Skip to main content

Proof Abstraction for Imperative Languages

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 4279))

Abstract

Modularity in programming language semantics derives from abstracting over the structure of underlying denotations, yielding semantic descriptions that are more abstract and reusable. One such semantic framework is Liang’s modular monadic semantics in which the underlying semantic structure is encapsulated with a monad. Such abstraction can be at odds with program verification, however, because program specifications require access to the (deliberately) hidden semantic representation. The techniques for reasoning about modular monadic definitions of imperative programs introduced here overcome this barrier. And, just like program definitions in modular monadic semantics, our program specifications and proofs are representation-independent and hold for whole classes of monads, thereby yielding proofs of great generality.

This research supported in part by subcontract GPACS0016, System Information Assurance II, through OGI/Oregon Health & Sciences University.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ariola, Z.M., Sabry, A.: Correctness of monadic state: an imperative call-by-need calculus. In: Conference Record of POPL 1998: The 25th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, San Diego, California, New York, NY, pp. 62–73 (1998)

    Google Scholar 

  2. Espinosa, D.: Semantic Lego. PhD thesis, Columbia University (1995)

    Google Scholar 

  3. Führmann, C.: Varieties of effects. In: Nielsen, M., Engberg, U. (eds.) FOSSACS 2002. LNCS, vol. 2303, pp. 144–158. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  4. Ghani, N., Lüth, C.: Composing monads using coproducts. In: ACM International Conference on Functional Programming, pp. 133–144 (2002)

    Google Scholar 

  5. Goguen, J.A., Meseguer, J.: Security policies and security models. In: Proceedings of the 1982 Symposium on Security and Privacy (SSP 1982), pp. 11–20. IEEE Computer Society Press, Los Alamitos (1990)

    Google Scholar 

  6. Harrison, W.: Modular Compilers and Their Correctness Proofs. PhD thesis, University of Illinois at Urbana-Champaign (2001)

    Google Scholar 

  7. Harrison, W., Hook, J.: Achieving information flow security through precise control of effects. In: 18th IEEE Computer Security Foundations Workshop (CSFW 2005) (June 2005)

    Google Scholar 

  8. Harrison, W., Kamin, S.: Metacomputation-based compiler architecture. In: Backhouse, R., Oliveira, J.N. (eds.) MPC 2000. LNCS, vol. 1837, pp. 213–229. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  9. Hoare, C.A.R.: An axiomatic basis for computer programming. Communications of the ACM 12(10), 576–580 (1969)

    Article  MATH  Google Scholar 

  10. Kozen, D.: On Hoare logic and Kleene algebra with tests. ACM Transactions on Computational Logic 1(1), 60–76 (2000)

    Article  MathSciNet  Google Scholar 

  11. Launchbury, J., Sabry, A.: Monadic state: Axiomatization and type safety. In: ACM SIGPLAN International Conference on Functional Programming, pp. 227–238 (1997)

    Google Scholar 

  12. Lee, P.: Realistic Compiler Generation. Foundations of Computing Series. MIT Press, Cambridge (1989)

    Google Scholar 

  13. Liang, S.: Modular Monadic Semantics and Compilation. PhD thesis, Yale University (1997)

    Google Scholar 

  14. Liang, S., Hudak, P., Jones, M.: Monad transformers and modular interpreters. In: Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL), pp. 333–343. ACM Press, New York (1995)

    Chapter  Google Scholar 

  15. Loeckx, J., Sieber, K., Stansifer, R.D.: The Foundations of Program Verification, 2nd edn. Wiley-Teubner Series in Computer Science. Wiley, Chichester (1987)

    MATH  Google Scholar 

  16. Mitchell, J.C.: Type systems for programming languages, In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, ch. 8. Formal Models and Semantics, vol. B, pp. 365–458. North-Holland, New York (1990)

    Google Scholar 

  17. Moggi, E.: Notions of computation and monads. Information and Computation 93(1), 55–92 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  18. Moggi, E.: Personal communication with author

    Google Scholar 

  19. Moggi, E.: Representing program logics in evaluation logic (unpublished manuscript), available online (1994)

    Google Scholar 

  20. Moggi, E.: A semantics for evaluation logic. FUNDINF: Fundamenta Informatica 22 (1995)

    Google Scholar 

  21. Moggi, E.: An abstract view of programming languages. Technical Report ECS-LFCS-90-113, Dept. of Computer Science, Edinburgh Univ., 90

    Google Scholar 

  22. Mosses, P.D.: Action Semantics. Number 26 in Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, Cambridge (1992)

    Book  MATH  Google Scholar 

  23. Naumann, D.A.: Calculating sharp adaptation rules. Information Processing Letters 77(2-4), 201–208 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  24. Pitts, A.M.: Evaluation logic. In: Birtwistle, G. (ed.) IVth Higher Order Workshop, Banff 1990, Workshops in Computing, pp. 162–189. Springer, Berlin (1991)

    Google Scholar 

  25. Plotkin, G., Power, J.: Algebraic operations and generic effects. Applied Categorical Structures 11, 69–94 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  26. Reynolds, J.C.: The Craft of Programming. Prentice-Hall, Englewood Cliffs (1981)

    MATH  Google Scholar 

  27. Schröder, L., Mossakowski, T.: Monad-independent hoare logic in HASCASL. In: Pezzé, M. (ed.) FASE 2003. LNCS, vol. 2621, pp. 261–277. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Harrison, W.L. (2006). Proof Abstraction for Imperative Languages. In: Kobayashi, N. (eds) Programming Languages and Systems. APLAS 2006. Lecture Notes in Computer Science, vol 4279. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11924661_6

Download citation

  • DOI: https://doi.org/10.1007/11924661_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-48937-5

  • Online ISBN: 978-3-540-48938-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics