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Abstract. Progressive Pruning (PP) is used in the Monte-Carlo go play-
ing program Indigo. For each candidate move, PP launches random
games starting with this move. PP gathers statistics on moves, and it
prunes moves statistically inferior to the best one [5]. This papers yields
two new pruning techniques: Miai Pruning (MP) and Set Pruning (SP).
In MP the second move of the random games is selected at random among
the set of candidate moves. SP consists in gathering statistics about two
sets of moves, GOOD and BAD, and it prunes the latter when statis-
tically inferior to the former. Both enhancements clearly speed up the
process on 9 × 9 boards, and MP improves slightly the playing level.
Scaling up MP to 19×19 boards results in a 30% speed-up enhancement
and in a four-point improvement on average.

1 Introduction

Computer go remains a difficult task for computer science [13, 11] mainly for
two reasons. First, the branching factor of the game tree and the game length
forbid global tree search. Second, evaluating non terminal go positions is hard
[12]. Meanwhile, computer go has been used as an appropriate testbed for AI
methods [6] during the last decade. In our work started twelve years ago, we have
developed a go playing program, Indigo [7]. It turns out that since 2002, Indigo
includes a Monte Carlo approach that enriches the knowledge-based approach
developed previously. Our Monte Carlo approach was started on experiments
[5] reproducing the original approach of Monte Carlo go [8]. These experiments
assessed different enhancements to the basic Monte Carlo algorithm, and Pro-
gressive Pruning was the enhancement which is used now in Indigo. Then, in
2003, we have associated our Monte Carlo go approach with our knowledge-based
approach [4] and with a global tree search approach [3]. These two associations
were successful because Indigo won the bronze medal at the 2004 Olympiad
on 19 × 19 go [9] but they are not the topic of the current paper. The initial
question that motivates the work presented here is how to improve Progressive
Pruning (PP) in the case of the game of Go, and in general. This year we have
assessed two pruning techniques intended to improve PP: Miai Pruning (MP)
and Set Pruning (SP). The aim of this paper is to introduce these two new
pruning techniques, and to provide an experimental assessment.

Section 2 relates the works dealing with Monte Carlo games, and it reminds
the idea underlying PP. Section 3 defines the two pruning techniques, MP and SP,
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to be evaluated. Then, section 4 yields the results of the experiments assessing
these two techniques in isolation, and their combinations. Before conclusion and
perspectives, some remarks are discussed by section 5.

2 Related work and motivations

2.1 Monte Carlo in computer games

Monte-Carlo methods were designed in order to simulate physical models. Be-
cause they used random number generation like games in the casino, the name
Monte Carlo came up. In turn, Monte-Carlo methods have been used in com-
puter games, and to some extent a loop has been closed. In games containing
hidden information, such as Poker and Scrabble, hidden information is sampled
with random distributions plausible with past actions performed in the game. In
such games, random generation can also be used to perform random simulations
of games, which is done by Poki at Poker [2] and by Maven at Scrabble [14].
In games containing randomness in their rules, such as Backgammon, random
simulations are very naturally used [16]. In complete information games not con-
taining chance, such as Go, Chess and Othello, the idea of simulating games at
random is less natural. Nevertheless, this is not the first time that Monte Carlo
methods have been tried in complete information games.

Evaluating a position of a two-person complete information game with statis-
tics was described by [1]. He proposed the expected-outcome model, in which
the evaluation of a game-tree node is the expected value of the game’s outcome
given random play from that node on. The author showed that the expected
outcome is a powerful heuristic. He concluded that the expected-outcome model
of two-player games is “precise, accurate, easily estimable, efficiently calculable,
and domain-independent”. In 1990, he tried the expected-outcome model on the
game of 6x6 Othello.

[8] was the first to develop a Go program based on random games. The
architecture of the program, Gobble, was remarkably simple. In order to choose
a move in a given position, Gobble played a large number of random games
from this position to the end, and scored them. Then, he evaluated a move by
computing the average of the scores of the random games in which it had been
played.

We think that Abramson’s approach, or Brügmann’s, are appropriate for the
game of Go because they enable the program to reach terminal positions easy
to evaluate and especially representative of the current position in the sense
they are derived from the current position. By computing a mean on terminal
positions reached at random, the program gets a very good evaluation of the
current position. Computing a Monte Carlo evaluation costs much more time
than computing a conceptual evaluation using domain-dependent knowledge,
but we believe this cost is worthwhile. This is the reason why we follow this
approach in Indigo, and the next subsection reminds how PP is used in Indigo.
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2.2 Progressive Pruning (PP)

The aim of PP is to choose the best move. The current description is based on
[5]. As contained in the basic idea of Abramson, each move has a mean value
m, a standard deviation σ, a left expected outcome ml and a right expected
outcome mr. For a move, ml = m − σrd and mr = m + σrd. rd is a ratio
fixed up by practical experiments. Currently, 1.5 ≤ rd ≤ 2.0 is a good tradeoff
between playing level and time. A move M1 is said to be statistically inferior to
another move M2 if M1.mr < M2.ml. Two moves M1 and M2 are statistically
equal when M1.σ<σe and M2.σ<σe and no move is statistically inferior to the
other. σe is called standard deviation for equality, and its value is determined
by experiments.

In PP, after a minimal number Nmin of random games (currently 50 per
move), a move is pruned as soon as it is statistically inferior to another move. Nrg

being the current number of random games performed, the standard deviation
of the mean value computed after Nrg random games is in 1/

√

Nrg. Therefore,
moves are pruned as Nrg increases, and the number of candidate moves decreases
while the process is running. The process stops either when there is only one
move left, or when the moves left are statistically equal, or when a maximal
threshold of iterations Ntotal is reached. In all cases, the move with the highest
expected outcome is chosen. This progressive pruning algorithm is similar to the
one described in [2].

Due to the increasing precision of mean evaluations while the process is
running, the mean value of the current best move is decreasing. Consequently,
a move can be statistically inferior to the best one at a given time and not
later. Thus, the pruning process can be either hard (a pruned move cannot be a
candidate later on) or soft (a move pruned at a given time can be a candidate
later on). Of course, soft PP is more precise than hard PP. Nevertheless, in the
experiments shown here, we use hard PP.

2.3 Motivations

Using PP or any move pruning scheme is debatable. For example, [15] uses a
clever scheme to drive the choice of which simulation to perform on which move,
and this scheme does not prune any move. However, the current work assumes
that PP is used, and it tries to improve it. The current work does not debate on
the use or non-use of move pruning.

The background of this work is the architecture of Indigo. Indigo’s ar-
chitecture is made up with a pre-selection module and a Monte Carlo module.
Nselect is the number of moves output of the pre-selection module, and input
of the Monte Carlo module. As long as PP is running, the number of possible
moves is decreasing from Nselect down to 1 and the process stops. Two remarks
can be made. First, PP spends most of its time when two possible moves are left.
Most of the time, the evaluations of the two moves left are almost equal, and a
lot of iterations are necessary to separate them. Thus, the first requirement is to
reduce the time spent by PP when two moves are left. Second, Indigo’s playing
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level highly depends on Nselect. Indigo’s playing level roughly increases with
Nselect. (This is not completely true. Actually, Indigo’s playing level reaches an
optimal value with Nselect = 8, 16 or 32, depending on the size of the board, and
then, it decreases.) However, the optimal value of Nselect can be quite high and
the second requirement is to reduce the time spent by PP to eliminate moves
at the beginning of the process. To sum up, we need a pruning technique that
lowers the time spent when two or few moves are left at the end of the process,
and another technique to quickly eliminate most of the moves at the beginning of
the process, all of this in keeping the same statistical confidence when pruning.
In this aim, we have designed two pruning techniques, each of them answering
one requirement.

3 Two pruning techniques

This section describes the two pruning techniques answering our two require-
ments. Miai Pruning (MP) is the technique that speed-up the end of PP process
when few moves are left, and Set Pruning (SP) is the technique that speed-up
the beginning of PP process when many moves are input of the MC module.

3.1 Miai Pruning (MP)

To highlight the presentation of MP, and without any loss of generality, let’s
assume that two moves are left, A and B, and that Black is to move. PP aims
at finding the move with the best mean. To do this, PP launch many games
starting with Black A, the following moves being randomly chosen, and many
games starting with Black B, the following moves also being randomly chosen.
Unfortunately, in the half of the games starting with move A, B is also played
by Black. In addition, in the half of the games starting with move B, A is also
played by Black. Thus, in the half of the random games played out to separate
A and B, A and B are played by the same player. When the order of the moves
of a sequence is not important to reach a position, which is not seldom in Go,
the half of the random games does not help much to discriminate A and B.
Therefore, the idea of MP is to launch games starting with Black A and White
B, and launch games starting with Black B and White A to separate A and B.
To make MP working when the number of possible moves is arbitrary, MP works
as follows. For each possible move A, B being another possible move different
from A chosen at random, MP launches games starting with Black A in first,
and White B in second. The term “miai” came up because it is used by human
go players for the same concept. “miai” means equivalent. When two moves are
miai, if a player moves on one of them, the other player moves on the other one.
Thus, MP is designed to separate moves which are not miai by imitating the
actual way of human playing. When played after move A, B can be an illegal
move. In such case, MP is simply not used.
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3.2 Set Pruning (SP)

Let’s assume that Npossible moves are left. First, to be cautious and avoid very
bad pruning due to bad chance, Nmin is devised by PP to forbid any pruning
before Nmin random games per move. Second, at the beginning of the PP pro-
cess, the σ of move is high for each move. Thus, no move has a good chance to
be statistically inferior to the best one with a given statistical confidence. The
idea underlying SP is to associate a mean value and a σ not only to the possible
moves but also to all the possible sets of moves of size Npossible/2. Nrgpm being
the number of random games performed per candidate move, the mean value of
the random games performed given that the first move belongs to a given set
of size Npossible/2 is known with a σ that is in 1/

√

Nrgpm × Npossible/2. Conse-
quently, the width of the confidence interval around the mean value associated
to sets of moves is

√

Npossible/2 times smaller than the width of the confidence
interval around the mean value associated to moves. Thus, it is possible to prune
set of moves at once, with a statistical confidence which equals the statistical
confidence at which PP prunes moves one by one. This way, the number of pos-
sible moves is divided by two, each time a set of moves is pruned. This idea is
very attractive because in practice we do not need to consider all of the possi-
ble sets of size Npossible/2, which would be terrible, but only two sets. Because
the moves are ranked from the best move down to the worst move, they can
be grouped into two sets, the set of the Npossible/2 best moves, called GOOD,
and the set of the Npossible/2 worst moves, called BAD. The mean associated to
GOOD is the highest mean associated to any other set of size Npossible/2, and
the mean associated to BAD is the lowest mean associated to any other set of
size Npossible/2. Therefore the first set pruning to occur is the pruning of BAD.
In practice, SP works as follows. In addition to the mean and σ computed by PP
for each move, SP builds the two sets GOOD and BAD, and computes their
means and their σ. When BAD is found to be statistically inferior to GOOD,
it is pruned with a statistical confidence identical to the statistical confidence at
which moves are pruned by PP.

4 Experiments

Starting from PP, this section evaluates the relative merits of MP and SP, of
their direct association (M+SP), their strong association (M+gbSP), and of a
special combination of the two (M+gbP), all of this regarding time and playing
level. We end up this section with an all-against-all tournament gathering the
best programs of the experiments.

Since we explore move pruning abilities of a Monte-Carlo go program, we
want first to observe the move pruning effect isolated from deep tree search
effects. Thus, we have performed experiments with depth-one search only. Fur-
thermore, because we need a lot of game results to obtain a sufficient statistical
significance, and because 19×19 games are too long, we have used 9×9 boards.
When a pruning technique has been demonstrated as performing well on 9 × 9
boards at depth-one, it is assessed in a second stage either at depth-n on 9 × 9
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boards (see subsection 4.9) or at depth-one on 19 × 19 boards (see subsection
4.10).

For each technique, we set up experiments to assess its effect on the time
and playing level. One experiment consists in a match of 200 games between the
program to be assessed and the experiment reference program, each program
playing 100 games with Black. The result of an experiment is generally a set
of relative scores assuming that the assessed program is the max player. Given
that the standard deviation of 9 × 9 games played by our programs is roughly
15 points, 200 games enable our experiments to lower σ down to 1 point and to
obtain a 95% confidence interval of which the radius equals 2σ, i.e., 2 points. We
have used 2.8 GHz computers. Furthermore, all programs in this work do not use
any conservative or aggressive style depending on who is ahead in a game, they
only try to maximize their own score. The score of a game is more significant
than the winning percentage. Nselect is a power of 2 between 2 and 64. rd is set
to 2.0.

Prune is the name of the program to assess. In its basic version, Prune
uses PP only. The notation to name assessed program is simple: for example,
Prune(MP = true) is the program that uses additonnally the MP technique,
and so on for Prune(SP = true) or Prune(Nselect = N).

4.1 Nselect versus Nselect/2

Before assessing the effects of the two techniques, and because we want to obtain
the best playing level and the minimal response time, knowing the effect of
increasing the value of Nselect is worth remembering. Table 1 shows the effects
of simply doubling Nselect.

Table 1. Result of doubling Nselect. Each number corresponds to a confrontation
between Prune(Nselect) and Prune(Nselect/2)

Nselect 4 8 16 32 64

Mean score +8.0 +6.0 +4.3 +0.4 -0.2
Winning percentage 72 65 63 54 52
Mean relative time 2.0 1.75 1.58 1.30 1.12

From Nselect = 2 up to Nselect = 32, table 1 highlights the increase of
the playing level in Nselect. However, the returns diminish as Nselect increases.
Although being not statistically significant, table 1 shows that Prune(Nselect =
32) is slightly superior to Prune(Nselect = 16), and even that Prune(Nselect =
64) is almost equal to Prune(Nselect = 32). Regarding the relative time between
the two programs, for low values of Nselect, Prune(Nselect) is about twice slower
than Prune(Nselect/2), but for high values of Nselect, Prune(Nselect) is almost
as fast than Prune(Nselect/2).
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The results of this introductory experiment show that increasing Nselect from
2 up to 16 is worthwhile considering in term of playing level on 9×9 for Prune.
The explanation is simple. We assume that the pre-selection module being based
on hand-crafted domain-dependent knowledge still contains errors, and that the
Monte-carlo module is good at selecting the right move. With this assumption,
the greater Nselect, the greater the probability of selecting a good move input of
Monte-Carlo. However, one thing cannot be ommitted: the pre-selection module
gives a penalty to tactically bad moves but it does not eliminate them. Thus,
when Nselect is high enough, the tactically bad moves are unfortunately input
of Monte-Carlo. Monte-Carlo is bad at recognizing tactically bad moves, which
explains that Prune(Nselect = 64) is worse than Prune(Nselect = 32). Mean-
while, the time for obtaining the overall playing level jump is multiplied by a
factor 6.

4.2 Miai Pruning versus Progressive Pruning

First, this subsection compares MP with PP. Second, it shows the effects of
simply doubling Nselect while using MP.

Table 2. Result of MP against PP

Nselect 2 4 8 16 32 64

Mean score +2.9 +1.3 +2.1 -1.3 -0.6 -0.7
Winning percentage 53 50 51 49 50 47
Mean relative speed 1.50 1.45 1.37 1.33 1.31 1.27

Table 2 shows that MP is worth considering for low values of Nselect. Re-
garding the motivations of the current paper, the result of Prune(MP = true,
Nselect = 2) is crucial to comment upon. First, Prune(MP = true, Nselect = 2)
has a non-negative result against Prune(MP = false, Nselect = 2): +3 points
and 53% wins. The mean score is statistically significant because 3 points is su-
perior to the radius of the confidence interval which equals 2 points. Second, the
speed is enhanced significantly, multiplied by 1.5. Thus, the first column of table
2 experimentally proves the relevance of MP, and it answers the requirements
presented in section 3. The non-negative mean score and the speed enhancement
of two next columns (Nselect = 4, 8) of table 2 confirm the effectiveness of MP.
The right part of the table then shows slightly negative mean scores. MP ap-
pears to be less adapted to situations in which many moves are candidate than
to situations with a few candidate moves.

As already shown by table 1, table 3 shows that with MP the playing level
also increases in Nselect. Between Nselect = 2 and Nselect = 4, the return im-
proves more quickly with MP than without MP. However, for high values of
Nselect the return diminishes more quickly with MP than without MP. More-
over, Prune(Nselect = 64) looks like inferior to Prune(Nselect = 32) with some
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Table 3. Result of doubling Nselect while using MP

Nselect 4 8 16 32 64

Mean score +15.4 +3.7 +1.0 -1.2 -4.3
Winning percentage 67 58 52 49 43
Mean relative speed 0.47 0.52 0.61 0.60 0.62

statistical significance, which is astonishing. This confirms the experimental fact
that MP is less adapted to situations in which many moves are candidate than to
situations with a few candidate moves. Our current explanation is the following.
Without MP, the second move of a random game is selected pseudo-randomly
with domain-dependent knowledge: one-liberty string or 3x3 pattern urgencies
[4]. With MP, the second move is selected at random with uniform probability
among the set of candidate moves. When Nselect is small, the candidate moves
are approximately good, thus the second move selected by MP has a good chance
to be better than the move generated pseudo-randomly with domain-dependent
knowledge: one-liberty string or 3x3 pattern urgencies. When Nselect is high, the
candidate moves are approximately average, thus the second move selected by
MP has a good chance to be worse than the move selected pseudo-randomly with
domain-dependent knowledge. In conclusion, selecting the second move of the
random game is a question of superiority between MP and the pseudo-random
generator based on domain dependent knowledge. To be effective, MP must be
better than the current pseudo-random move generator. If random games based
on uniform probability were used, then MP would have no difficulty to be su-
perior. In the background of pseudo-random generator using domain-dependent
knowledge, using MP when Nselect is high is consequently a bad idea. Subsection
4.8 will show a remedy to this problem.

4.3 Set Pruning versus Progressive Pruning

This subsection compares SP with PP. Table 4 shows the results.

Table 4. Result of SP against PP

Nselect 2 4 8 16 32 64

Mean score +0.1 +0.5 +0.2 -1.3 -2.4 -3.5
Winning percentage 50 49 52 48 44 43
Mean relative speed 1.00 1.05 1.08 1.12 1.14 1.17

For low values of Nselect, Prune(SP = true) plays at the same level as
Prune(SP = false) and the increase in speed is not high. For high values
of Nselect, the relative speed of the two programs is significantly superior to
1, which was expected, because the SP technique is designed for high values.
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Unfortunately, while the relative speed increases, the playing level decreases
significantly, Prune(SP = true, Nselect = 64) being significantly inferior to
Prune(SP = false, Nselect = 64). This result confirms the fact that using SP
is debatable.

4.4 M+SP versus Progressive Pruning

This subsection directly associates MP and SP, and compares this direct associ-
ation MP+SP with PP. The direct association means that SP is used in addition
to MP, and that no other enhancement is used, as it will be shown in the next
subsection.

Table 5. Result of M+SP against PP

Nselect 2 4 8 16 32 64

Mean score -0.5 +0.4 -3.9 -8.5 -11.4 -12.5
Winning percentage 49 51 42 33 28 29
Mean relative speed 1.5 1.5 1.7 2.2 2.6 2.8

Table 5 shows the results of MP+SP against PP. The results are bad. Losing
by eleven or twelve points on average on 9 × 9 boards is huge in go standards.
This result is disappointing. While SP did not give good results, it was risky
to associate them so directly. The next experiment aims at associating MP in a
sophisticated way.

4.5 M+gbSP versus Progressive Pruning

Since the direct association M+SP did not work well, we have tried a more
sophisticated association of MP and SP, called M+gbSP. In addition to MP and
SP, the two sets, GOOD and BAD updated by SP, are used by M+gbSP to
launch the random games: for each possible move A, MP+gbS launches games
starting with Black A and White B, B being picked up at random among BAD
if A is in GOOD, and picked up in GOOD otherwise. Thus, when launching
the random games, the idea underlying M+gbSP is to apply the miai principle
on the two sets GOOD and BAD instead of applying them on moves.

Table 6. Result of M+gbSP against PP

Nselect 2 4 8 16 32 64

Mean score +0.3 +1.7 -8.3 -10.2 -11.3 -15.4
Winning percentage 52 52 35 33 32 26
Mean relative speed 1.5 1.6 1.9 2.8 3.5 3.8
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Table 6 shows the results of M+gbSP against PP. The results are still bad.
Losing by ten or fifteen points on average on 9×9 boards is huge in go standards.
Our current explanation is that the strong association reinforce the pruning
strategy. Here, games are launched in order to enhance move pruning instead of
neutrally finding the mean value of moves. When the first part of a run badly
ranks a move - a “good” move M is put into BAD - the next part of the run
tries to reinforce the current finding: when it launches games starting by M, the
second move of the game (played by the opponent) is picked up in GOOD, thus
the mean value of M is penalised. Symmetrically, when a “bad” move M is put
into GOOD in the beginning of the run, the next part of the run launches games
starting by M, then the second move of the game (played by the opponent) is
picked up in BAD, thus the mean value of M is optimistic, and M remains in
GOOD.

4.6 M+gbP versus Progressive Pruning

Since M+gbSP does not work, probably due to its complexity, this subsection
tries a simplification. It associates MP with the sole use of the two sets, GOOD
and BAD, but not with SP. We call this association M+gbP. GOOD and BAD
are used in the same way as they are used in the strong association M+SP: for
each possible move A, M+gbP launches games starting with Black A and White
B, B being picked up at random among BAD if A is in GOOD, and picked up
in GOOD otherwise.

Table 7. Results of M+gbP against PP

Nselect 2 4 8 16 32 64

Mean score +0.7 +2.1 +0.0 -1.1 -3.5 -8.1
Winning percentage 51 55 50 44 43 35
Mean relative speed 1.5 1.5 1.5 1.5 1.6 1.7

Table 7 shows the results obtained by M+gbP against PP. The relative speed
is higher than it was in table 2. For Nselect = 2, 4, 8, 16, the playing level of
M+gbP seems identical to the playing level of MP. However, for Nselect = 32 or
64, the results are still bad. The arguments highlighted by previous subsection
could still explain them.

4.7 All-against-all tournament

In the previous subsections, we have made relative assessments of the pruning
techniques against PP with constant Nselect, and relative assessments of doubling
Nselect with a fixed pruning technique (either MP or PP). In this subsection,
we look for the best programs, in term of time and playing level. Thus, based
on the previous experiments’ results, we have built two tables approximating
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the values of the programs against Prune(PP, Nselect = 2). Table 8 yields the
average time used by the programs Prune to play one game, and table 9 the
relative playing level of Prune estimated with the previous results.

Table 8. Average time (in minutes) spent by Prune(Nselect, P ) to play out one game

Nselect PP MP SP M+SP M+gbSP M+gbP

2 1 0.7 1 0.7 0.7 0.7
4 2 1.4 2 1.3 1.2 1.3
8 3.5 2.7 3.5 2.1 1.8 2.5
16 5.5 4.3 5.5 2.5 1.9 3.7
32 7 5.2 6.2 2.7 2.0 4.5
64 7.5 6 6.5 2.7 2.0 4.5

Table 9. Relative playing level of Prune(Nselect, P ) estimated by the previous sub-
sections

Nselect PP MP SP M+SP M+gbSP M+gbP

2 0 +3 0 0 0 0
4 +8 +11 +8 +8 +8 +10
8 +14 +15 +13 +10 +8 +14
16 +18 +18 +17 +10 +8 +17
32 +18 +16 +16 +9 +7 +15
64 +18 +14 +15 +8 +4 +10

Table 9 clearly shows that Prune(M+SP or M+gbSP) and Prune(Nselect =
2 or 4), are not worth considering. Table 8 shows that Prune(Nselect = 64)
is slower than Prune(Nselect = 8, 16, 32). Meanwhile, it is slightly weaker,
thus eliminated. Thus, we kept nine programs Prune(PP, MP, SP, Nselect =
8, 16, 32) for an all-against-all tournament.

Table 10. Final ranking of the all-against-all tournament

Rank 1 2 3 4 5 6 7 8 9

Prune P32 S32 S16 P8 S8 M8 M16 P16 M32
Mean score +3.6 +1.7 +1.2 0.0 -0.3 -1.2 -1.5 -1.7 -2.0

Table 10 gives the final rankings with the average score per game. The σ of
each average result is about 1.2. The radius of the 95% confidence interval is
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2.4. Consequently, clear conclusions can hardly be drawn from this tournament.
Concerning the playing level, all the players are on a par. 32 seems the best
value of Nselect, unfortunately lowering the relevance of the pruning techniques.
SP seems to be a better enhancement than MP regarding both playing level and
time. However this tournament is not fair for MP because of the high values
of Nselect. This leads to the perspective to apply MP only when the number
of candidate moves is inferior to a threshold. Conclusions on the playing level
being hard to draw, the time considerations may break the tie. Table 8 shows that
MP8 is the fastest program among the players of the all-against-all tournament,
enhancing the interest of MP.

4.8 Weak Miai Pruning (WMP)

Since the all-against-all tournament has shed the light on a weakness of MP
when Nselect = 16, 32, this subsection now considers a weak version of MP
which consists in using the MP rule only when the number of candidate moves
is strictly inferior to a threshold T .

Table 11. Result of Weak MP (WMP) against PP for T = 5.

Nselect 2 4 8 16 32 64

Mean score +1.5 +1.0 +3.1 +4.5 +2.7 +3.0
Winning percentage 51 50 60 61 53 55
Mean relative speed 1.50 1.48 1.25 1.12 1.05 1.02

Conversely to simple MP which is effective for low values of Nselect only, table
11 shows that WMP (with T = 5) is worth considering for any values of Nselect.
First, Prune(WMP = true, Nselect = 2, 4) keeps the positive result shown
by table 2. Second, Prune(WMP = true, Nselect = 8, 16) has a very positive
result against Prune(WMP = false, Nselect = 8, 16): +3 points and 60%
wins. As mentioned in subsection 4.2, the mean score is statistically significant.
Third, the positive mean score of two next columns (Nselect = 32, 64) of table 11
confirms the effectiveness of WMP, and remove the negative mean scores of table
2. Finally, the speed is enhanced significantly, multiplied by 1.5 for Nselect = 2,
and not lowered for high values of Nselect. To sum up, WMP is experimentally
demonstrated to be superior to PP on 9×9 boards for any value of Nselect, both
in time and in playing level. This experiment is a success.

4.9 Integrating WMP with global tree search on 9 × 9 boards

The result obtained by WMP within the basic MC framework on 9 × 9 boards,
namely depth-one search, suggests using WMP in the framework associating
MC and Tree Search [3]. Currently, Indigo uses a depth-3 global tree search on
9×9 boards. Consequently, we set up an experiment assessing Prune(WMP =
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true, Nselect = 8, Depth = 3) against Prune(WMP = false, Nselect = 8,
Depth = 3) on 9 × 9 boards. It turns out that, although playing 5% faster,
Prune(WMP = true, Nselect = 8, Depth = 3) is 1.7 point inferior to Prune(WMP =
false, Nselect = 8, Depth = 3) and wins 45% of games only. Thus, integrating
WMP with global tree search on 9 × 9 boards is a failure.

We have the following explanation. First, the MP principle can be discussed
in front of depth-2 search. Actually, since MP launches games beginning by two
given moves, the mean values computed correspond to depth-2 nodes. However,
the background in which WMP is used cannot be forgotten. WMP is used only
when previous random games have pruned moves, and moreover, after move A,
MP develops move B only, and not all the children of move A. Thus depth-2
search dominates MP. MP is a trick to use because of time constraints, when
depth-2 search cannot be used. Second, [3] and MP both expand the child nodes
of a parent node when the number of children decreases and reaches a threshold
(W− in [3] and T in MP). Therefore, the two techniques do not live well all
together. Finally, [3] being a kind of iterative deepening algorithm, we have also
tried to use WMP at the maximal depth only, and not at intermediate depths,
but this attempt was not satisfactory.

4.10 Scaling WMP up to 19 × 19 boards

As explained in the introduction of section 4, to speed up the validation process
of our ideas, we have first performed our experiments on 9 × 9 boards. After
such experiments, SP does not answer our initial expectation, but MP, and more
particularly WMP, is still worth considering. Therefore, in a second stage, WMP
deserves a 19× 19 assessment. To make the programs playing in adequate time
on 19×19 boards, Monte-Carlo parameters are set differently. For example, rd is
set to 1.5 and not to 2.0. Moreover, when scaling up to 19×19 boards from 9×9
boards, the maximal number of random games is reduced in a 40% proportion.
Obviously on 19 × 19 boards, the time constraints bring about a depth-one
search. The value of the parameters being different, it was not certain that WMP
behaves on 19× 19 boards in the same way as it does on 9× 9 boards. After 400
games, Prune(WMP = true, Nselect = 8) turns out to be +4 point superior
to Prune(WMP = false, Nselect = 8) winning 51.6% of the games. The 95%
confidence interval is [-3.4, +11.8] and the 68% confidence interval is [+0.4, +8.0].
Hopefully, this result shows that WMP scales well on 19 × 19 with depth-one
search. More interesting is the fact that Prune(WMP = true) used 36 minutes
on average to complete one 19 × 19 game. Meanwhile, Prune(WMP = false)
used 46 minutes on average. Thus Prune(WMP = true) is 1.27 speeder than
Prune(WMP = false). This positive result on 19× 19 boards is explained by
the fact that depth-one search is mandatory. In this context, WMP appears to
be a trick when depth-two search remains forbidden.
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5 Discussion

To explain why MP works, we call incentive of a move the difference between the
MC evaluation of the position reached by this move and the current position MC
evaluation. Let a be the incentive of Black playing move A, and b the incentive
of Black playing move B. PP launches games to assess a and b. It stops when
the difference a − b is statistically different from zero. Let us assume that the
incentive of White playing move A (resp. B) is −a (resp. −b), which is plausible
in most cases. When A and B are not dependent, the games launched by MP
starting with Black A (resp. B) and White B (resp. A) contribute to assess
a − b (resp. b − a). MP stops when the difference between the two means, i.e.
2× (a − b), is statistically different from zero. Thus, when A and B are not miai,
the average number of games launched by MP to separate A and B is smaller
than the average number of games launched by PP.

SP was designed to speed up the beginning of the PP process. The experi-
ments show that SP is a failure. One could say that SP has no more theoretical
foundation than PP itself. One could expect that pruning set of moves would
exhibit the same move quality versus CPU time tradeoffs obtained by prun-
ing individual moves. The experiments’ results are not inconsistent with this
hypothesis.

Scared by long experiments on 19× 19 boards, we have chosen to spend the
CPU time to perform 9×9 games first. Considering that Indigo uses depth-3 on
9×9 boards, and that MP does not work well with depth-n search, all this work
does not result in visible behaviour of Indigo on 9× 9. Hopefully, scaling up to
19×19 boards after assessing the goodness of MP was a good surprise. MP works
well with depth-one search and Indigo uses depth-one on 19× 19 boards. Con-
sidering Indigo’s development, the speed-up and move quality improvements
are finally effective on 19× 19 boards, and not on 9 × 9 boards.

6 Conclusion and perspectives

We have presented two pruning heuristics: Miai Pruning and Set Pruning, in-
tended to improve the existing Progressive Pruning technique. Miai Pruning
actually simulates the miai principle used by human players which consists in
playing the second move when the first is played. Set Pruning manages two sets
of moves, GOOD and BAD, and tries to prune BAD when possible. These two
pruning techniques have been assessed on 9×9 go first. MP is domain-dependent,
and it is experimentally effective both in time and playing level when Nselect is
low and when associated with depth-one search. Weak MP has been shown ef-
fective both in time and playing level on 9 × 9 boards with depth-one search.
However, MP and WMP are not effective within a depth-n search. SP seems
experimentally effective in time as well, but it does not offer a satisfactory com-
promise between time and move quality. Associations between MP and SP has
also been tested but unfortunately they all failed. Finally, we have scaled WMP
up to 19 × 19 boards, and we have obtained a very significant speed-up (about
1.3). Besides, we have gained 4 points in terms of playing level.
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Our experiments assessed the effect of MP within the global tree search
algorithm proposed in [3]. A further step consists in translating MP into the
game tree search framework forgetting the statistical framework presented here.
Besides, SP is general, and to this extent, it should be tried on other games with
a high branching factor, such as Amazons [10]. Finally, assessing the ideas of [15]
within the Monte Carlo go landscape, and performing local statistical search are
still in our to-do list.
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