Skip to main content

In Search of Optimal Codes for DNA Computing

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4287))

Abstract

Encoding and processing information in DNA-, RNA- and other biomolecule-based devices is an important requirement for DNA-based computing with potentially important applications. Recent experimental and theoretical advances have produced and tested new methods to obtain large code sets of oligonucleotides to support virtually any kind of application. We report results of a tour de force to conduct an exhaustive search to produce code sets that are arguably of sizes comparable to that of maximal sets while guaranteeing high quality, as measured by the minimum Gibbs energy between any pair of code words and other criteria. The method is constructive and directly produces the actual composition of the sets, unlike their counterpart in vitro . The sequences allow a quantitative characterization of their composition. We also present a new technique to generate code sets with desirable more stringent constraints on their possible interaction under a variety of conditions, as measured by Gibbs energies of duplex formation. The results predict close agreement with known results in vitro for 20–mers. Consequences of these results are bounds on the capacity of DNA for information storage and processing in wet tubes for a given oligo length, as well as many other applications where specific and complex self-directed assembly of large number of components may be required.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arita, M., Kobayashi, S.: Dna sequence design using templates. New Gen. Comput. 20(3), 263–277 (2002)

    Article  MATH  Google Scholar 

  2. Baum, E.: Building an associative memory vastly larger than the brain. Science 268, 583–585 (1995)

    Article  Google Scholar 

  3. Bi, H., Chen, J., Deaton, R., Garzon, M., Rubin, H., Wood, D.: A pcr-based protocol for in vitro selection of non-crosshybridizing oligonucleotides. J. of Natural Computing 2(4), 417–426 (2003)

    Article  MathSciNet  Google Scholar 

  4. Chen, J., Deaton, R., Garzon, M., Kim, J.W., Wood, D.H., Bi, H., Carpenter, D., Le, J.S., Wang, Y.Z.: Sequence complexity of large libraries of dna oligonucleotides. In: 11th International Conference on DNA Computing (in press, 2005)

    Google Scholar 

  5. Chen, J., Deaton, R., Garzon, M., Wood, D.H., Bi, H., Carpenter, D., Wang, Y.Z.: Characterization of non-crosshybridizing dna oligonucleotides manufactured in vitro. In: Proc. 8th Int Conf on DNA Computing DNA8

    Google Scholar 

  6. Chen, J., Deaton, R., Garzon, M., Wood, D.H., Bi, H., Carpenter, D., Wang, Y.Z.: Characterization of non-crosshybridizing dna oligonucleotides manufactured in vitro. In: Smith, L., Mauri, G.C. (eds.) 10th International Workshop on DNA Computing, pp. 50–61 (2004)

    Google Scholar 

  7. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms, 2nd edn. The MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  8. Deaton, R., Chen, J., Bi, H., Rose, J.: A software tool for generating non-crosshybridizing libraries of dna oligonucleotides. In: [17], pp. 252–261 (2002)

    Google Scholar 

  9. Deaton, R.J., Chen, J., Bi, H., Garzon, M., Rubin, H., Wood, D.H.: A pcr-based protocol for in vitro selection of non-crosshybridizing oligonucleotides. In: Hagiya & Ohuchi, 2002, pp. 105–114 (2002a)

    Google Scholar 

  10. Cantu-Paz, E. (ed.): GECCO 2003. LNCS, vol. 2723. Springer, Heidelberg (2003)

    Google Scholar 

  11. Garzon, M., Blain, D., Bobba, K., Neel, A., West, M.: Self-assembly of dna-like structures in silico. In: Garzon, M. (ed.) Biomolecular Machines and Artificial Evolution, Special Issue of the Journal of Genetic Programming and Evolvable Machines, pp. 185–200. Kluwer Academic Publishers, Dordrecht (2003)

    Google Scholar 

  12. Garzon, M., Bobba, K., Hyde, B.: Digital information encoding on dna. In: Aspects of Molecular Computing, vol. 20, pp. 152–166. Springer, London (2004)

    Google Scholar 

  13. Garzon, M., Deaton, R.: Codeword design and information encoding in dna ensembles. J. of Natural Computing 3, 253–292 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Garzon, M., Deaton, R., Neathery, P., Franceschetti, D.R., Murphy, R.C.: A new metric for dna computing. In: Second Annual Genetic Programming Conference, pp. 472–478 (1997)

    Google Scholar 

  15. Garzon, M., Deaton, R., Neathery, P., Murphy, R.C., Franceschetti, D.R., Stevens Jr., E.: On the encoding problem for dna computing. In: The Third DIMACS Workshop on DNA-based Computing, pp. 230–237 (1997)

    Google Scholar 

  16. Garzon, M., Phan, V., Bobba, K., Kontham, R.: Sensitivity analysis of microarray data: A new approach. In: Proc. IBE Conference, Athens GA, Biotechnology Press (2005)

    Google Scholar 

  17. Hagiya, M.: Dnabasedcomputers. In: Ohuchi, A. (ed.) DNA 2002. LNCS, vol. 2568, Springer, Heidelberg (2002)

    Google Scholar 

  18. Garzon, M., Blain, D., Neel, A.: Virtual test tubes for biomolecular computing. J. of Natural Computing 3(4), 460–477 (2004)

    MathSciNet  Google Scholar 

  19. Marathe, A., Condon, A., Corn, R.: On combinatorial DNA word design. In: Winfree, E., Gifford, D.K. (eds.) Proceedings 5th DIMACS Workshop on DNA Based Computers, pp. 75–89. American Mathematical Society (1999)

    Google Scholar 

  20. Phan, V.: A method for constructing large dna codesets. In: Pham, T., Yan, H., Crane, D.I. (eds.) Advanced Computational Methods for Biocomputing and Bioimaging, Nova Science Publishers, New York (2006)

    Google Scholar 

  21. Phan, V., Garzon, M.: The Capacity of DNA for Information Encoding. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA 2004. LNCS, vol. 3384, pp. 281–292. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  22. Roman, J.: The Theory of Error-Correcting Codes. Springer, Heidelberg (1995)

    Google Scholar 

  23. SantaLucia, J.: A unified view of polymer, dumbbell, and oligonucleotide dna nearest-neighbor thermodynamics. Proc. Natl. Acad. Sci. 95(4), 1460–1465 (1998)

    Article  Google Scholar 

  24. SantaLucia, J., Hicks, D.: Thermodynamics of dna structural motifs. Annu. Rev. Biophys. Biomol. Struct. 33, 415–440 (2004)

    Article  Google Scholar 

  25. Shortreed, M.R., Chang, S.B., Hong, D., Phillips, M., Campion, B., Tulpan, D.C., Andronescu, M., Condon, A., Hoos, H.H., Smith, L.M.: A thermodynamic approach to designing structure-free combinatorial dna word sets. Nucleic Acids Res. 33(15), 4965–4977 (2005)

    Article  Google Scholar 

  26. Tulpan, D., Andronescu, M., Chang, S.B., Shortreed, M.R., Condon, A., Hoos, H.H., Smith, L.M.: Thermodynamically based dna strand design. Nucleic Acids Research 33(15), 4951–4964 (2005)

    Article  Google Scholar 

  27. Zuker, M., Mathews, D.H., Turner, D.H.: Algorithms and thermodynamics for rna secondary structure prediction: A practical guide in rna biochemistry and biotechnology. In: Barciszewski, J., Clark, B.F.C. (eds.) NATO ASI Series, Kluwer Academic Publishers, Dordrecht (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Garzon, M.H., Phan, V., Roy, S., Neel, A.J. (2006). In Search of Optimal Codes for DNA Computing. In: Mao, C., Yokomori, T. (eds) DNA Computing. DNA 2006. Lecture Notes in Computer Science, vol 4287. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11925903_11

Download citation

  • DOI: https://doi.org/10.1007/11925903_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-49024-1

  • Online ISBN: 978-3-540-68423-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics