability analysis of SPDIs. The parallelization is based
on the qualitative information obtained from the phase portrait of an
SPDI, in particular the controllability kernel.

1 Introduction

Hybrid systems are systems in which the discrete and the continuous worlds co-
exist. Examples can be found in avionics, robotics, bioinformatics and highway
systems. For the majority of non trivial systems, reachability and most verifica-
tion questions are undecidable. Various decidable subclasses have, subsequently,
been identified, including timed [AD94] and rectangular automata [HKPV95],
hybrid automata with linear vector fields [LPY01], piecewise constant derivative
systems (PCDs) [MP93] and polygonal differential inclusion systems1 (SPDIs)
[ASY01], just to mention a few. From the practical point of view, a proof of
decidability of reachability is only useful if accompanied with a decision pro-
cedure for effectively computing it, which is the case in the above-mentioned
examples. Also of importance is the complexity of the algorithm: How expensive
is it to compute reachability? Is it feasible with reasonable memory and time
requirements? How large are the systems we can treat? Only in a few cases have
the algorithms found scaled up to large industrial systems, and obtaining faster
and cheaper algorithms is still an ongoing research challenge. One approach is
the identification of smart ways of parallelizing and distributing reachability
algorithms.

Reduction of memory and time requirements are the main reasons for seeking
parallelization. In verification, in particular, the main bottleneck is usually mem-
ory. The effort in distributed programming is usually put on finding good ways
1 In the literature the name simple planar differential inclusion has been used to

describe the same class of systems.

K. Barkaoui, A. Cavalcanti, and A. Cerone (Eds.): ICTAC 2006, LNCS 4281, pp. 168–182, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Compositional Algorithm for Parallel Model Checking 169

of partitioning the task among different processes in order to keep a balanced
distribution of the use of memory and execution time. An important issue is the
communication cost; it is desirable to have a good ratio between process com-
putation and communication time, where the communication cost should not be
much greater than the analysis cost of the original system without parallelization.
One way of reducing communication cost in distributed algorithms in general, is
compositionality, that is dividing the problem in independent smaller ones. The
partial results are then combined in order to exactly answer the original ques-
tion. This approach reduces communication between processes to a minimum
— communication is only carried out at instantiation and when returning the
result.

Given the non-compositional nature of hybrid systems, obtaining distributed
reachability algorithms for hybrid systems is a challenging task. A qualitative
analysis of hybrid systems may, however, provide useful information for par-
titioning the state-space in independent subspaces, thus helping in achieving
compositional analysis.

In this paper we present a compositional algorithm for parallel reachability
analysis of polygonal differential inclusion systems. The identification and com-
putation of controllability kernels is the core of our algorithm and the main rea-
son for compositionality. We also give a lower bound for the number of parallel
processes which may be launched for computing reachability in an independent
way, each one operating in smaller state spaces than the original, and we prove
soundness and completeness of our algorithm.

2 Preliminaries

A (positive) affine function f : R → R is such that f(x) = ax + b with a > 0.
An affine multivalued function F : R → 2R, denoted F = 〈fl, fu〉, is defined by
F (x) = 〈fl(x), fu(x)〉 where fl and fu are affine and 〈·, ·〉 denotes an interval.
For notational convenience, we do not make explicit whether intervals are open,
closed, left-open or right-open, unless required for comprehension. For an interval
I = 〈l, u〉 we have that F (〈l, u〉) = 〈fl(l), fu(u)〉. The inverse of F is defined by
F−1(x) = {y | x ∈ F (y)}. It is not difficult to show that F−1 = 〈f−1

u , f−1
l 〉.

A truncated affine multivalued function (TAMF) F : R → 2R is defined by
an affine multivalued function F and intervals S ⊆ R

+ and J ⊆ R
+ as follows:

F(x) = F (x)∩J if x ∈ S, otherwise F(x) = ∅. For convenience we write F(x) =
F ({x}∩S)∩J . For an interval I, F(I) = F (I∩S)∩J and F−1(I) = F−1(I∩J)∩S.
We say that F is normalized if S = Dom(F) = {x | F (x) ∩ J 	= ∅} (thus,
S ⊆ F−1(J)) and J = Im(F) = F(S). TAMFs are closed under composition:

Theorem 1 ([ASY01]). The composition of two TAMFs F1(I) = F1(I ∩S1)∩
J1 and F2(I) = F2(I ∩S2)∩J2, is the TAMF (F2◦F1)(I) = F(I) = F (I ∩S)∩J ,
where F = F2 ◦ F1, S = S1 ∩ F−1

1 (J1 ∩ S2) and J = J2 ∩ F2(J1 ∩ S2). ��

170 G. Pace and G. Schneider

R1

R2

R3

R6

R5

R4

e1

e4

e0
I

e2e6

I’
e5 e3

(a)

I’

I

(b)

Fig. 1. (a) An SPDI and its trajectory segment; (b) Reachability analysis

2.1 SPDIs

An angle ∠b
a on the plane, defined by two non-zero vectors a,b is the set of all

positive linear combinations x = α a + β b, with α, β ≥ 0, and α + β > 0. We
can always assume that b is situated in the counter-clockwise direction from a.

A polygonal differential inclusion system (SPDI) is defined by giving a finite
partition2

P of the plane into convex polygonal sets, and associating with each
P ∈ P a couple of vectors aP and bP . Let φ(P) = ∠bP

aP
. The SPDI’s behavior at

a point x ∈ P is expressed by the differential inclusion ẋ ∈ φ(P).
Let E(P) be the set of edges of P . We say that e is an entry of P if for all

x ∈ e (considering only interior points of e) and for all c ∈ φ(P), x + cε ∈ P
for some ε > 0. We say that e is an exit of P if the same condition holds for
2 Since the edges of the adjacent polygons are shared, more precisely it is a closed

cover with disjoint interiors.

A Compositional Algorithm for Parallel Model Checking 171

some ε < 0. We denote by in(P) ⊆ E(P) the set of all entries of P and by
out(P) ⊆ E(P) the set of all exits of P .

Assumption 1. All the edges in E(P) are either entries or exits, that is, E(P)=
in(P) ∪ out(P).

Reachability for SPDIs is decidable provided the above assumption holds [ASY01];
without such assumption it is not known whether reachability is decidable.

A trajectory segment over T ∈ R of an SPDI is a continuous function ξ :
[0, T] → R

2 which is smooth everywhere except in a discrete set of points, and
such that for all t ∈ [0, T], if ξ(t) ∈ P and ξ̇(t) is defined then ξ̇(t) ∈ φ(P).
The signature, denoted Sig(ξ), is the ordered sequence of edges traversed by the
trajectory segment, that is, e1, e2, . . ., where ξ(ti) ∈ ei and ti < ti+1. If T = ∞,
a trajectory segment is called a trajectory.

Example 1. Consider the SPDI illustrated in Fig. 1-(a). For sake of simplicity
we will only show the dynamics associated to regions R1 to R6 in the picture.
For each region Ri, 1 ≤ i ≤ 6, there is a pair of vectors (ai,bi), where: a1 =
(45, 100),b1 = (1, 4), a2 = b2 = (1, 10), a3 = b3 = (−2, 3), a4 = b4 = (−2, −3),
a5 = b5 = (1, −15), a6 = (1, −2),b6 = (1, −1). A trajectory segment starting
on interval I ⊂ e0 and finishing in interval I ′ ⊂ e4 is depicted.

We say that a signature σ is feasible if and only if there exists a trajectory
segment ξ with signature σ, i.e., Sig(ξ) = σ. From this definition, it immediately
follows that extending an unfeasible signature, can never make it feasible.

Successors and Predecessors. Given an SPDI, we fix a one-dimensional co-
ordinate system on each edge to represent points laying on edges [ASY01]. For
notational convenience, we indistinctly use letter e to denote the edge or its
one-dimensional representation. Accordingly, we write x ∈ e or x ∈ e, to mean
“point x in edge e with coordinate x in the one-dimensional coordinate system of
e”. The same convention is applied to sets of points of e represented as intervals
(e.g., x ∈ I or x ∈ I, where I ⊆ e) and to trajectories (e.g., “ξ starting in x” or
“ξ starting in x”).

Now, let P ∈ P, e ∈ in(P) and e′ ∈ out(P). For I ⊆ e, Succe,e′ (I) is the
set of all points in e′ reachable from some point in I by a trajectory segment
ξ : [0, t] → R

2 in P (i.e., ξ(0) ∈ I ∧ ξ(t) ∈ e′ ∧ Sig(ξ) = ee′). Succe,e′ is a TAMF
[ASY01].

Example 2. Let e1, . . . , e6 be as in Fig. 1-(a) and I = [l, u]. We assume a one-
dimensional coordinate system. We show only the first and last edge-to-edge
TAMF of the cycle:

Fe1e2 (I) =
[

l
4 , 9

20u
]
, S1 = [0, 10] , J1 =

[
0, 9

2

]

Fe6e1 (I) = [l, 2u] , S6 = [0, 10] , J6 = [0, 10]

with Succeiei+1(I) = Feiei+1(I ∩ Si) ∩ Ji, for 1 ≤ i ≤ 6; Si and Ji are computed
as shown in Theorem 1.

172 G. Pace and G. Schneider

Given a sequence w = e1, e2, . . . , en, the successor of I along w defined as
Succw(I) = Succen−1,en ◦ . . . ◦ Succe1,e2(I) is a TAMF.

Example 3. Let σ = e1 · · · e6e1. We have that Succσ(I) = F (I ∩Sσ)∩Jσ, where:
F (I) = [l

4 + 1
3 , 9

10u + 2
3], with Sσ = [0, 10] and Jσ = [13 , 29

3].

For I ⊆ e′, Pree,e′ (I) is the set of points in e that can reach a point in I by
a trajectory segment in P . The definition can be extended straightforwardly to
signatures σ = e1 · · · en, Preσ(I).

Qualitative Analysis of Simple Edge-Cycles. Let σ = e1 · · · eke1 be a
simple edge-cycle, i.e., ei 	= ej for all 1 ≤ i 	= j ≤ k. Let Succσ(I) = F (I∩Sσ)∩Jσ

with F = 〈fl, fu〉 (we suppose that this representation is normalized). We denote
by Dσ the one-dimensional discrete-time dynamical system defined by Succσ,
that is xn+1 ∈ Succσ(xn).

Assumption 2. None of the two functions fl, fu is the identity.

Let l∗ and u∗ be the fix-points3 of fl and fu, respectively, and Sσ ∩Jσ = 〈L, U〉.
A simple cycle is of one of the following types [ASY01]: STAY, the cycle is
not abandoned neither by the leftmost nor the rightmost trajectory, that is,
L ≤ l∗ ≤ u∗ ≤ U ; DIE, the rightmost trajectory exits the cycle through the left
(consequently the leftmost one also exits) or the leftmost trajectory exits the
cycle through the right (consequently the rightmost one also exits), that is, u∗ <
L∨ l∗ > U ; EXIT-BOTH, the leftmost trajectory exits the cycle through the left
and the rightmost one through the right, that is, l∗ < L∧u∗ > U ; EXIT-LEFT,
the leftmost trajectory exits the cycle (through the left) but the rightmost one
stays inside, that is, l∗ < L ≤ u∗ ≤ U ; EXIT-RIGHT, the rightmost trajectory
exits the cycle (through the right) but the leftmost one stays inside, that is,
L ≤ l∗ ≤ U < u∗.

Example 4. Let σ = e1 · · · e6e1. We have that Sσ∩Jσ = 〈L, U〉 = [13 , 29
3]. The fix-

points of the Eq. given in Example 3 are such that 1
3 < l∗ = 11

25 < u∗ = 20
3 < 29

3 .
Thus, σ is a STAY.

Any trajectory that enters a cycle of type DIE will eventually quit it after a
finite number of turns. If the cycle is of type STAY, all trajectories that happen
to enter it will keep turning inside it forever. In all other cases, some trajectories
will turn for a while and then exit, and others will continue turning forever. This
information is crucial for proving decidability of the reachability problem.

Reachability Analysis. It has been shown that reachability is decidable for
SPDIs. Proof of the decidability result is constructive, giving an algorithmic
procedure Reach(S, e, e′) based on a depth-first search algorithm. An alterna-
tive breadth-first search algorithm which can deal with multiple edges has been
presented in [PS03].
3 The fix-point x∗ is computed by solving the equation f(x∗) = x∗, where f(·) is

positive affine.

A Compositional Algorithm for Parallel Model Checking 173

Theorem 2 ([ASY01]). The reachability problem for SPDIs is decidable. ��

An edgelist is a set of intervals of edges. Given edgelists I and I ′, we denote
the reachability of (some part of) I ′ from (some part of) I as Reach(S, I, I ′).
Clearly, using the decidability result on edge intervals, reachability between edge-
lists is decidable. Although decidability may be point-to-point, edge-to-edge,
edgelist-to-edgelist and region-to-region, in the rest of this paper, we will only
talk about edgelist reachability. We define the following predicate: I

S−→ I ′

≡ Reach(S, I, I ′).

Example 5. Consider the SPDI of Fig. 1-(a). Fig. 1-(b) shows part of the reach
set of the interval [8, 10] ⊂ e0, answering positively to the reachability question:
Is [1, 2] ⊂ e4 reachable from [8, 10] ⊂ e0? Fig. 1-(b) has been automatically
generated by the SPeeDI toolbox [APSY02] we have developed for reachability
analysis of SPDIs based on the results of [ASY01].

2.2 Controllability and Viability Kernels

We recall the definition of controllability and viability kernels of an SPDI and
we show how to obtain such kernels — proofs are omitted and for further details,
refer to [ASY02]. In the following, given σ a cyclic signature, we define Kσ as
follows: Kσ =

⋃k
i=1(int(Pi)∪ei) where Pi is such that ei−1 ∈ in(Pi), ei ∈ out(Pi)

and int(Pi) is Pi’s interior.
We say that K, a subset of R

2, is controllable if for any two points x and y in K
there exists a trajectory segment ξ starting in x that reaches an arbitrarily small
neighborhood of y without leaving K. More formally: A set K is controllable if
∀x,y ∈ K, ∀δ > 0, ∃ξ : [0, t] → R

2, t > 0 . (ξ(0) = x ∧ |ξ(t) − y| < δ ∧ ∀t′ ∈
[0, t] . ξ(t′) ∈ K). The controllability kernel of K, denoted Cntr(K), is the largest
controllable subset of K.

For I ⊆ e1 we define Preσ(I) to be the set of all x ∈ R
2 for which there exists

a trajectory segment ξ starting in x, that reaches some point in I, such that
Sig(ξ) is a suffix of e2 . . . eke1. It is easy to see that Preσ(I) is a polygonal subset
of the plane which can be calculated using the following procedure. We start by
defining: Pree(I) = {x | ∃ξ : [0, t] → R

2, t > 0 . ξ(0) = x ∧ ξ(t) ∈ I ∧ Sig(ξ) = e}
and apply this operation k times: Preσ(I) =

⋃k
i=1 Preei(Ii) with I1 = I, Ik =

Preek,e1(I1) and Ii = Preei,ei+1(Ii+1), for 2 ≤ i ≤ k − 1.
For I ⊆ e1 let us define Succσ(I) as the set of all points y ∈ R

2 for which
there exists a trajectory segment ξ starting in some point x ∈ I, that reaches
y, such that Sig(ξ) is a prefix of e1 . . . ek. The successor Succσ(I) is a polygonal
subset of the plane which can be computed similarly to Preσ(I).

For a given cyclic signature σ, we define CD(σ) as follows:

CD(σ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

〈L, U〉 if σ is EXIT-BOTH
〈L, u∗〉 if σ is EXIT-LEFT
〈l∗, U〉 if σ is EXIT-RIGHT
〈l∗, u∗〉 if σ is STAY
∅ if σ is DIE

(1)

174 G. Pace and G. Schneider

CD(σ) is an interval on the first edge of the signature σ with the property that
any point on such interval is reachable from any other point in the interval, and
conversely. We compute the controllability kernel of Kσ as follows:

Theorem 3 ([ASY02]). Cntr(Kσ) = (Succσ ∩ Preσ)(CD(σ)). ��

In what follows we present some definitions and a result which are crucial for ob-
taining a compositional algorithm for reachability analysis of SPDIs. See [PS06]
for proofs and more details.

Let Cntrl(Kσ) be the closed curve obtained by taking the leftmost trajectory
and Cntru(Kσ) be the closed curve obtained by taking the rightmost trajectory
which can remain inside the controllability kernel. In other words, Cntrl(Kσ)
and Cntru(Kσ) are the two polygons defining the controllability kernel.

A non-empty controllability kernel Cntr(Kσ) of a given cyclic signature σ
partitions the plane into three disjoint subsets: (1) the controllability kernel
itself, (2) the set of points limited by Cntrl(Kσ) (and not including Cntrl(Kσ))
and (3) the set of points limited by Cntru(Kσ) (and not including Cntru(Kσ)).

We define the inner of Cntr(Kσ) (denoted by Cntrin(Kσ)) to be the subset
defined by (2) above if the cycle is counter-clockwise or to be the subset defined
by (3) if it is clockwise. The outer of Cntr(Kσ) (denoted by Cntrout(Kσ)) is
defined to be the subset which is not the inner nor the controllability itself.

We proceed now by defining and stating the computability result of viability
kernels. A trajectory ξ is viable in K if ξ(t) ∈ K for all t ≥ 0. K is a viability
domain if for every x ∈ K, there exists at least one trajectory ξ, with ξ(0) = x,
which is viable in K. The viability kernel of K, denoted Viab(K), is the largest
viability domain contained in K.

The following result provides a non-iterative algorithmic procedure for com-
puting the viability kernel of Kσ on an SPDI:

Theorem 4 ([ASY02]). If σ is DIE, Viab(Kσ) = ∅, otherwise Viab(Kσ) =
Preσ(Sσ). ��

Note that an edge in the SPDI may intersect a kernel. In such cases, we can
generate a different SPDI, with the same dynamics but with the edge split into
parts, such that each part is completely inside, on or outside the kernel. Although
the signatures will obviously change, it is easy to prove that the behavior of the
SPDI remains identical to the original. In the rest of the paper, we will assume
that all edges are either completely inside, on or completely outside the kernels.
We note that in practice splitting is not necessary since we can just consider
parts of edges.

Example 6. Fig. 2 shows all the controllability and viability kernels of the SPDI
given in Example 1. There are 4 cycles with controllability and viability kernels
— in the picture two of the kernels are overlapping.

Properties of the Kernels. Before stating two results relating controllability
and viability kernels, we need the following definition:

A Compositional Algorithm for Parallel Model Checking 175

(a) Controllability kernels (b) Viability kernels

Fig. 2. Kernels of the SPDI in Fig. 1

Definition 1. Given a controllability kernel C (of a loop σ — C = Cntr(Kσ)),
then let C+ be the related viability kernel (C+ = Viab(Kσ)), Cin be the inside of
the kernel, and Cout be the outside.

Proposition 3 in [PS06] gives conditions for feasible trajectories traversing con-
trollability kernels. The following is a generalization of such result:

Proposition 1. Given two edges e and e′, one lying completely inside a kernel,
and the other outside or on the same kernel, such that ee′ is feasible, then there
exists a point on the kernel, which is reachable from e and from which e′ is
reachable. ��

The following corollary follows from [PS06, Proposition 2], asserting that the
controllability kernel is the local basin of attraction of the viability kernel:

Corollary 1. Given an controllability kernel C, and related viability kernel C+,
then for any e ⊆ C+, e′ ⊆ C, there exists a feasible path eσe′. ��

3 Independent Questions and Parallelization

3.1 SPDI Decomposition

In this section, we propose a number of theorems which, given an SPDI and
a reachability question, for each controllability kernel, allow us to either (i)
answer the reachability question without any further analysis; or (ii) reduce the
state space necessary for reachability analysis; or (iii) decompose the reachability
question into two smaller, and independent reachability questions.

The following theorem enables us to answer certain reachability questions
without any analysis, other than the identification of controllability and viability
kernels. This result is based on two properties, that within the controllability
kernel of a loop, any two points are mutually reachable, and that any point

176 G. Pace and G. Schneider

on the viability kernel of the same loop can eventually reach the controllability
kernel. Therefore if the source edgelist lies (possibly partially) within the viability
kernel of a loop, and the destination edgelist lies (possibly partially) within the
controllability kernel of the same loop, then, there must exist a trajectory from
the source to the destination edgelist. The full proof of this result can be found
in [PS06].

Theorem 5. Given an SPDI S, two edgelists I and I ′ and a controllability
kernel C, then if I ⊆ C+ and I ′ ⊆ C, then I

S−→ I ′. ��

The following theorem allows us to reduce the state space based on controllability
kernels. If both the source and destination edgelists lie on the same side of a
controllability kernel, then we can disregard all edges on the other side of the
kernel. The full proof of this result can be found in [PS06].

Theorem 6. Given an SPDI S, two edgelists I and I ′ and a controllability

kernel C, then if I ⊆ Cin and I ′ ⊆ Cin, then I
S−→ I ′ if and only if I

S\Cout−→ I ′.

Similarly, if I ⊆ Cout and I ′ ⊆ Cout, then I
S−→ I ′ if and only if I

S\Cin−→ I ′. ��

Finally, the following new result allows us to decompose a reachability question
into two smaller questions independent of each other. The theorem states that
if the source and destination edgelists lie on opposite sides of a controllability
kernel, then we can try (i) to reach the related viability kernel from the source
edgelist, and (ii) to reach the destination from the controllability kernel. The
original reachability question can be answered affirmatively if and only if both
these questions are answered affirmatively.

Theorem 7. Given an SPDI S, two edgelists I and I ′ and a controllability

kernel C, then if I ⊆ Cin and I ′ ⊆ Cout, then I
S−→ I ′ if and only if I

S\Cout−→
C+ ∧ C

S\Cin−→ I ′. Similarly, if I ⊆ Cout and I ′ ⊆ Cin, then I
S−→ I ′ if and only

if I
S\Cin−→ C+ ∧ C

S\Cout−→ I ′.

Proof. Without loss of generality, let I ⊆ Cin and I ′ ⊆ Cout.

Soundness of Decomposition. Let us assume that I
S\Cin−→ C+ and C

S\Cout−→
I ′. From I

S\Cin−→ C+ we can conclude that there are partial edges e0 ⊆ I and
em ⊆ C+, and a path σ in (S \ Cout), such that e0σem is a feasible path.

Similarly, from C
S\Cout−→ I ′ we can conclude that there are partial edges

em′ ⊆ C and ef ⊆ I ′, and a path σ′ in (S \ Cin), such that em′σ′ef is a
feasible path. However, since em′ is in a controllability kernel, and em is in
the related viability kernel, then by corollary 1, there exists a feasible path
emσ′′em′ in S. Therefore, e0σemσ′′em′σ′ef is a feasible path in S. Since

e0 ⊆ I and ef ⊆ I ′, we can conclude that I
S−→ I ′.

Completeness of Decomposition. Conversely, let us assume that I
S−→ I ′.

Then, there must be edges e0 ⊆ I and ef ⊆ I ′ such that e0σef is feasible in S.

A Compositional Algorithm for Parallel Model Checking 177

By the Jordan curve theorem [Hen79], the trajectory must cross Cntrl(Kσ)
or Cntru(Kσ) at least once, meaning that there exists a partial edge em

in the controllability kernel C such that e0σ1emσ2ef is feasible. But every
subpath of a feasible path is itself feasible, meaning that both e0σ1em and
emσ2ef are feasible in S, implying that I

S−→ C+ and C
S−→ I ′. Consider the

feasible path e0σ1em. Recall that I ⊆ Cin, and that e0 ⊆ I, hence e0 ⊆ Cin.
Assume that σ1 contains some edges in Cout, and let f be the first such edge.
The path is thus: e0σafσbem. Since f is the first edge inside the kernel, it
follows that the last element of σa is outside the kernel. Using proposition
1, it follows that there exists a point p on the kernel reachable from the last
element of σa. We have thus obtained a shorter discrete path e0σap which is

feasible and no point of which lies inside the kernel. Therefore, I
S\Cin−→ C+.

Similarly, we can prove that C
S\Cout−→ I ′. ��

3.2 Unavoidable Kernels

Unavoidable kernels are defined geometrically to be kernels which a straight line
from the source interval to the destination interval ‘intersects’ an odd number
of times. We call the kernel unavoidable since it can be proved that any path
from the source to the destination will have to pass through the kernel.

Definition 2. Given an SPDI S and two edgelists I and I ′, we say that a con-
trollability kernel Cntr(Kσ) is unavoidable if any segment of line with extremes
on points lying on I and I ′ intersects with both the edges of Cntrl(Kσ) and those
of Cntru(Kσ) an odd number of times (disregarding tangential intersections with
vertices).

The following theorem enables us to discover separating controllability kernels
using a simple geometric test.

Theorem 8. Given an SPDI S, two edgelists I and I ′, and a controllability
kernel C = Cntr(Kσ), then C is an unavoidable kernel if and only if one of
the following conditions holds (i) I ⊆ Cin and I ′ ⊆ Cout; or (ii) I ⊆ Cout and
I ′ ⊆ Cin.

Proof. This theorem is a standard geometrical technique frequently used in com-
puter graphics [FvDFH96] (referred to as the odd-parity test). ��

Corollary 2. Given an SPDI S, two edgelists I and I ′, and an unavoidable
controllability kernel C = Cntr(Kσ), then I

S−→ I ′ if and only if I
S−→ C and

C
S−→ I ′.

Proof. This follows directly from theorems 6 and 8. ��

178 G. Pace and G. Schneider

I’

I

I’’

C1

C2

C3

(a)

I’

I

I’’

I’’’

C1

C2

C3

(b)

Fig. 3. Unavoidable kernels and independent reachability questions

The following result relates unavoidable kernels between each other:

Proposition 2. Given two disjoint controllability kernels C and C′, both un-
avoidable from I to I ′, then either C′ is unavoidable from I to C or C′ is
unavoidable from C to I ′, but not both.

Proof. This follows directly from definition of unavoidable kernel, the disjoint-
ness assumption and theorem 8. ��

3.3 Counting Sub-problems

The following theorem bounds the number of times a reachability question may
be decomposed into independent sub-questions using theorem 7. We will consider
a collection of mutually disjoint controllability kernels.

Theorem 9. Given an SPDI S and two edgelists I and I ′, the question I
S−→

I ′ can be split into no more than k reachability questions, k is the number of
mutually-disjoint controllability kernels.

Proof. We note that whenever we decompose an SPDI, the source and destina-
tion intervals are always within the sub-SPDI under consideration.

Now consider a reachability question I
S−→ I ′, and a controllability kernel

C upon which we can branch. Without loss of generality, we assume I ⊆ Cin

and I ′ ⊆ Cout. The question is thus decomposed into two questions: I
S\Cin−→ C+

(question a) and C
S\Cout−→ I ′ (question b).

Now consider another controllability kernel C′. We now have two possible
cases: (i) C′ ⊆ Cin; (ii) C′ ⊆ Cout. Note that by the Jordan curve theorem, C′

cannot be partially in and partially out of C without intersecting C.
In the first case (i), we note that since all edges in S \Cout lie outside or inside

C′, this new kernel cannot be be used to split question (b) or any question derived
from it. Therefore, C′ can only induce a split in question (a). Case (ii), is the
mirror case and the argument follows identically.

A Compositional Algorithm for Parallel Model Checking 179

Therefore, each controllability kernel can contribute at one extra process,
bounding the number of reachability questions to k. ��
We now give a lower bound on the number of independent questions induced by
theorem 7 in terms of the number of mutually-disjoint unavoidable controllability
kernels.

Theorem 10. Given an SPDI S and two edgelists I and I ′, the question I
S−→

I ′ can be split into at least u + 1 reachability questions, u is the number of
mutually-disjoint unavoidable controllability kernels.

Proof. We prove this by induction on the number of mutually-disjoint unavoid-
able controllability kernels.

With u = 0, the number of questions is clearly at least u + 1.
Now consider the unavoidable controllability kernel C, and the question I

S−→
I ′. By theorem 8, it follows that I and I ′ are on opposite sides of C. The

reachability question can be thus decomposed to I
S\Cin−→ C+ (question a) and

C
S\Cout−→ I ′ (question b) by theorem 7. Also, by proposition 2, we known that any

other unavoidable controllability kernel C′ from I to I ′, is also an unavoidable
controllability kernel from either I to C or from C to I ′ (but not both). In both

cases we obtain a decomposition of the reachability question into I
S\Cout−→ C

and C
S\Cin−→ C′ (or, I

S\C′
out−→ C′ and C′ S\C′

in−→ C). Splitting the kernels into
the relevant ones to the two questions (u1 kernels relevant to question a and u2
relevant to question b — u = u1 + u2 + 1), we can conclude that the number of
questions we get is (u1 + 1) + (u2 + 1) which is u + 1. ��
We have thus given lower and upper bounds on the the number of independent
questions generated by applying theorem 7 over a number of mutually disjoint
unavoidable controllability kernels. The results may be extended to work with
overlapping kernels.

Example 7. Let us consider again the SPDI defined in Example 1 and the same
intervals I and I ′. In Fig. 3-(a) we show the unavoidable kernels. The segment of
line from I to I ′ traverses C1 and C2 twice and C3 exactly once (an odd number
of times). Thus, only C3 is an unavoidable kernel. The reachability question can

be split into at least 2 independent questions: I
S\C3in−→ I ′′ and I ′′

S\C3out−→ I ′.
As another example let us consider I and I ′ as in Fig. 3-(b). The segment of

line from I to I ′ traverses C1 and C3 exactly once (an odd number of times),
while C2 is traversed twice. Thus, there are two unavoidable kernels, namely
C1 and C3. In this case the reachability question can be split into at least 3

independent questions: I
S\C1out−→ I ′′, I ′′

S\(C1in∪C3in)−→ I ′′′, and I ′′′
S\C3out−→ I ′.

4 Parallel Reachability Algorithm

In Fig. 4 we give an algorithm for parallel reachability analysis of SPDIs using
parallel recursive calls corresponding to independent reachability questions.

180 G. Pace and G. Schneider

function ReachPar(S, I, I ′) =
ReachParKernels (S, ControllabilityKernels(S), I, I ′)

function ReachParKernels(S, [], I, I ′) =
Reach(S, I, I ′);

function ReachParKernels(S, k:ks, I, I ′) =
if (ImmedieteAnswer(S, I, I ′)) then

True;
elsif (SameSideOfKernel(S, k, I, I ′)) then

S_I := S \ EdgesOnOtherSideOf(S, k, I ′);
ReachParKernels(S_I, ks, I, I ′);

else
S_I := S \ EdgesOnOtherSideOf(S, k, I);
S_I’ := S \ EdgesOnOtherSideOf(S k, I ′);
parbegin

r1 := ReachParKernels(S_I, ks, I, viability(k));
r2 := ReachParKernels(S_I’, ks, k, I ′);

parend;
return (r1 and r2);

Fig. 4. Parallel algorithm for reachability of SPDIs

The function ReachParKernels is called with the SPDI to consider, a list of
kernels still to be used for reduction, and the source and destination edgelists.
With no kernels to consider, the algorithm simply calls the standard sequential
algorithm (Reach). Otherwise, one of the kernels is analyzed, with three possible
cases:

1. If the source lies (possibly partially) on the extended kernel, and the desti-
nation lies (possibly partially) on the kernel, then we can give an immediate
answer (using theorem 5).

2. If both the edgelists lie on the same side of the kernel, then we simply
eliminate redundant parts of the SPDI — anything on the other side of the
kernel (theorem 6).

3. Otherwise, if the edgelists both lie on opposite sides of the kernel, we can
split the problem into two independent questions (reaching the kernel from
the source, and the destination from the kernel) which can be run in par-
allel (theorem 7). An affirmative answer from both these subquestions is
equivalent to an affirmative answer to the original question.

Note that the function ReachParKernels is compositional in the sense that
each recursive call launch a process which operates in (most cases in) disjoint
state spaces which are smaller than the original one (S). The final answer is the
composition of the partial reachability questions.

Given two edgelists I and I ′, we define the following predicate I
S−→‖ I ′ ≡

ReachPar(S, I, I ′). The following theorem states that the (compositional) parallel

A Compositional Algorithm for Parallel Model Checking 181

algorithm exactly answers the reachability question, also giving a soundness and
completeness proof of the algorithm:

Theorem 11. Given an SPDI S and two intervals I ⊆ e and I ′ ⊆ e′, I
S−→ I ′

if and only if I
S−→‖ I ′.

Proof. The proof follows from theorems 5, 6 and 7 and induction on ks. ��

5 Concluding Remarks

We have shown how answering reachability on an SPDI can be reduced to a
number of smaller reachability questions. Moreover, our algorithm can be com-
bined with recent optimizations developed for the reachability analysis of SPDIs
[PS06] in order to optimize each local reachability question.

We note that due to the fact that we present the algorithm working on edge-
lists, the breadth-first-search algorithm we present in [PS03] is better adapted
than the original algorithm [ASY01] to be used in this context. The algorithm
consists essentially in partitioning4 the state space into parts, discarding some of
these partitions and performing reachability analysis on others. Furthermore, as
long as separate reachability analysis of two disjoint state spaces is not more
expensive than performing reachability analysis on the state spaces merged
together (which is true for any reachability algorithm with complexity worse
than linear) the state space partitioning provides a speedup over global model
checking.

Part of our algorithm is based on certain geometric tests (e.g., theorem 8)
which may be avoided if we consider a more abstract approach by enriching the
reachability graph with information about the order among edges of each SPDI
region. This is part of our on-going work, as well as the study of a variant of the
algorithm which executes exactly u + 1 parallel processes, u being the number
of unavoidable kernels.

Another natural question that arises is whether this can somehow be appli-
cable to model checking of other models. To attempt to partially answer this
question, we identify the properties of SPDIs that were used in the system de-
composition. The property depends on the ability to identify subsets of the state
space such that each such subset (i) is a strongly connected set (in terms of reach-
ability); and (ii) partitions the state space into two — such that any state on
one side that can reach states on the other side can do so via an intermediate
state within the subset. These conditions are satisfied thanks to the planarity of
SPDIs. In fact, the conditions can possibly be applied to systems with a planar
state graph. The application and generalization of the results presented here
remains an open research area.

One current research direction is to apply our results to semi-decide the reach-
ability question for SPDIs defined on 2-dimensional manifolds, for which the de-
cidability of reachability remains unresolved [AS02]. Maybe the most prominent
4 The division is almost a partition, since the controllability kernels may be shared

between parts.

182 G. Pace and G. Schneider

application of SPDIs is for approximating complex non-linear differential equa-
tions on the plane, for which an exact solution is not known. The decidability of
SPDI’s reachability and of its phase portrait construction would be of invaluable
help for the qualitative analysis of such equations. The challenge would be to
find an “intelligent” partition of the plane in order to get an optimal approxi-
mation of the equations. Since such partition might produce a high number of
regions, our parallel algorithm might be extremely useful here.

References

[AD94] R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer
Science, 126:183–235, 1994.

[APSY02] E. Asarin, G. Pace, G. Schneider, and S. Yovine. SPeeDI: a verification
tool for polygonal hybrid systems. In CAV’2002, volume 2404 of LNCS,
pages 354–358, 2002.

[AS02] E. Asarin and G. Schneider. Widening the boundary between decid-
able and undecidable hybrid systems. In CONCUR’2002, volume 2421 of
LNCS, pages 193–208, 2002.

[ASY01] E. Asarin, G. Schneider, and S. Yovine. On the decidability of the reach-
ability problem for planar differential inclusions. In HSCC’2001, number
2034 in LNCS, pages 89–104, 2001.

[ASY02] E. Asarin, G. Schneider, and S. Yovine. Towards computing phase por-
traits of polygonal differential inclusions. In HSCC’02, volume LNCS
2289, 2002.

[FvDFH96] J.D. Foley, A. van Dam, S.K. Feiner, and J.F. Hughes. Computer graph-
ics (2nd ed. in C): principles and practice. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1996.

[Hen79] M. Henle. A combinatorial introduction to topology. Dover publications,
Inc., 1979.

[HKPV95] T.A. Henzinger, P.W. Kopke, A. Puri, and P. Varaiya. What’s decidable
about hybrid automata? In STOC’95, pages 373–382. ACM Press, 1995.

[LPY01] G. Lafferriere, G. Pappas, and S. Yovine. Symbolic reachability computa-
tion of families of linear vector fields. Journal of Symbolic Computation,
32(3):231–253, September 2001.

[MP93] O. Maler and A. Pnueli. Reachability analysis of planar multi-linear
systems. In CAV’93, pages 194–209. LNCS 697, Springer Verlag, July
1993.

[PS03] G. Pace and G. Schneider. Model checking polygonal differential inclu-
sions using invariance kernels. In VMCAI’04, number 2937 in LNCS,
pages 110–121. Springer Verlag, December 2003.

[PS06] G. Pace and G. Schneider. Static analysis of SPDIs for state-space re-
duction. Technical Report 336, Department of Informatics, University of
Oslo, PO Box 1080 Blindern, N-0316 Oslo, Norway, April 2006.

View publication statsView publication stats

https://www.researchgate.net/publication/220933409

	Introduction
	Preliminaries
	SPDIs
	Controllability and Viability Kernels

	Independent Questions and Parallelization
	SPDI Decomposition
	Unavoidable Kernels
	Counting Sub-problems

	Parallel Reachability Algorithm
	Concluding Remarks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

