
1 

 

University 
of Surrey 

 
Department of Computing 

Computing 
Sciences 
Report 

 
CS-06-02 

A new multi-set modulation technique 
for increasing hiding capacity of Binary 
Watermark for Print & Scan Processes 

 
C. Culnane, H. Treharne, A.T.S. Ho 

 

 

May 2006 

 

 



A new multi-set modulation technique for
increasing hiding capacity of Binary Watermark

for Print & Scan Processes

C. Culnane, H. Treharne, A.T.S. Ho

Department of Computing, School of Electronic and Physical Sciences,
University of Surrey, Guildford, Surrey, GU2 7XH

csm1cc@surrey.ac.uk

Abstract. In this paper we propose a multi-set modulation technique
to increase the hiding capacity within a binary document image. As
part of this technique we propose an Automatic Threshold Calculation
and Threshold Buffering, Shifted Space Distribution and Letter Space
Compensation technique. The Automatic Threshold Calculation is used
to distinguish word spaces from letter spaces. The Threshold Buffering
is used to reduce the chance of misinterpretation of spaces during the
detection phase, following printing and scanning. The Shifted Space Dis-
tribution and Letter Space Compensation techniques robustly embed a
watermark into the binary document image. The Automatic Threshold
Calculation has been shown to be successful in identifying word spaces
for different types of fonts and font sizes. The combination of the Shifted
Space Distribution, Letter Space Compensation and Threshold Buffer-
ing techniques have been shown to create a watermark that is robust to
printing and scanning.

1 Introduction

Several approaches have been proposed which examine the digital watermark-
ing of binary documents. Low and Maxemchuk proposed a method of line and
word shifting in [1]. Low et al. [2] compared two methods of line and word shift-
ing for binary text documents whilst Wu et al. [3] examined the full range of
binary documents. Ho et al. proposed a method of pixel flipping in [4]. Koch
and Zhao [5] proposed a method of embedding data into a binary image based
on the percentage of pixels that were white in a block of an image. However,
the watermark was not robust to print and scan operations. The potential for
digital watermarks is well documented [6], but text documents, more so than
other documents, are often printed and transferred from the digital realm to the
analog, by way of a printer. The analog copy can then be transferred back into
the digital realm with the use of a scanner. There is a need for a watermark that
is robust to these print and scan operations. A print and scan resilient system
is proposed in [7], but this was for images and not binary document images.
One of the notable methods for binary document images was proposed by Zou



& Shi [8] in which they identified a way of embedding bits in the lines of text
using inter-word space modulation. The fundamental concept of their work is
to divide the spaces, between words in a line, into two sets. The total space in
these sets is adjusted to create a detectable difference. The difference between
the two sets indicates whether a ’0’ or a ’1’ is embedded. In [8] they state that
their approach is robust to printing the watermarked document, photocopying
it ten times and then scanning it. Their approach is limited to providing 1 bit
of embedding space per line of text.

Creating a watermarking scheme robust to printing and scanning presents
a number of different challenges. Traditionally, in binary digital watermarking,
a watermark is generated by flipping pixels to change the image. This is not a
suitable method to use in a print and scan system. When a document is printed
and then scanned the pixel locations change, so recovering such a watermark is
extremely difficult. Furthermore, during the print and scan process noise and
distortion is introduced, and the robustness of the watermark must be demon-
strated in the presence of these difficulties.

In this paper we present an approach which improves upon the method pre-
sented by Zou and Shi [8]. Our contribution is to increase the capacity of the
system by introducing a Multi-set Modulated Word Space technique whereby
the capacity is not fixed at 1 bit per line, but is dynamically calculated based
on the content of that line. In order to maintain a good level of robustness a
method of Automatic Threshold Calculation is proposed. This is complemented
by a Threshold Buffering technique. A Shifted Space Distribution method is pro-
posed for distributing space between sets, whilst a Letter Space Compensation
technique is used to ensure the line stays the same overall length. The benefit
of the proposed approach is to gain a greater capacity whilst still maintain-
ing robustness to print and scan. The greater capacity of the watermark could
potentially be used for authenticating binary images and documents.

2 Multi-set Modulated Word Space

In this section we present our new Multi-set Modulated Word Space technique.
As part of this technique we propose the Automatic Threshold Calculation,
Threshold Buffering, Shifted Space Distribution and Letter Space Compensation
techniques to improve the hiding capacity and handling of different fonts.

2.1 Concept

The basic concept takes the principle idea in [8] and expands it further, by
having multiple pairs of sets in one line. Word spaces can be defined as the
white space between adjacent words. Letter spaces can be defined as the white
space between adjacent letters in a word. The line is divided according to how
many word spaces should be in each set, so the capacity of a line depends on its
content. Word and letters spaces are distinguished with the use of an Automatic
Threshold Calculation. Automatic Threshold Calculation is adequate for basic



Fig. 1. Flow Diagram of System

embedding and detection. However, to handle the distortions caused by Print
and Scan operations a buffer is created around the threshold. This is to avoid
misinterpretation of letter and word spaces during detection. Figure 1 shows
an overview of the watermark embedding and detecting system. Boxes that are
common in both use the same algorithms in both processes.

2.2 Horizontal and Vertical Profiles

Fig. 2. Horizontal Profile

The standard way of splitting a document into lines of text, and those lines
into letters is to use horizontal and vertical profiles, as seen in [8] and earlier
described in [1]. They are graphs of the pixels present in the horizontal or vertical
plane. The profiles are calculated by counting the number of black pixels present
in the relevant plane.

Figure 2 shows a horizontal profile, which is used to distinguish the separate
lines of text within the document. Zero values in the profile distinguish the
individual lines. The position and size of lines can be found by analysing the
zero values and the groups of sequential positive values.

For each line found using the horizontal profile, a vertical profile is calculated,
as can be seen in Figure 3. The same process of counting black pixels is used. This
time the groups of black pixels represent letters or words, whilst the zero values
are the spaces. Once all the spaces have been found a threshold is calculated.



Fig. 3. Vertical Profile

2.3 Automatic Threshold Calculation

The Automatic Threshold Calculation algorithm aims to correctly distinguish
between word and letter spaces, as defined above.

Initial attempts to use a static threshold were not successful. The static
threshold makes the watermark more perceptible. This is due to letter spaces
being incorrectly classified as word spaces. If this happens, the embedding pro-
cess could increase the space between letters in a word. Too much space between
letters could be noticeable to the human eye. It is therefore important to cor-
rectly classify the spaces found in a line.

Fig. 4. Average Font Size

Figure 4 shows a graph of the comparison of average word space width for
the Times New Roman and Verdana fonts. It is clear that there is a significant
difference between the average word space width for the two fonts at the same
point size. The difference is also not static and the variation increases the larger
the font size. A similar effect was seen when comparing other fonts. This clearly



Width (px)

S1 13

S2 13

S3 15

S4 13

S5 15

S6 14

A1 3

Table 1. Table of Space Widths

shows the requirement for some form of Automatic Threshold Calculation, which
can vary according to the content of a particular line.

The Automatic Threshold Calculation is based on the standard deviation of
the spaces that are present in a line. Initially, the algorithm used a combination
of the mean and the standard deviation. However, the mean was sensitive to the
changes that could occur during the print and scan operation and this causes
the threshold to vary and thus the composition of the sets to change. Hence,
it could lead to errors in the calculation of the total space in a set and thus
introduce detection errors. The standard deviation is, however, less sensitive to
the changes and is therefore more stable. The Automatic Threshold Calculation
is performed after profiling the document prior to embedding and detection.

2.4 Embedding

Fig. 5. Set Division

Division into Sets Figure 5 shows an extract from a line, approximately a
third of the line is shown. The word spaces have been identified as S1 through
to S6. Table 1 shows the pixels width of each of the annotated spaces. The
significance of the shading is explained below. A1 is a letter space that will be
of interest after the embedding.

The threshold determines what will be considered a word space and what will
be a letter space. The word spaces can then be divided into multiple pairs of sets.
A default value of three spaces in each set was chosen. This was chosen because
typically lines contain in the region of twelve spaces. As a result, a value of four
did not increase the capacity enough, whilst a value of two did not provide the
required level of robustness.



Only pairs of sets are created, with any spare word spaces being assigned to
a spare group, situated on the right hand side of the line. This is signified by
the darkest shading in Figure 5. Each pair of sets provides one bit of possible
data embedding. But since we have multiple sets in each line we can embed more
than 1 bit per line. Figure 5 shows the last two sets for a line, the complete line
contained four sets. Let φ refer to a set whilst the subscript indicates the set
number.

φ3 = S1 + S2 + S3 = 41

φ4 = S4 + S5 + S6 = 42

Where A1 is a letter space that is part of φ4. It is not included in the calculation
of total set space, but is associated with φ4.

Threshold Buffering Initial tests have shown that the minor changes occur-
ring between letter and word spaces during printing and scanning results in
spaces being interpreted differently during embedding and detection. To avoid
this, and to increase the robustness, a system of creating a buffer around the
threshold was added.

The goal of this system is to create word spaces that are greater than or
equal to the sum of threshold and thresholdBuffer, and to ensure that letter
spaces are strictly less than or equal to the threshold minus the thresholdBuffer.
By expanding the word spaces and contracting the letter spaces the distinction
between letter and word spaces becomes clearer. For each set we determine all
the word spaces that need expanding. We also determine all the letter spaces
that require contracting. Any spare space obtained by contracting the letter
spaces is distributed evenly to the word spaces requiring expansion. At this
point if all word spaces are greater than or equal to the sum identified above an
appropriate buffering has been achieved. (Note that any excess spare space is
distributed evenly amongst all word spaces in a set.) If more space is needed to
expand the word spaces, further reductions are made to the letter spaces. (Note
that no letter spaces are reduced below 1px.) Only letter spaces from within a
set are used to create the buffer. Letter spaces from other sets and the spare set
are not used. This is to reduce the inter-set dependency and because there is
no guarantee that a spare set will exist. In situations where there is not enough
spare letter space in a set, the maximum buffer possible, given the available
spare space, is created.

Data Embedding The process of data embedding is based on the concepts
presented in [8]. Data is embedded on a line by line basis within the document
by making a detectable difference in the total size of the two sets. The detectable
difference that should be present between two sets is referred to as the embedding
strength. This is achieved by making changes to the spaces of the individual sets
and then we achieve the desired change in total set size, thus creating a detectable
difference. Using Figure 5 as an example, recall that φ3 = 41 and φ4 = 42. The
parameters for the line in Figure 5 are as follows:



– threshold = 10
– thresholdBuffer = 3
– Embedding Strength (ε) = 6

To embed a ’1’ φ3 must be at least ε greater than φ4, conversely to embed a ’0’,
φ4 must be at least ε greater than φ3. Clearly this is not the case in the example
above and so φ3 and φ4 must be adjusted accordingly as follows:

embed ‘1’ : φ′3 − φ′4 = ε

embed ‘0’ : φ′3 − φ′4 = −ε

where φ′3 and φ′4 indicates the adjusted sets, which are the original sets aug-
mented with half of the embedding strength, assuming that φ3 and φ4 are equal.

It is often the case that the two sets are not equal, as in Figure 5, and so some
extra work is needed before we can augment the sets. Since φ4 is one pixel bigger
than φ3 this difference must first be eradicated. The difference between them is
divided by two and one set is made bigger whilst the other is made smaller by
this amount. In this case the difference is only one pixel, which cannot be evenly
split between the two. When this occurs the set to be enlarged is assigned the
extra pixel (φ3 in this case). It is important that the total length of the line is
maintained, in order to reduce perceptibility. As a result we have:

φ′3 = φ3 + 1 + 3

φ′4 = φ4 − 1− 3

Shifted Space Distribution In the above we identified the required changes to the
spaces in a set. The Shifted Space Distribution technique makes the necessary
changes but is careful to observe the threshold buffering and ensure the minimum
perceptibility of the watermark. The process of increasing a space width is easy,
since there is no critical limit on increasing a space’s width. However, the process
of reducing a space width must be carefully controlled. Word spaces must never
be reduced below the sum of the threshold and thresholdBuffer, in this case 13.
This is to ensure spaces do not change from word spaces to letter spaces, which
could cause errors in the detection of the watermark. This limit on the level of
reduction potentially causes a problem of not being able to satisfy the required
changes. For example by reducing word spaces S5 and S6 in φ4 to 13 pixels each
we achieve an overall reduction of three pixels for this set. However, a reduction
of four pixels is required in order to make the required change.

Letter Space Compensation Having made the maximum reduction to the word
spaces in a set, and if we have not established the required changes the Letter
Space Compensation technique identifies letter spaces from that set which can
be reduced. This allows us to use the amount of reduction from the letter spaces
to increase the other set. In our example this means identifying two pixels in
φ4 (A1 from Figure 6) to be transferred to φ3. You cannot simply add pixels



to φ3 and leave φ4 as it is because we must maintain the length of the line.
The rule of not reducing letter spaces below 1 pixel is used, as in Threshold
Buffering, so that the threshold calculation is not affected during detection. The
Letter Space Compensation technique ensures that the embedding strength is
maintained across a pair of sets.

Fig. 6. Embedded

Width (px) Original Width (px)

S1 15 13

S2 15 13

S3 16 15

S4 13 13

S5 13 15

S6 13 14

A1 1 3

Table 2. Table of New Space Widths Compared with Original

Figure 6 shows the annotated image with the data embedded. Table 2 shows
the new space widths and the original widths. Note that the word spaces S4,
S5 and S6 have not been reduced below 13. Also note that the letter space, A1

has been reduced from three to one to allow the transfer of the remainder to the
operation to increase the size of φ3. Figure 6 provides the following set sizes:

φ3 = 15 + 15 + 16 = 46

φ4 = 13 + 13 + 13 = 39

where ε = 46− 39 = 7

The embedding strength (ε) is finally calculated to be seven, one more than re-
quired. This is due to the rounding operation when splitting a one pixel difference
between the two sets.

2.5 Detection

Horizontal and vertical profiles are again created, as in the embedding process in
Section 2.4. However, the main concerns are not Threshold Buffering or Shifted
Space Distribution but detecting the watermark accurately with increased ca-
pacity and dealing with geometric distortion caused by printing and scanning.



Geometric Distortion We used a method for correcting geometric distortion
based on the use of the horizontal profile and the calculation of the total amount
of white space. It is assumed that there are only two points where the total
amount of white space is at a maximum:

1. when the document is straight (0°)
2. when the document is rotated (180°)

Assuming that the document will be distorted by less than 1°, in either direction,
a horizontal profile can be generated for each rotated value: -1°, 0°, and +1°.
From this horizontal profile the total amount of white space is calculated by
summing the parts of the profile that are at zero. Finding the maximum total
white space value of the profiles determines the amount of rotation required to
correct the distortion. The range can be widened if the image appears to be
suffering from a greater degree of rotation. Obviously, rotations performed on
high resolution images are computationally intensive. For example, it was found
that an A4 page scanned at 600x600 pixels requires one gigabyte of memory to
be rotated. However, the principle of the process holds true for smaller images.
In our experiments, images are scaled to one half of their original size before
they are rotated and profiled. Once the required amount of rotation is found the
original is rotated by that amount.

During the initial experimentation described in Section 3.2, it was discovered
that the amount of rotation an image suffered during the Print and Scan process
could be as little as 0.25°. This small rotation had a detrimental effect on lines
with a small font size. As a result a smaller rotation increment was needed, that
gradually increased the precision of the rotation. For example, if the maximum
amount of white space was found at 1°, the values from 0.0° to 2.0° would be
tested at increments of 0.1°. If the maximum amount of white space was found at
0.2°, the values between 0.10° and 0.30° would be tested at increments of 0.01°.

The process of rotating the document to correct rotation can cause a degra-
dation in the quality of the lettering. We noticed that noise, in the form of white
pixels, is added to some letters. To counter this a Gaussian blur is applied to
the image after the rotation has been completed. This is to mitigate against the
chance of letters being split apart due to the distortion correction. If this occurs
the horizontal and vertical profiles may incorrectly divide the document.

Division into Sets The threshold is reduced by one during the detection pro-
cess, to allow for changes in spaces due to noise and distortion. This is possible
due to the Threshold Buffering conducted during the embedding process. The
value of one was chosen because it allows small distortions in word spaces with
the minimum risk of misinterpreting letter spaces. The Threshold Buffering can-
not be assumed to have created a buffer of three on every occasion, therefore
a reduction of two or three would be more likely to cause misinterpretations.
Other than this reduction the same process of dividing the sets is undertaken
and creating multiple sets is the same as the embedding process.



Fig. 7. Extract from a Sample Test Document for Times New Roman

Data Extraction The data is extracted by analysing the total word space
differences between each set in each pair of sets in each line of a document. A
’1’ bit is present if set A is bigger than set B whilst a ’0’ bit is present if set B
is bigger than set A.

3 Experimentation

This section evaluates the effectiveness of the Automatic Threshold Calculation,
Threshold Buffering and Shifted Space Distribution techniques.

3.1 Automatic Threshold Calculation

The Automatic Threshold Calculation was tested using a sample document con-
taining various font types, sizes and styles. This sample document was created
in the following fonts: Arial, Arial Narrow, Comic Sans, Courier New, MS Sans
Serif, Script, Tahoma, Times New Roman, and Verdana. Figure 7 shows an ex-
tract from a sample test document. One such document was created for all of the
above fonts. Each line in the document represents a particular test, with each
test being conducted on multiple font sizes. The following tests are contained
within the document: font size, partial underlining, partial bold styling, two dif-
ferent fonts in a line, no spaces in a line, two different font sizes in a line and a
line of single letter words. The partial underlining test aimed to test the effect
of having part of the line underlined. It should be noted that the Automatic
Threshold Calculation did not divide the underlined section, it viewed it as a



Fig. 8. Threshold Errors for Font Size, Underline, and Bold Test

single long word. Tests on no spaces and single letter words in a line were chosen
as extreme tests and were not expected to be successful.

Each document was processed using the Automatic Threshold Calculation
and the number of word spaces detected was recorded. The documents were also
manually analysed to record a benchmark of the correct number of word spaces
that should be detected. From these we could analyse the number of errors. A
negative comparison indicates that too few word spaces were detected, whilst
a positive value indicates too many word spaces were detected. The positive
and negative errors are reflected on the y axis as illustrated in Figures 8 and 9,
respectively.

Figure 8 shows an extract for the results for font size, underlining and bold
styling. We focus on three font types because they reflected the overall results for
all font sizing, underlining and bold styling. All the fonts, except Script, handled
the styling and sizes of fonts correctly. The Script font is a handwriting style font
that joins some letters together. As a result, there are fewer letter spaces. This
makes it difficult to distinguish between letter and word spaces. The algorithm
is designed so that it is better to detect fewer word spaces at the cost of capacity
than to incorrectly detect letter spaces as word spaces at the cost of robustness.

Overall the Automatic Threshold Calculation dealt very well with the chal-
lenges of font size and different fonts. We have attempted some extreme tests
which stress the algorithm and identify ways in which the algorithm can be im-
proved under these conditions. In most cases it also successfully handled multiple
font types in a line and partial styling. Arial and Times New Roman both had
single errors, but the rest, other than Script, were successful in handling the
multiple font types and partial styling.



Fig. 9. Threshold Errors for Complex Tests

Figure 9 shows an extract of the results in which a line is made up of two
fonts, two font sizes, no spaces and single letter words. Again these particular
results were chosen because they were representative of their class. Most of the
standard document fonts, with two different fonts in a line, were successfully
handled, with the exception of Courier New. The Script font again had problems
in all areas.

It is interesting to note that, all the fonts, except Arial Narrow and Times
New Roman had errors with the no spaces test. In practice the algorithm uses
the rule that if the standard deviation of all the spaces is below 1.5 then the
threshold is set to be the maximum space width, giving rise to no word spaces
being found. In practice it is unlikely that such a sentence would appear without
a single space.

All the fonts failed the single letter test. The regularity of the spaces means
that the standard deviation is always low, resulting in the use of the above
rule and thus the inability to recognise word spaces. This results in an undue
reduction in capacity. It is not a major concern that the Automatic Threshold
Calculation failed this test, since it is highly unlikely that a line would contain
just single letters separated by spaces.

3.2 Watermarking

Test Setup The test document was an A4 page of text. A copy was created for
each of the fonts tested in section 3.1, all having a font size of 12pt. Each was
saved as a PDF file and converted to a PNG file at 600dpi. The watermarked
documents were printed on a HP PSC 2110 in Normal mode. The printed doc-
uments were scanned on the same HP PSC 2110 at various resolutions in Black



& White mode. The automatic straighten and colour adjustment were switched
off.

Watermark ID Watermark

A WATERMARKED!

B THE EXAMPLE!

C ZZZZZZZZZZZZ

Table 3. Watermarks and ID’s

Experimentation Table 3 contains the watermarks and their respective ID’s.
Each watermark was embedded in a copy of each document in each font, giving
a total of 27 documents. The data was embedded as a binary string, using 8-bits
per character. Where a document did not have the capacity to fit the entire
watermark, the maximum to the nearest letter was embedded.

Bit Error Rate

150dpi 300dpi 600dpi

Font Capacity (bits) A B C A B C A B C

Arial 88 9 13 19 5 5 4 1 0 1

Arial Narrow 99 12 14 57 2 0 2 2 3 1

Comic Sans 69 27 19 28 1 21 1 0 0 0

Courier New 52 2 3 4 2 2 0 2 0 2

MS Sans Serif 90 16 10 16 1 3 5 0 1 0

Script 72 29 39 31 38 35 35 30 35 35

Tahoma 82 6 6 6 0 3 3 2 1 1

Times New Roman 90 45 10 28 1 13 34 0 3 1

Verdana 68 22 20 22 0 0 7 0 0 0

Table 4. Print & Scan Results

Table 4 shows the bit error rate (BER) results from the documents being
scanned at 150, 300, and 600 dpi. These results are illustrated in Figure 10. The
BER was calculated by comparing the binary string detected with the one em-
bedded. There were occurrences of fewer sets being detected during the detection
phase from the embedding phase. In these situations, if it was clear where the set
had been lost, the detected string was padded with the inverse bit of the original.
This would result in a lost set being counted as a bit error, without having a
significant impact on all the remaining bits in the string, that would otherwise
have been shifted one place to the left. The results show that it is possible to
achieve a zero bit error result. They also demonstrate that in most cases 150dpi
is not a high enough resolution by which to scan the document. The best results
were obtained at 600dpi. The Script font did not perform well, although this was
to be expected since it performed badly in the Automatic Threshold Calculation
tests. The Verdana font performed well with five out of the six test above 150dpi
resulting in no bit errors. Courier New provided the most consistent results, and



Fig. 10. Bit Error Rates

interestingly coped well at 150dpi. The Tahoma font also performed better than
most at 150dpi and consistently over the other resolutions.

Overall the results demonstrate that the principle of the system works and
with some further improvements it may be possible achieve even more zero bit
errors.

4 Conclusion

The proposed method has been shown to provide a greater capacity whilst still
being robust to print and scan. The Automatic Threshold Calculation has shown
to be useful in handling multiple fonts and different font sizes. Both the Tahoma
and Comic Sans fonts correctly classified spaces with zero errors, except in the
extreme tests. The Shifted Space Distribution has produced results which appear
imperceptible to the human eye. The Letter Space Compensation technique has
improved the robustness of the watermark. Without this technique we would not
have been able to maintain the embedding strength. At 600dpi both the Comic
Sans and Verdana font were able to detect the watermark with a zero BER.

The capacity in [8] is restricted to embedding one bit per line. The capacity
in our approach is dependent on the content of each line and can vary from one
line to the next. For example, a line in a smaller sized font will have more word
spaces, and therefore will have a higher capacity. The capacity can be varied
by adjusting how many word spaces should be present in each set. The fewer
the number of word spaces the greater the capacity, but the watermark is less
robust.



5 Future Work

Our future plans involve improving the current algorithm and dealing with noise
which can result from scanning documents.

5.1 Multi-Set Modulated Word Space

There are a number of possible improvements to the method for embedding data
and the use of the space. The Threshold Buffering technique requires further
work to identify a bound below the threshold value in the extreme cases identified
in Section 3.1. The use of the space in the spare group may also provide a way
of increasing the robustness of the watermark and eliminating the problems of
losing sets between embedding and detection.

5.2 Noise Removal

The current noise removal procedure is done manually. The method described
by Zou and Shi in [8] removed isolated black pixels. This was not implemented
because the noise we saw was greater than single black pixels. Our initial exper-
iments confirm that it may be possible to remove noise from around the outside
of the text using horizontal and vertical profiling. Further research is needed to
remove noise from between words or lines.

References

1. S. H. Low, N. F. Maxemchuk, and A. P. Lapone. Document identification for copy-
right protection using centroid detection. IEEE Transactions on Communication,
46(3):372–383, 1998.

2. S. H. Low and N. F. Maxemchuk. Performance comparison of two text marking
methods. IEEE Journal on Special Areas in Communications, 16(4):561–572, 1998.

3. M. Wu, E. Tang, and B. Liu. Data hiding in digital binary images. In International
Conference on Multimedia and Expositions, volume 1, pages 393–396, Jul 31 - Aug
2 2000.

4. A.T.S. Ho, N. B. Puhan, A. Makur, P. Marziliano, and Y. L. Guan. Imperceptible
data embedding in sharply-contrasted binary images. In ICARCV, volume 2, pages
958 – 963, Dec 2004.

5. J. Zhao and E. Koch. Embedding robust labels into images for copyright protection.
In International Congress on Intellectual Property Rights for Specialised Informa-
tion, Knowledge and New Technologies, Vienna, Austria, 21–25 1995.

6. M. L. Miller I. J. Cox and J. A. Bloom. Digital watermarking : principles and
practice. Morgan Kaufmann, 2001.

7. A.T.S. Ho and F. Shu. A print-and-scan resilient digital watermark for card au-
thentication. In ICICS-PCM, volume 2, pages 1149 – 1152, Singapore, Dec 2003.

8. D. Zou and Y. Q. Shi. Formatted text document data hiding robust to printing,
copying and scanning. In IEEE International Symposium on Circuits and Systems
(ISCAS05), Kobe, Japan, May 2005.


